Publications

Export 45 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Caeiro, F., Henriques-Rodrigues L. {\'ı}gia, & Gomes I. M. (2022).  The Use of Generalized Means in the Estimation of the Weibull Tail Coefficient. (Anil Kumar, Ed.).Computational and Mathematical Methods. 2022, 1–12., jun: Hindawi Limited AbstractWebsite
n/a
Cabral, I., Caeiro F., & Gomes M. I. (2022).  On the comparison of several classical estimators of the extreme value index. Communications in Statistics - Theory and Methods. 51, 179-196., Number 1 Abstract
n/a
2020
Caeiro, F., Henriques-Rodrigues L. {\'ı}gia, Gomes I. M., & Cabral I. (2020).  Minimum-variance reduced-bias estimation of the extreme value index: A theoretical and empirical study. Computational and Mathematical Methods. , may: Wiley AbstractWebsite
n/a
Gomes, M. I., Caeiro F., Figueiredo F., Henriques-Rodrigues L., & Pestana D. (2020).  Corrected-Hill versus partially reduced-bias value-at-risk estimation. Communications in Statistics: Simulation and Computation. 49, 867-885., Number 4 Abstract
n/a
Penalva, H., Gomes M. I., Caeiro F., & Neves M. M. (2020).  Lehmer{'}s mean-of-order-p extreme value index estimation: a simulation study and applications. Journal of Applied Statistics. 47, 2825-2845., Number 13-15 Abstract
n/a
Gomes, M. I., Caeiro F., Figueiredo F., Henriques-Rodrigues L., & Pestana D. (2020).  Reduced-bias and partially reduced-bias mean-of-order-p value-at-risk estimation: a Monte-Carlo comparison and an application. Journal of Statistical Computation and Simulation. 90, 1735-1752., Number 10 Abstract
n/a
2019
Caeiro, F., Henriques-Rodrigues L. {\'ı}gia, & Gomes D. P. (2019).  A simple class of reduced bias kernel estimators of extreme value parameters. Computational and Mathematical Methods. e1025., apr: Wiley AbstractWebsite
n/a
2018
Caeiro, F., Cabral I., & Gomes I. M. (2018).  Improving Asymptotically Unbiased Extreme Value Index Estimation. Contributions to Statistics. 155–163.: Springer International Publishing Abstract
n/a
2016
Caeiro, F. A. G. G., Gomes I. M., & Henriques-Rodrigues L. (2016).  A location-invariant probability weighted moment estimation of the Extreme Value Index. International Journal of Computer Mathematics. 93(4), 676 - 695., 2016/4/2 AbstractWebsite

The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators, the so-called PORT-PPWM EVI-estimators, is derived, and an alternative class of location-invariant EVI-estimators, the generalized Pareto probability weighted moments (GPPWM) EVI-estimators is considered as an alternative. These two classes of estimators, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator and a recent class of minimum-variance reduced-bias estimators are compared for finite samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of the tuning parameters under play is put forward and applied to simulated and real data sets.The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators, the so-called PORT-PPWM EVI-estimators, is derived, and an alternative class of location-invariant EVI-estimators, the generalized Pareto probability weighted moments (GPPWM) EVI-estimators is considered as an alternative. These two classes of estimators, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator and a recent class of minimum-variance reduced-bias estimators are compared for finite samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of the tuning parameters under play is put forward and applied to simulated and real data sets.

Cabral, I., Caeiro F., & Gomes I. M. (2016).  Reduced bias Hill estimators. International Conference of Computational Methods in Sciences and Engineering 2016, ICCMSE 2016. 1790, , 2016/12/6: American Institute of Physics Inc. Abstract

For heavy tails, classical extreme value index estimators, like the Hill estimator, are usually asymptotically biased. Consequently those estimators are quite sensitive to the number of top order statistics used in the estimation. The recent minimum-variance reduced-bias extreme value index estimators enable us to remove the dominant component of asymptotic bias and keep the asymptotic variance of the new estimators equal to the asymptotic variance of the Hill estimator. In this paper a new minimum-variance reduced-bias extreme value index estimator is introduced, and its non degenerate asymptotic behaviour is studied. A comparison with another important minimum-variance reduced-bias extreme value index estimator is also provided.For heavy tails, classical extreme value index estimators, like the Hill estimator, are usually asymptotically biased. Consequently those estimators are quite sensitive to the number of top order statistics used in the estimation. The recent minimum-variance reduced-bias extreme value index estimators enable us to remove the dominant component of asymptotic bias and keep the asymptotic variance of the new estimators equal to the asymptotic variance of the Hill estimator. In this paper a new minimum-variance reduced-bias extreme value index estimator is introduced, and its non degenerate asymptotic behaviour is studied. A comparison with another important minimum-variance reduced-bias extreme value index estimator is also provided.

Mateus, A., Caeiro F., Gomes D. P., & Sequeira I. J. (2016).  Statistical analysis of extreme river flows. International Conference of Computational Methods in Sciences and Engineering 2016, ICCMSE 2016. 1790, , 2016/12/6: American Institute of Physics Inc. Abstract

Floods are recurrent events that can have a catastrophic impact. In this work we are interested in the analysis of a data set of gauged daily flows from the Whiteadder Water river, Scotland. Using statistic techniques based on extreme value theory, we estimate several extreme value parameters, including extreme quantiles and return periods of high levels.Floods are recurrent events that can have a catastrophic impact. In this work we are interested in the analysis of a data set of gauged daily flows from the Whiteadder Water river, Scotland. Using statistic techniques based on extreme value theory, we estimate several extreme value parameters, including extreme quantiles and return periods of high levels.

Caeiro, F., Gomes I. M., Beirlant J., & de Wet T. (2016).  Mean-of-order p reduced-bias extreme value index estimation under a third-order framework. ExtremesExtremes. 19(4), 561 - 589., 2016/12/1 AbstractWebsite

Reduced-bias versions of a very simple generalization of the ‘classical’ Hill estimator of a positive extreme value index (EVI) are put forward. The Hill estimator can be regarded as the logarithm of the mean-of-order-0 of a certain set of statistics. Instead of such a geometric mean, it is sensible to consider the mean-of-order-p (MOP) of those statistics, with p real. Under a third-order framework, the asymptotic behaviour of the MOP, optimal MOP and associated reduced-bias classes of EVI-estimators is derived. Information on the dominant non-null asymptotic bias is also provided so that we can deal with an asymptotic comparison at optimal levels of some of those classes. Large-scale Monte-Carlo simulation experiments are undertaken to provide finite sample comparisons.Reduced-bias versions of a very simple generalization of the ‘classical’ Hill estimator of a positive extreme value index (EVI) are put forward. The Hill estimator can be regarded as the logarithm of the mean-of-order-0 of a certain set of statistics. Instead of such a geometric mean, it is sensible to consider the mean-of-order-p (MOP) of those statistics, with p real. Under a third-order framework, the asymptotic behaviour of the MOP, optimal MOP and associated reduced-bias classes of EVI-estimators is derived. Information on the dominant non-null asymptotic bias is also provided so that we can deal with an asymptotic comparison at optimal levels of some of those classes. Large-scale Monte-Carlo simulation experiments are undertaken to provide finite sample comparisons.

Cabral, I., Caeiro F., & Gomes I. M. (2016).  Redução do viés do estimador de Hill: uma nova abordagem. Estatística: Progressos e Aplicações. 73 - 84., 2016/11 Abstract
n/a
Gomes, I. M., Caeiro F., Henriques-Rodrigues L., & Manjunath B. g (2016).  Bootstrap Methods in Statistics of Extremes. Extreme Events in Finance. 117 - 138., 2016/10/7: John Wiley & Sons, Inc. Abstract
n/a
Caeiro, F., & Gomes I. M. (2016).  Threshold Selection in Extreme Value Analysis. Extreme Value Modeling and Risk Analysis. 69 - 86., 2016/1/7: Chapman and Hall/CRC 2007 Abstract

The main objective of statistics of extremes is the prediction of rare events, and its primary problem has been the estimation of the extreme value index (EVI). Whenever we are interested in large values, such estimation is usually performed on the basis of the largest k + 1 order statistics in the sample or on the excesses over a high level u. The question that has been often addressed in practical applications of extreme value theory is the choice of either k or u, and an adaptive EVI-estimation. Such a choice can be either heuristic or based on sample paths stability or on the minimization of a mean squared error estimateas a function of k. Some of these procedures will be reviewed. Despite of thefact that the methods provided can be applied, with adequate modifications, to any real EVI and not only to the adaptive EVI-estimation but also to the adaptive estimation of other relevant right-tail parameters, we shall illustrate the methods essentially for the EVI and for heavy tails, i.e., for a positive EVI.The main objective of statistics of extremes is the prediction of rare events, and its primary problem has been the estimation of the extreme value index (EVI). Whenever we are interested in large values, such estimation is usually performed on the basis of the largest k + 1 order statistics in the sample or on the excesses over a high level u. The question that has been often addressed in practical applications of extreme value theory is the choice of either k or u, and an adaptive EVI-estimation. Such a choice can be either heuristic or based on sample paths stability or on the minimization of a mean squared error estimateas a function of k. Some of these procedures will be reviewed. Despite of thefact that the methods provided can be applied, with adequate modifications, to any real EVI and not only to the adaptive EVI-estimation but also to the adaptive estimation of other relevant right-tail parameters, we shall illustrate the methods essentially for the EVI and for heavy tails, i.e., for a positive EVI.

2015
Caeiro, F., & Gomes D. S. R. P. (2015).  Adaptive estimation of a tail shape second order parameter. International Conference of Computational Methods in Sciences and Engineering 2015 (ICCMSE 2015). , 2015/12/31: American Institute of Physics Inc. Abstract

In Statistics of Extremes, the tail shape second order parameter is a relevant parameter whenever we want to improve the estimation of first order parameters. We shall consider two semi-parametric estimators of the shape second order parameter, parameterized with a tuning parameter. We provide a Monte Carlo comparative simulation study of several algorithms for the choice of such tuning parameter and for an adaptive estimation of the shape second order parameter.In Statistics of Extremes, the tail shape second order parameter is a relevant parameter whenever we want to improve the estimation of first order parameters. We shall consider two semi-parametric estimators of the shape second order parameter, parameterized with a tuning parameter. We provide a Monte Carlo comparative simulation study of several algorithms for the choice of such tuning parameter and for an adaptive estimation of the shape second order parameter.

Caeiro, F., & Gomes I. M. (2015).  Revisiting the maximum likelihood estimation of a positive extreme value index. Journal Of Statistical Theory And PracticeJournal Of Statistical Theory And Practice. 9(1), 200 - 218., 2015/1/13 AbstractWebsite

In this article, we revisit Feuerverger and Halls maximum likelihood estimation of the extreme value index. Based on those estimators we propose new estimators that have the smallest possible asymptotic variance, equal to the asymptotic variance of the Hill estimator. The full asymptotic distributional properties of the estimators are derived under a general third-order framework for heavy tails. Applications to a real data set and to simulated data are also presented.In this article, we revisit Feuerverger and Halls maximum likelihood estimation of the extreme value index. Based on those estimators we propose new estimators that have the smallest possible asymptotic variance, equal to the asymptotic variance of the Hill estimator. The full asymptotic distributional properties of the estimators are derived under a general third-order framework for heavy tails. Applications to a real data set and to simulated data are also presented.

Caeiro, F., & Gomes I. M. (2015).  Bias reduction in the estimation of a shape second-order parameter of a heavy-tailed model. Journal Of Statistical Computation And SimulationJournal Of Statistical Computation And Simulation. 85(17), 3405 - 3419., 2015 AbstractWebsite

In extreme value theory, the shape second-order parameter is a quite relevant parameter related to the speed of convergence of maximum values, linearly normalized, towards its limit law. The adequate estimation of this parameter is vital for improving the estimation of the extreme value index, the primary parameter in statistics of extremes. In this article, we consider a recent class of semi-parametric estimators of the shape second-order parameter for heavy right-tailed models. These estimators, based on the largest order statistics, depend on a real tuning parameter, which makes them highly flexible and possibly unbiased for several underlying models. In this article, we are interested in the adaptive choice of such tuning parameter and the number of top order statistics used in the estimation procedure. The performance of the methodology for the adaptive choice of parameters is evaluated through a Monte Carlo simulation study.In extreme value theory, the shape second-order parameter is a quite relevant parameter related to the speed of convergence of maximum values, linearly normalized, towards its limit law. The adequate estimation of this parameter is vital for improving the estimation of the extreme value index, the primary parameter in statistics of extremes. In this article, we consider a recent class of semi-parametric estimators of the shape second-order parameter for heavy right-tailed models. These estimators, based on the largest order statistics, depend on a real tuning parameter, which makes them highly flexible and possibly unbiased for several underlying models. In this article, we are interested in the adaptive choice of such tuning parameter and the number of top order statistics used in the estimation procedure. The performance of the methodology for the adaptive choice of parameters is evaluated through a Monte Carlo simulation study.

Caeiro, F., & Gomes D. S. R. P. (2015).  A log probability weighted moment estimator of extreme quantiles. Theory and Practice of Risk Assessment - ICRA5 2013. 136, 293 - 303., 2015: Springer New York LLC Abstract

In this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.In this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.

Gomes, I. M., Brilhante F. M., Caeiro F., & Pestana D. (2015).  A new partially reduced-bias mean-of-order p class of extreme value index estimators. Computational Statistics & Data AnalysisComputational Statistics & Data Analysis. 82, 223 - 227., 2015 AbstractWebsite

A class of partially reduced-bias estimators of a positive extreme value index (EVI), related to a mean-of-order-p class of EVI-estimators, is introduced and studied both asymptotically and for finite samples through a Monte-Carlo simulation study. A comparison between this class and a representative class of minimum-variance reduced-bias (MVRB) EVI-estimators is further considered. The MVRB EVI-estimators are related to a direct removal of the dominant component of the bias of a classical estimator of a positive EVI, the Hill estimator, attaining as well minimal asymptotic variance. Heuristic choices for the tuning parameters p and k, the number of top order statistics used in the estimation, are put forward, and applied to simulated and real data.A class of partially reduced-bias estimators of a positive extreme value index (EVI), related to a mean-of-order-p class of EVI-estimators, is introduced and studied both asymptotically and for finite samples through a Monte-Carlo simulation study. A comparison between this class and a representative class of minimum-variance reduced-bias (MVRB) EVI-estimators is further considered. The MVRB EVI-estimators are related to a direct removal of the dominant component of the bias of a classical estimator of a positive EVI, the Hill estimator, attaining as well minimal asymptotic variance. Heuristic choices for the tuning parameters p and k, the number of top order statistics used in the estimation, are put forward, and applied to simulated and real data.

2014
Gomes, M. I., & Caeiro F. (2014).  Eficiency of partially reduced-bias mean-of-order-p versus minimum-variance reduced-bias extreme value index estimation. COMPSTAT 2014: 21th International Conference on Computational Statistics. 289-298., Jan, Geneve Abstractgomes_caeiro_compstat2014_reprint.pdf

n/a

Caeiro, F., & Gomes M. I.: (2014).  A semi-parametric estimator of a shape second order parameter.. (Pacheco, A.,, Santos, R.,, Rosário Oliveira, M., Paulino, C.D., Ed.).New Advances in Statistical Modeling and Applications. 137-144., Jan: Springer Abstract

n/a

Caeiro, F., & Gomes M. I. (2014).  On the bootstrap methodology for the estimation of the tail sample fraction. COMPSTAT 2014: 21th International Conference on Computational Statistics. 546-553., Genevecaeiro_gomes_compstat2014_reprint.pdf
2013
F., C., Gomes, & M.I. (2013).  Asymptotic Comparison at Optimal Levels of Minimum-Variance Reduced-Bias Tail-Index Estimators. Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications. 83-91., Jan: Springer Berlin Heidelberg Abstract
n/a