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Abstract. Making use of the peaks over random threshold (PORT) methodology and the Pareto
probability weighted moments (PPWM) of the largest observations, and moreover dealing with
the extreme value index (EVI), the primary parameter in statistics of extremes, new classes of
location-invariant EVI-estimators are built. These estimators, the so-called PORT-PPWM EVI-
estimators, are compared with the generalised Pareto probability weighted moments (GPPWM)
and a recent class of minimum-variance reduced-bias (MVRB) EVI-estimators, for finite samples,
through a Monte-Carlo simulation study.
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1 Introduction and preliminaries

The primary parameter in statistics of univariate extremes is the extreme value index (EVI),
the ‘shape’ parameter γ ∈ R in the general extreme value distribution function (d.f.), with the
functional form

EVγ(x) :=

®
exp{−(1 + γx)−1/γ}, 1 + γx > 0 if γ 6= 0
exp{− exp(−x)}, x ∈ R if γ = 0.

(1)

LetXn := (X1, . . . , Xn) denote a sample of size n from either independent, identically distributed
or even stationary weakly dependent random variables from an underlying model F , and let us
use the notation (X1:n ≤ · · · ≤ Xn:n) for the associated sample of ascending order statistics
(o.s.’s). The EVγ d.f. appears as the limiting d.f., whenever such a non-degenerate limit exists,
of the maximum Xn:n, suitably linearly normalised. When such a non-degenerate limit exists,
we say that F is in the domain of attraction for maximum values of the general EVγ d.f., in (1),
and use the notation F ∈ DM(EVγ).
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We shall deal with heavy-tails, quite common in the most diverse fields, like finance, insurance
and telecommunications, i.e. with a positive EVI. Then, as first proved in [11], the right-tail
function is of regular variation with an index of regular variation equal to −1/γ, i.e.

F ∈ DM(EVγ)γ>0 ⇐⇒ F := 1− F ∈ RV−1/γ , (2)

where the notation RVa stands for the class of regularly varying functions at infinity with
an index of regular variation equal to a ∈ R, i.e. positive measurable functions g such that
lim
t→∞

g(tx)/g(t) = xa, for all x > 0.

The first class of semi-parametric estimators of a positive EVI was considered in [23]. These
estimators are based on the log-excesses over an o.s., Xn−k:n, and have the functional form

γ̂Hk,n ≡ γ̂Hk,n(Xn) :=
1

k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n} , k = 1, . . . , n− 1. (3)

Apart from the Hill estimator, in (3), we shall also consider the Pareto probability weighted
moments (PPWM) EVI-estimators, recently introduced in [4]. They are valid for heavy right-
tails with γ < 1, a quite relevant region in the field of extremes, compare favourably with the
Hill estimator, in (3), for a wide variety of underlying models F , and are given by

γ̂PPWM
k,n ≡ γ̂PPWM

k,n (Xn) := 1− â1(k;Xn)

â0(k;Xn)− â1(k;Xn)
, (4)

with

âr(k;Xn) ≡ âr(k) :=
1

k

k∑
i=1

Å
i

k

ãr
Xn−i+1:n, r = 0, 1.

Both classes of estimators, in (3) and (4), are scale-invariant, but not location-invariant, as
often desired, and this contrarily to the PORT-Hill estimators, introduced in [1] and further
studied in [17], with PORT standing for peaks over random thresholds. The class of PORT-Hill
estimators is based on a sample of excesses over a random threshold Xnq :n, nq := [nq]+1, where
[x] denotes, as usual, the integer part of x, i.e. it is based on

X(q)
n :=

Ä
Xn:n −Xnq :n, . . . , Xnq+1:n −Xnq :n

ä
. (5)

We can have 0 < q < 1, for d.f.’s with finite or infinite left endpoint xF := inf{x : F (x) > 0}
(the random threshold is then any empirical quantile), and 0 ≤ q < 1, for d.f.’s with a finite left
endpoint xF (the random threshold can also be the minimum). The PORT-Hill EVI-estimators
are thus given by

γ̂
H|q
k,n := γ̂Hk,n(X(q)

n ) =
1

k

k∑
i=1

ln
Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n
, 0 ≤ q < 1, k < n− nq, (6)

i.e. they have the same functional form of the Hill estimator in (3), but with the original sample

Xn replaced by the sample of excesses X
(q)
n in (5). Other results on PORT EVI-estimation can

be found in [9], [19] and [20].

In this paper, we consider the application of the PORT methodology to the PPWM EVI-
estimators, deriving the so-called PORT-PPWM estimators. Such EVI-estimators have the
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same functional form of the PPWM estimators in (4), but with the original sample Xn replaced

everywhere by the sample of excesses X
(q)
n , in (5). Let us use the notation χq for the q-quantile

of the d.f. F . Then (see [2], among others),

Xnq :n
p−→

n→∞
χq = F←(q) := inf {x : F (x) ≥ q} , for 0 ≤ q < 1

Ä
F←(0) = xF

ä
. (7)

Consequently, such estimators, also valid only for 0 < γ < 1, just as happens with the PPWM
estimators, and provided that χq, in (7), is finite, are given by the functional equation,

γ̂
PPWM |q
k,n := γ̂PPWM

k,n (X(q)
n ), (8)

with γ̂PPWM
k,n (Xn) and X

(q)
n given in (4) and (5), respectively. Just as the PORT-Hill EVI-

estimators in (6), these estimators are now invariant for both changes of location and scale, and
depend on the tuning parameter q, which only influences the asymptotic bias of γ̂PPWM

k,n , in (4),
making this new class highly flexible, and able to compare favourably with the generalised Pareto
probability weighted moment estimators (GPPWM), for a large variety of underlying models F
in the domain of attraction for maxima of the EVγ d.f., in (1), with γ > 0.

The GPPWM EVI-estimators have been studied in [22], are scale and location invariant, are
valid also only for 0 < γ < 1, and are given by

γ̂
GPPWM

k,n := 1− 2â?1(k)

â?0(k)− 2â?1(k)
, (9)

with k = 1, . . . , n− 1, and

â?r(k) :=
1

k

k∑
i=1

Å
i

k

ãr
(Xn−i+1:n −Xn−k:n), r = 0, 1.

See also [4], for an asymptotic comparison at optimal levels of the PPWM and GPPWM EVI-
estimators, in (4) and (9), respectively.

We shall further consider one of the best EVI-estimators in the literature, the corrected-Hill
estimator in [6], given by

γ̂CHk,n (β̂, ρ̂) := γ̂Hk,n
Ä
1− β̂(n/k)ρ̂/(1− ρ̂)

ä
, (10)

with (β̂, ρ̂) an adequate estimator of a vector of ‘scale’ and ‘shape’ second-order parameters (β, ρ),
in a parameterisation A(t) = γβtρ for a function A(·), that measures the rate of convergence
of maximum values to its non-degenerate limit, to be specified in Section 2. The estimators in
(10) are indeed minimum-variance reduced-bias (MVRB) EVI-estimators. We have again used
the class of β-estimators in [14] and the simplest class of ρ-estimators in [8], made explicit in
Algorithm 3.1, provided in Section 3. In Section 2 of this paper, we make a brief reference
to the asymptotic properties of the EVI-estimators under consideration, and in Section 3, apart
from writing the aforementioned algorithm, we perform a small-scale Monte-Carlo simulation,
in order to compare the behaviour of the estimators under study for finite samples. Finally, in
Section 4, we draw some overall conclusions.
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2 Asymptotic behaviour of EVI-estimators under a
semi-parametric framework

With F←(·) standing for the generalised inverse function of F (·), defined in (7), let us further
use the notation

U(t) := F←(1− 1/t), t ≥ 1, (11)

for the reciprocal quantile function. Condition (2) is equivalent to saying that U ∈ RVγ ([21]),
i.e. we often assume the validity of the so-called first-order condition

F ∈ DM(EVγ)γ>0 ⇐⇒ F ∈ RV−1/γ ⇐⇒ U ∈ RVγ . (12)

Consistency of any of the aforementioned EVI-estimators is achieved in the DM(EVγ)γ∈S• ,
with SH = SCH = (0,∞) and SPPWM = SGPPWM = (0, 1), provided that Xn−k:n is an interme-
diate o.s., i.e. we need to have

k = kn →∞ and k/n→ 0, as n→∞.

Whenever working with heavy right-tails, and in order to derive the asymptotic normality of
any semi-parametric EVI-estimator, it is often assumed the validity of a second-order condition
either on F , in (2), or on U , in (11), like

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=

®
xρ−1
ρ if ρ < 0

lnx if ρ = 0,
(13)

where ρ ≤ 0 is a second-order parameter, which measures the rate of convergence in the first-
order condition, in (12). If the limit in (13) exists, it is necessarily of the above mentioned type
and |A| ∈ RVρ (see [10]).

If we assume the validity of the second-order framework in (13), the EVI-estimators in (3), for
any γ > 0, and the estimators in (4) and (9), for γ < 1/2, are asymptotically normal, provided
that

√
kA(n/k)→ λA , finite, as n→∞, with A(·) given in (13). Indeed, if we denote γ̂•k,n, either

the Hill, the PPWM or the GPPWM EVI-estimators, we have, with Z•k asymptotically standard
normal and for adequate (b•, σ•) ∈ (R, R

+), the validity of the asymptotic distributional
representation

γ̂•k,n
d
= γ + σ•Z

•
k/
√
k + b• A(n/k)(1 + op(1)), as n→∞.

Consequently, if we choose k such that
√
k A(n/k)→ λA , finite and not necessarily null, then,

√
k(γ̂•k,n − γ)

d−→
n→∞

N
Ä
λAb•, σ

2
•
ä
.

For the same type of k-values, if we consider the MVRB EVI-estimator γ̂CHk,n , in (10), and
A(t) = γβtρ, ρ < 0, √

k(γ̂CHk,n − γ)
d−→

n→∞
N
Ä
0, σ2

H = γ2
ä
,

i.e. γ̂CHk,n outperforms γ̂Hk,n for all k.
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However, if there is a possible shift s in the model, i.e. if the d.f. F (x) = F (x; s) depends on
(x, s) through the difference x− s, the function U , the parameter ρ and the A-function, in (13),
depend on such a shift s, i.e. U = Us = U0 + s, A = As, ρ = ρs,

As(t) :=


−γs/U0(t), if γ + ρ0 < 0 ∧ s 6= 0
A0(t)− γs/U0(t), if γ + ρ0 = 0
A0(t), otherwise,

(14)

and

ρs :=

®
−γ if γ + ρ0 < 0 ∧ s 6= 0
ρ0 if γ + ρ0 ≥ 0 ∨ s = 0.

Just as happens for the PORT-Hill EVI-estimators, in (6), if we consider the PORT-PPWM

EVI-estimator γ̂
PPPM(q)
k,n , in (8), we expect a change in the dominant component of the bias

term comparatively with the one of the PPWM EVI-estimator. Such a dominant component of
bias is expected to be no longer related with the A(·)-function, in (13), but with the behaviour of
As(·), s = −χq, with χq and As(·) given in (7) and (14), respectively. Indeed, for the PORT-Hill

EVI-estimators, we have γ̂
H|q
k,n

d
= γ + γZHk /

√
k +

Ä
bHA0(n/k) + γχq/U0(n/k)

ä
(1 + op(1)) (see

[1]). A full theoretical study of the PORT-PPWM estimators, with detailed information on the
dominant component of bias, is however out of the scope of this paper.

3 Behaviour of the EVI-estimators: a Monte-Carlo simulation.

In this section, we have implemented a multi-sample Monte Carlo simulation experiment of size

5000×10, to obtain the distributional behaviour of the EVI-estimators γ̂Hk,n, γ̂PPWM
k,n , γ̂

PPWM |q
k,n ,

γ̂GPPWM
k,n and γ̂CHk,n in (3), (4), (8), (9) and (10), respectively, for the following underlying parents,

all with |ρ| ≤ 1, the region where the Hill EVI-estimator has often a problematic behaviour:

(i) Student’s tν with ν = 4 degrees of freedom (γ = 0.25, ρ = −0.5);

(ii) Fréchet parents, with d.f. F (x) = exp(−x−1/γ), x > 0, γ > 0, also with γ = 0.25 (ρ = −1);

(iii) Extreme value d.f.s, in (1), with γ = 0.5 (ρ = −γ = −0.5), a case in which we cannot
guarantee the asymptotic normality of the PPWM EVI-estimators.

Details on multi-sample simulation are available in [15], among others. The multi-sample simula-
tion is a common practice in Monte-Carlo procedures, when we do not have a readily easy way to
estimate measures of dispersion of a statistic, like the variance, the MSE or arg minkMSE(k).
In a multi-sample simulation of size m × r instead of generating a unique sample of large size
N = m × r, we consider r independent replications of the experiment, all with a size m. We
then take as overall estimate of the population parameter under study the average of the r
corresponding estimates computed on the basis of the independent replicates. Under very broad
conditions, the overall estimator (which is a sample mean) converges to normality as r increases.
We can thus estimate the standard error of this overall estimate. For small r, and whenever
we can guarantee the asymptotic normality of the estimator of the parameter under considera-
tion, we can then use the t-distribution with r − 1 degrees of freedom to approximate its true
distribution, and to derive a confidence interval (CI) to the simulated paramater of interest.

We have run the following algorithm r = 10 independent times:
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Algorithm 3.1.
Repeat the following procedure 5000 times:

Step 1 Randomly generate a sample xn := (x1, . . . , xn) from a model F , consider the ascending
o.s.’s, x1:n ≤ · · · ≤ xn:n, and for q = 0, 0.1, 0.25, obtain the associated sample of excesses

x
(q)
n , with X

(q)
n given in (5).

Step 2 With m0 generally denoting the number of positive elements in any of the generated sam-

ples, compute k1 =
[
m0.995

0

]
, and obtain ρ̂ ≡ ρ̂0(k1) := −

∣∣∣3(T
(0)
m0 (k1)− 1)/

Ä
T

(0)
m0 (k1)− 3

ä∣∣∣ ,
where

T (0)
n (k) :=

ln
(
M

(1)
n (k)

)
− 1

2 ln
(
M

(2)
n (k)/2

)
1
2 ln

(
M

(2)
n (k)/2

)
− 1

3 ln
(
M

(3)
n (k)/6

) ,
with

M (j)
n (k) :=

1

k

k∑
i=1

{lnxn−i+1:n − lnxn−k:n}j , j = 1, 2, 3.

Step 3 Next compute

β̂ ≡ β̂ρ̂(k1) :=

Å
k1

n

ãρ̂ dρ̂(k1) D0(k1)−Dρ̂(k1)

dρ̂(k1) Dρ̂(k1)−D2ρ̂(k1)
,

dependent on the estimator ρ̂ = ρ̂0(k1), obtained in Step 2, and where, for any α ≤ 0,

dα(k) :=
1

k

k∑
i=1

Å
i

k

ã−α
and Dα(k) :=

1

k

k∑
i=1

Å
i

k

ã−α
ui,

with ui, 1 ≤ i ≤ k, the observed values of the scaled log-spacings associated with any
of the generated random samples, given by ui := i

Ä
lnxn−i+1:n − lnxn−i:n

ä
, 1 ≤ i ≤ k,

1 ≤ k < m0.

Step 4 Obtain the simulated samples of 5000 EVI-estimates associated with γ̂Hk,n, γ̂PPWM
k,n ,

γ̂
PPWM |q
k,n , γ̂GPPWM

k,n and γ̂CHk,n in (3), (4), (8), (9) and (10), respectively. Compute the
mean and root mean square error of those 5000 estimates, generally denoted E(Tk,n) and
RMSE(Tk,n), respectively, with Tk,n ≡ γ̂Tk,n denoting thus any of the aforementioned EVI-
estimators. Further compute the optimal values k0|T := arg mink RMSE(Tk,n), the asso-
ciated estimates at optimal levels, T0 := Tk0|T ,n, the root mean square errors (RMSE) at
optimal levels, RMSE0|T := RMSE(Tk0|T ,n) and the REFF-indicator

REFFT0|H0
:= RMSE0|H/RMSE0|T . (15)

Remark 1.
Further details on the estimation of (β, ρ) can be found in [16], among others. Interesting alter-
native classes of ρ-estimators have recently been introduced in [12], [13], [7] and [5]. Alternative
estimators of β can be found in [3] and [18].
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To illustrate the finite sample behaviour of the EVI-estimators, as a function of k, we present,
in Figures 1, 2 and 3, the simulated mean values (E) and RMSE patterns of γ̂Hk,n, γ̂PPWM

k,n ,

γ̂
PPWM |q
k,n , q = 0, 0.1, 0.25, γ̂GPPWM

k,n and γ̂CHk,n , as functions of k, the number of top o.s.’s used
in the estimation, for a sample size n = 1000 and on the basis of the 5000 runs. For simplicity,
we shall denote these EVI-estimators by H, PPWM , PPWM |q, GPPWM and CH.
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Figure 1: Mean values (E) and root mean square errors (RMSE) of the EVI-estimators under
study for a Student-tν underlying parent with ν = 4 (γ = 1/ν = 0.25, ρ = −2/ν = −0.5).
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Figure 2: Mean values (E) and root mean square errors (RMSE) of the EVI-estimators under
study for a Fréchet underlying parent with γ = 0.25 (ρ = −1).

After r = 10 repetitions of Algorithm 3.1, we have thus computed the averages of all the
indicators under consideration, k0|T , T0, RMSE0|T , REFFT0|H0

, and the associated 95% CIs.
In Table 1, we present the simulated mean values of the above mentioned EVI-estimators, at
their simulated optimal levels, for the parents in (i), (ii) and (iii), respectively. For each model,
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Figure 3: Mean values (E) and root mean square errors (RMSE) of the EVI-estimators under
study for a EV underlying parent with γ = 0.5 (ρ = −γ = −0.5).

the less biased estimator is written in bold. Confidence intervals based on the 10 replications
are not shown in the tables, but are available from the authors.

In Table 2, we present the REFF-indicators of the different EVI-estimators under consider-
ation and the RMSE of H0, for the same models as above, respectively, so that we can recover
the RMSE0|T of any T0. Again, confidence intervals are available from the authors and, for
each underlying parent, the highest REFF-indicator is written in bold.

For Student parents, the value q = 0 was not included in the tables, due to the inconsistency
of such PORT-PPWM EVI-estimators (see [17], for details on the subject).

For a better visualisation of the tables, we present, in Figures 4, 5 and 6, the mean value
(E0|•), the RMSE0|• at simulated optimal levels and the REFF•|H0

indicators in (15), for the
different EVI-estimators under study, and again for the parents in (i), (ii) and (iii), respectively.
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Figure 4: Mean values (left), root mean square errors (center) at optimal levels and REFF-indicators,
in (15) (right), for a Student t4 underlying parent (γ, ρ) = (0.25,−0.5) samples.
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Table 1: Simulated mean values of the semi-parametric EVI-estimators under consideration, at
their simulated optimal levels for underlying Student tν , Fréchet and EVγ parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

Student t4 parent (γ = 0.25)

H0 0.3603 0.3386 0.3154 0.3056 0.2956 0.2860
PPWM0 0.3108 0.3042 0.2978 0.2919 0.2867 0.2805
GPPWM0 0.2403 -0.0912 0.0285 0.0826 0.1209 0.1572

PPWM0|0.1 0.2648 0.2607 0.2561 0.2536 0.2520 0.2509
PPWM0|0.25 0.2877 0.2819 0.2744 0.2694 0.2651 0.2604

CH0 0.3121 0.3104 0.3000 0.2948 0.2874 0.2804

Fréchet parent (γ = 0.25)

H0 0.2771 0.2712 0.2658 0.2622 0.2595 0.2574
PPWM0 0.2725 0.2688 0.2643 0.2616 0.2594 0.2570
GPPWM0 0.0223 0.1013 0.1592 0.1860 0.2027 0.2183

PPWM0|0 0.3216 0.3152 0.3078 0.3017 0.2963 0.2894
PPWM0|0.1 0.3277 0.3229 0.3160 0.3106 0.3055 0.2988
PPWM0|0.25 0.3309 0.3273 0.3199 0.3151 0.3095 0.3025

CH0 0.2460 0.2466 0.2488 0.2497 0.2501 0.2499

EVγ parent (γ = 0.5)

H0 0.6536 0.6250 0.5961 0.5800 0.5647 0.5509
PPWM0 0.5528 0.5488 0.5445 0.5419 0.5390 0.5345
GPPWM0 0.2811 0.3711 0.4178 0.4411 0.4556 0.4687

PPWM0|0 0.5437 0.5404 0.5359 0.5327 0.5294 0.5250
PPWM0|0.1 0.5476 0.5451 0.5408 0.5380 0.5349 0.5307
PPWM0|0.25 0.5509 0.5469 0.5431 0.5403 0.5374 0.5331

CH0 0.6375 0.6204 0.5945 0.5797 0.5645 0.5509
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Figure 5: Mean values (left), root mean square errors (center) at optimal levels and REFF-indicators,
in (15) (right), for a Fréchet(γ = 0.25) underlying parent.
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Table 2: Simulated values of the REFF•|H0
(for all rows but the last one) and RMSE0|H for

underlying Student tν , Fréchet and EVγ parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

Student t4 parent (γ = 0.25)

PPWM0 1.4697 1.3624 1.2571 1.2014 1.1591 1.1201
GPPWM0 0.3169 0.3627 0.4023 0.4243 0.4413 0.4626

PPWM0|0.1 3.2870 3.4616 3.8865 4.3398 4.9224 5.9161
PPWM0|0.25 2.1438 2.0869 2.0758 2.1212 2.1950 2.3505

CH0 1.3953 1.3995 1.3600 1.3249 1.2811 1.2360

RMSE0|H 0.1819 0.1428 0.1058 0.0856 0.0694 0.0536

Fréchet parent (γ = 0.25)

PPWM0 1.1105 1.0762 1.0488 1.0368 1.0244 1.0188
GPPWM0 0.1785 0.2012 0.2242 0.2382 0.2466 0.2583

PPWM0|0 0.4346 0.3880 0.3383 0.3059 0.2753 0.2436
PPWM0|0.1 0.3828 0.3347 0.2831 0.2508 0.2217 0.1920
PPWM0|0.25 0.3530 0.3080 0.2599 0.2299 0.2030 0.1755

CH0 1.2562 1.2378 1.3368 1.4628 1.5752 1.7902

RMSE0|H 0.0529 0.0407 0.0292 0.0228 0.0178 0.0130

EVγ parent (γ = 0.5)

PPWM0 1.9925 1.7633 1.5295 1.3971 1.2919 1.1863
GPPWM0 0.8351 1.0292 1.1512 1.2182 1.2781 1.3467

PPWM0|0 2.4246 2.2017 1.9811 1.8656 1.7796 1.6983
PPWM0|0.1 2.2157 1.9731 1.7267 1.5883 1.4800 1.3709
PPWM0|0.25 2.0797 1.8447 1.6049 1.4699 1.3635 1.2560

CH0 1.4952 1.5034 1.4770 1.4503 1.4174 1.3577

RMSE0|H 0.2566 0.2029 0.1502 0.1218 0.0995 0.0768
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Figure 6: Mean values (left), root mean square errors (center) at optimal levels and REFF-indicators,
in (15) (right), for a EVγ underlying parent (ρ = −γ = −0.5).
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4 Some overall comments

We think sensible to provide the following comments, which in a certain sense justify the parents
chosen in Section 3.

� The PORT-PPWM EVI-estimators can be unable to improve the performance of γ̂PPWM ,
in (4), as had already happened with the PORT-Hill estimators when compared with the
Hill estimator, H(see Figure 2, associated with Fréchet models). Indeed, this hapens for
all models with a left endpoint greater than or equal to zero.

� However, the PORT-PPWM estimators can even outperform the MVRB-estimator, CH,
(see both Figure 1 and Figure 3, associated with a Student t4 and an EV0.5 underlying
parent, respectively) and have always outperformed the GPPWM estimator.

� For models with a left endpoint equal to infinity, like the Student model, the value q = 0
should be discarded due to inconsistency (see the patterns of PPWM |0 in Figure 1, and
Gomes et al., 2008, for further details on the subject).

� We can often find a value of q that provides the best estimator of γ, regarding for instance

minimum RMSE, through the use of the new class of estimators γ̂
PPWM |q
k,n , in (8) (the

value q = 0.1, in Figure 1, and the value q = 0, in Figure 3).

� An adaptive choice of k and q is thus an important topic, out of the scope of this paper.
But either a heuristic technique, similar to the ones used in [19] and [20], or a generalisation
of the double bootstrap methodology used in [15], among others, can surely provide such
a data-driven choice of the tuning parameters under play.
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estimators for heavy-tailed models. Comm. Statist.—Simul. and Comput., 37, 1281–1306.

[18] Gomes, M.I., Henriques-Rodrigues, L., Pereira, H. and Pestana, D. (2010) Tail index and
second order parameters’ semi-parametric estimation based on the log-excesses. J. Statist.
Comput. and Simul., 80:6, 653–666.

[19] Gomes, M.I., Henriques-Rodrigues, L. and Miranda, C. (2011) Reduced-bias location-
invariant extreme value index estimation: a simulation study. Comm. Statist.—Simul. and
Comput., 40:3, 424–447.

[20] Gomes, M.I., Henriques-Rodrigues, L., Fraga Alves, M.I. and Manjunath, B.G. (2012)
Adaptive PORT-MVRB estimation: an empirical comparison of two heuristic algorithms.
J. Statist. Comput. and Simul., DOI:10.1080/00949655.2011.652113

[21] Haan, L. de (1984) Slow variation and characterization of domains of attraction. In Tiago
de Oliveira, ed., Statistical extremes and applications. D. Reidel, Dordrecht, 31–48.

[22] Haan, L. de and Ferreira, A. (2006) Extreme value theory: an introduction. Springer Sci-
ence+Business Media, LLC, New York, USA.

[23] Hill, B.M. (1975) A simple general approach to inference about the tail of a distribution.
Ann. Statist., 3:5, 1163–1174.

COMPSTAT 2012 Proceedings


