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1 Introduction and preliminaries

Heavy tailed-models are very useful in many fields, like Hydrology, Insurance and Finance, among
others. In practice, it is often needed to estimate a high quantile, a value that is exceeded with
a probability p, small. The semi-parametric estimation of this parameter depends not only on the
estimation of the tail index γ > 0, the primary parameter in Statistics of Extremes, but also of a first
order scale parameter or functional, here denoted C. A model F is said to be heavy-tailed if the tail
function F := 1 − F ∈ RV−1/γ , γ > 0, where RVα denotes the class of regularly varying functions
with index of regular variation equal to α, i.e., non-negative measurable functions g such that, for all
x > 0, g(tx)/g(t) → xα, as t → ∞. Let us denote U(t) := F←(1 − 1/t) = inf{x : F (x) ≥ 1 − 1/t}.
Then, we may equivalently say that F is heavy-tailed if and only if U ∈ RVγ , i.e.

lim
t→∞

U(tx)
U(t)

= xγ , for any x > 0. (1)

For small values of p, we want to estimate χ1−p, a value such that F (χ1−p) = 1−p, a typical parameter
in the most diversified areas of application. More specifically, we want to estimate

χ1−p = U(1/p), p = pn → 0, npn → K as n → ∞, K ∈ [0, 1], (2)

and we shall assume to be working in Hall-Welsh class of models (Hall and Welsh, 1985), where there
exist γ > 0, ρ < 0, C > 0 and β &= 0 such that

U(t) = Ctγ(1 + γβtρ/ρ + o(tρ)). (3)

For some details in the paper we shall refer to a sub-class of Hall’s class, such that

U(t) = Ctγ(1 + γβtρ/ρ + β′t2ρ + o(t2ρ)), (4)

i.e., relatively to Hall’s class we merely make explicit a third order term β′t2ρ, β′ &= 0. Such a class
contains most of the heavy-tailed models important in applications, like the Fréchet, the Generalized
Pareto and the Student’s-t.

We are going to base inference on the largest k top order statistics (o.s.), and as usual in semi-
parametric estimation of parameters of extreme events, we shall assume that k is an intermediate
sequence of integers in [1, n[, i.e.,

k = kn → ∞, k/n → 0, n → ∞. (5)

Since, from (2) and (3), χ1−p = U(1/p) ∼ Cp−γ , as p → 0, an obvious estimator of χ1−p is Ĉp−γ̂ ,
with Ĉ and γ̂ any consistent estimators of C and γ, respectively. Given a sample (X1, X2, . . . , Xn), let
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us denote Xi:n, 1 ≤ i ≤ n, the set of associated ascending o.s. Denoting Y a standard Pareto model,
i.e., a model such that FY (y) = 1−1/y, y > 1, the use of the universal uniform transformation enables
us to write Xn−k:n

d= U(Yn−k:n). Next, since Yn−k:n
p∼ (n/k) for intermediate k and whenever (3)

holds, we get Xn−k:n
p∼ CY γ

n−k:n
p∼ C(n/k)γ , as n −→ ∞. Consequently, an obvious estimator of C,

proposed by Hall and Welsh (1985), is

Cγ̂(k) := Xn−k:n

(
k

n

)γ̂

(6)

and

Q(p)
γ̂ (k) = Ĉp−γ̂ = Xn−k:n

(
k

np

)γ̂

(7)

is the obvious quantile-estimator at the level p (Weissman, 1978).
For heavy tails, the classical tail index estimator, usually the one which is plugged in (7), for a

semi-parametric quantile estimation, is the Hill estimator γ̂ = γ̂(k) =: H(k) (Hill, 1975),

H(k) :=
1
k

k∑

i=1

Vik =
1
k

k∑

i=1

Ui, (8)

where Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n, are the log-excesses, and

Ui := i (lnXn−i+1:n − lnXn−i:n) , 1 ≤ i ≤ k < n, (9)

are the scaled log-spacings. We thus get the so-called classical quantile estimator, based on the Hill
tail index estimator H, with the obvious notation, Q(p)

H (k).

In order to derive the asymptotic non-degenerate behaviour of semi-parametric estimators of
extreme events’ parameters, we need more than the first order condition in (1). A typical condition
for heavy-tailed models, which holds for the models in (3), with

A(t) = γ β tρ, γ > 0, β &= 0, ρ < 0, (10)

is

lim
t→∞

U(tx)
U(t) − xγ

A(t)
= xγ xρ − 1

ρ
iff lim

t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
=

xρ − 1
ρ

, (11)

for all x > 0, where A is a function of constant sign near infinity (positive or negative), and ρ ≤ 0 is
the shape second order parameter.

Under the second order framework in (11) and for intermediate k, i.e., whenever (5) holds, we
may guarantee the asymptotic normality of the Hill estimator H(k), for an adequate k. Indeed, we
may write (de Haan and Peng, 1998),

H(k) d= γ +
γ√
k
Zk +

A(n/k)
1 − ρ

(1 + op(1)), (12)

with Zk =
√

k
(∑k

i=1 Ei/k − 1
)
, and {Ei} i.i.d. standard exponential r.v.’s. Consequently, if we

choose k such that
√

k A(n/k) → λ &= 0, finite, as n → ∞,
√

k(H(k) − γ) is asymptotically normal,
with variance equal to γ2 and a non-null bias given by λ/(1 − ρ). Most of the times, this type of
estimates exhibits a strong bias for moderate k and sample paths with very short stability regions
around the target value γ. This has recently led researchers to consider the possibility of dealing with
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the bias term in an appropriate way, building new estimators, γ̂R(k) say, the so-called second order
reduced-bias estimators. Then, for k intermediate, i.e., such that (5) holds, and under the second
order framework in (11), we may write, with ZR

k an asymptotically standard normal r.v.,

γ̂R(k) d= γ +
γσR√

k
ZR

k + op(A(n/k)), (13)

where σR > 0, being A again the function in (11). Consequently, the sequence of r.v.’s,
√

k(γ̂R(k)−γ) is
asymptotically normal with variance equal to (γσR)2 and a null mean value even when

√
k A(n/k) →

λ $= 0, finite, as n → ∞, possibly at expenses of an asymptotic variance γ2σ2
R

> γ2. Gomes and
Figueiredo (2006) suggest the use, in (7), of reduced-bias tail index estimators, like the ones in Gomes
and Martins (2001, 2002) and Gomes et al. (2004), all with σR > 1 in (13), being then able to reduce
also the dominant component of the classical quantile estimator’s asymptotic bias.

More recently, Gomes et al. (2004), Caeiro et al. (2005) and Gomes et al. (2005) consider new
classes of tail index estimators, for which (13) holds with σR = 1 at least for values k such that√

k A(n/k) → λ, finite, i.e., they are able to reduce bias keeping the same asymptotic variance of the
classical estimator, provided that the second orders parameters are estimated at an adequate level,
of a larger order than the level used to estimate the first order parameters. These classes depend on
(β̂, ρ̂), an adequate consistent estimator of the vector (β, ρ) in (10). The influence of these tail index
estimators in quantile estimation has been studied by Beirlant et al. (2006) and Gomes and Pestana
(2007).

Also recently, new estimators of C have been proposed (Caeiro, 2006), where, instead of Xn−k:n

alone, a spacing Xn−[θk]:n − Xn−k:n, 0 < θ < 1, is considered. We shall here consider θ = 1/2 and the
replacement of Cγ̂(k) in (6) by

C̃γ̂R
(k) :=

Xn−[k/2]:n − Xn−k:n

2γ̂R − 1

(
k

n

)γ̂R

, (14)

where γ̂R ≡ γ̂R(k) is a second order reduced-bias extreme value index estimator. Similarly to the way
developed by Caeiro et al. (2005) for the extreme value index estimation, Caeiro (2006) has worked
out the main dominant component of the asymptotic bias of C̃γ̂R

(k). With the parametrization
A(t) = γ β tρ, already given in (10), such a component is given by C × B(γ, ρ,β), where B(γ, ρ,β) =
γ β (n/k)ρ(2(γ+ρ) − 1)/(ρ(2γ − 1)). It is thus sensible to consider the semi-parametric C-estimator,

C γ̂R
(k) :=

Xn−[k/2]:n − Xn−k:n

2γ̂R − 1

(
k

n

)γ̂R

× (1 − B(γ̂R , ρ̂, β̂)) (15)

and the associated quantile estimator Q
(p)
γ̂R

(k) ≡ Q
(p)

γ̂R ,ρ̂,β̂
(k), with

Q
(p)

γ̂R ,ρ̂,β̂
(k) :=

Xn−[k/2]:n − Xn−k:n

2γ̂R − 1

(
k

n p

)γ̂R

× (1 − B(γ̂R , ρ̂, β̂)). (16)

Moreover, we shall restrict our attention to the second order reduced-bias extreme value index esti-
mator estimator introduced in Caeiro et al. (2005),

H(k) ≡ H β̂,ρ̂(k) := H(k)
(
1 − β̂

1−ρ̂

(
n
k

)ρ̂) (17)

for adequate consistent estimators β̂ and ρ̂ of the second order parameters β and ρ, respectively.

After a brief sketch on the estimation of the second order parameters, in Section 2, we provide,
in Section 3, details on the reduced-bias estimators of γ and C, to be used for quantile estimation.
Section 4 is devoted to the asymptotic behavior of quantile estimators and finally, in Section 5, we
provide an illustration, for data from the field of finance.
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2 Estimation of second order parameters

The reduced-bias tail index estimator in (17) requires the estimation of the second order parameters
ρ and β in (10). Such an estimation will now be briefly discussed.

2.1 Estimation of the shape second order parameter ρ

We shall consider here particular members of the class of estimators of the second order parameter ρ

proposed by Fraga Alves et al. (2003). Such a class of estimators may be parameterized by a tuning
real parameter τ ∈ R (Caeiro and Gomes, 2004). These ρ-estimators depend on the statistics

T (τ)
n (k) =

(
M (1)

n (k)
)τ −

(
M (2)

n (k)/2
)τ/2

(
M (2)

n (k)/2
)τ/2 −

(
M (3)

n (k)/6
)τ/3

, M (j)
n (k) :=

1
k

k∑

i=1

{lnXn−i+1:n − lnXn−k:n}j , j ≥ 1,

with the notation abτ = b ln a whenever τ = 0. The statistics T (τ)
n (k) converge towards 3(1−ρ)/(3−ρ),

independently of τ , whenever the second order condition (11) holds and k is such that (5) holds and√
k A(n/k) → ∞, as n → ∞. The ρ-estimators considered have the functional expression,

ρ̂(τ)
n (k) := −min

(
0,
(
3(T (τ)

n (k)) − 1
)
/
(
T (τ)

n (k) − 3
))

. (18)

Remark 2.1. Under adequate general conditions, and for an appropriate tuning parameter τ the ρ-
estimators in (18) show highly stable sample paths as functions of k, for a wide range of large k-values.

Remark 2.2. The theoretical and simulated results in Fraga Alves et al. (2003), together with the use
of these estimators in different reduced-bias statistics, has led us to advise in practice the estimation
of ρ through the estimator in (18), computed at the value

k1 :=
[
n0.995

]
, (19)

not chosen in any optimal way, and the choice of the tuning parameter τ = 0 for the region ρ ∈ [−1, 0)
and τ = 1 for the region ρ ∈ (−∞,−1). Anyway, we again advise practitioners not to choose blindly
the value of τ in (18). It is sensible to draw a few sample paths of ρ̂(τ)

n (k), as functions of k, electing
the value of τ which provides higher stability for large k, by means of any stability criterion.

2.2 Estimation of the scale second order parameter β

For the estimation of β we shall here consider the estimator in Gomes and Martins (2002):

β̂bρ(k) :=
(

k

n

)bρ

(
1
k

k∑
i=1

(
i
k

)−bρ
)

N (1)
n (k) − N (1−bρ)

n (k)
(

1
k

k∑
i=1

(
i
k

)−bρ
)

N (1−bρ)
n (k) − N (1−2bρ)

n (k)
, (20)

where N (α)
n (k) := 1

k

∑k
i=1 (i/k)α−1 Ui, with Ui and ρ̂ ≡ ρ̂(τ)

n (k) defined in (9) and (18), respectively.

2.3 Asymptotic behaviour

In this paper, we intend to use the same level k1 in (19) both for the estimation of ρ and β, through
the estimators in (18) and (20), respectively, and we shall formalize, without proofs, the needed
distributional properties of the estimators of (β, ρ), essentially for the class of models in (4).
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Proposition 2.1 (Fraga Alves et al., 2003). If the second order condition (11) holds, with ρ ≤ 0, k is
a sequence of intermediate integers, i.e., (5) holds, and limn→∞

√
k A(n/k) = ∞, then ρ̂(τ)

n (k) in (18)
converges in probability towards ρ, as n → ∞. Moreover, and now for models in (4), ρ̂(τ)

n (k) − ρ =
op (1/ ln(n/k))) for values k such that

√
kA2(n/k) → λA, finite and non-null, and for values k such

that
√

kA2(n/k) → ∞ for some ε > 0 and k = O(n1−ε).

Proposition 2.2 (Gomes and Martins, 2002). If the second order condition (11) holds with A(t) =
γ β tρ, ρ < 0, if (5) holds, and if

√
kA(n/k) → ∞, then, with β̂ρ̂(k) given in (20), β̂ρ(k) is asymptot-

ically normal and converges in probability towards β, as n → ∞.

Proposition 2.3 (Gomes, de Haan and Rodrigues, 2005). Under the conditions in Proposition 2.2,
with ρ̂(τ)

n (k) and β̂bρ(k) given in (18) and (20), respectively, and ρ̂ = ρ̂(τ)
n (k) for any τ and k, such that

ρ̂ − ρ = op(1/ lnn), as n → ∞, β̂bρ(k) is consistent for the estimation of β. Moreover, β̂ρ̂(k) − β
p∼

−β ln(n/k)(ρ̂ − ρ) = op(1).

Remark 2.3. We shall denote generically ρ̂ any of the estimators in (18), computed at k1 in (19)
and β̂ any estimator in (20), also computed at the value k1.

3 Reduced-bias estimation of γ and C

3.1 The asymptotic behaviour of the reduced-bias tail index estimators

We now state the following:

Proposition 3.1 (Caeiro et al., 2005). If (11) holds, if k = kn is a sequence of intermediate positive
integers, i.e., (5) holds, and if

√
kA(n/k) → λ, finite and non necessarily null, as n → ∞, then

√
k
(
Hβ,ρ(k) − γ

) d−→
n→∞

Normal(0, γ2).

This same limiting behaviour holds true if we replace Hβ,ρ by H β̂,ρ̂, provided that ρ̂ − ρ = op(1/ lnn),
and we choose β̂ := β̂ρ̂(k1), with k1 and β̂ρ̂(k) given in (19) and (20), respectively. More specifically,
and with Zk an asymptotic standard normal r.v., we can then write

H β̂,ρ̂(k) d= γ +
γ√
k
Zk + op(A(n/k)).

Remark 3.1. Contrarily to what happens in Drees’ class of functionals (Drees, 1998), where the
minimal asymptotic variance of a reduced-bias tail index estimator is (γ(1 − ρ)/ρ)2, we have been
here able to obtain a reduced-bias tail index estimator with an asymptotic variance γ2, the asymptotic
variance of Hill’s estimator, the maximum likelihood estimator of γ for a strict Pareto model.

3.2 The asymptotic behaviour of the C-estimator

We may state the following:

Proposition 3.2. Let F be a model in Hall’s class (3). If we consider the Hill estimator in (8)
and plug it in (6), i.e., if we consider CH(k), the C-estimator proposed in (6), further assuming that√

kA(n/k) → λ, we have
√

k

lnn

(
CH(k)−C

C

)
d−→ N

(
−λ

(1 − ρ)(1 − 2ρ)
,

γ2

(1 − 2ρ)2

)
.
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We shall now consider the r.v.’s C̃γ and Cγ , with C̃γ̂R and C̃γ̂R given in (14) and (15), respectively:

Theorem 3.1. Under the second order framework in (11), for k values such that (5) holds and for
models F in (3),

C̃γ(k) d= C

(
1 +

γσC√
k

ZC
k +

2(γ+ρ) − 1
2γ − 1

A(n/k)
ρ

+ op(A(n/k))

)
(21)

and

Cγ(k) d= C

(
1 +

γσC√
k

ZC
k + op(A(n/k))

)
(22)

where σ2
C = 1 +

(
2γ

2γ−1

)2
and ZC

k is a sequence of asymptotically standard normal r.v.’s.

The following Corollary shows that for some intermediate k-values, only Cγ(k) has an asymptotic
null mean value, keeping the same asymptotic variance as C̃γ(k).

Corolary 3.1. Under the conditions in Theorem 3.1 and for intermediate k such that
√

k A(n/k) → λ,

√
k

(
C̃γ(k) − C

C

)
d−→

n→∞
N

(
λ(2(γ+ρ) − 1)

ρ(2γ − 1)
, γ2σ2

C2

)
,

√
k

(
Cγ(k) − C

C

)
d−→

n→∞
N
(
0, γ2σ2

C

)
.

Theorem 3.2. Under the conditions in Theorem 3.1, assume that
√

k A(n/k) → λ and γ̂R ≡ γ̂R(k)
is a second order reduced-bias extreme value index estimator, such that (13) holds. Then,

√
k

lnn

(
C̃γ̂R

(k) − C

C

)
d−→

n→∞
N

(
0,

(
γσR

1 − 2ρ

)2
)

. (23)

If we further consider ρ̂ and β̂ such that ρ̂ − ρ = op(1/ lnn) and β̂ − β = op(1), as n → ∞,
√

k

lnn

(
C γ̂R

(k) − C

C

)
d−→

n→∞
N

(
0,

(
γσR

1 − 2ρ

)2
)

. (24)

4 The asymptotic behaviour of reduced-bias quantile estimators

Details on semi-parametric estimation of extremely high quantiles for a general extreme value index
γ ∈ R may be found in de Haan and Rootzn (1993) and more recently in Ferreira et al. (2003).
Matthys and Beirlant (2003), Gomes and Figueiredo (2006), Mathys et al. (2004), Beirlant et al.
(2006) and Gomes and Pestana (2007) deal with heavy tails and reduced-bias quantile estimation.
Since we will work only with the asympotic unbiased extreme value estimator γ̂R ≡ H in (17), we
shall next consider the high quantile estimator,

Q
(p)

H
(k) :=

Xn−[k/2]:n − Xn−k:n

2H(k) − 1

(
k

n p

)H(k)

× (1 − B1/2(H(k), ρ̂, β̂)). (25)

We may state the following results:

Theorem 4.1. Under the second order framework in (11) with A(t) = γβ tρ, for intermediate k, i.e.,
k such that (5) holds, whenever ln(np)/

√
k → 0, and

√
k A(n/k) → λ, as n → ∞,

√
k

ln( k
np)

(
Q(p)

H (k)
χ1−p

− 1

)
d−→

n→∞
N

(
λ

1 − ρ
, γ2

)
. (26)
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Moreover, for ρ̂ and β̂ introduced in Remark 2.3, such that ρ̂ − ρ = op(1/ lnn), as n → ∞,

√
k

ln( k
np)



Q
(p)

H
(k)

χ1−p
− 1



 d−→
n→∞

N
(
0, γ2

)
. (27)

Remark 4.1. In equation (27) we have a mean value equal to 0, even if
√

kA(n/k) → λ %= 0, as
n → ∞.

5 Application to Financial Data

We shall finally consider an illustration of the performance of the above mentioned estimators, report-
ing results associated to the Euro-UK Pound exchange rates from January 2, 2004 until December 29,
2006, which correspond to a sample of size n = 771. This data has been collected by the European
System of Central Banks, and was obtained from http://www.bportugal.pt/.

The Value at Risk (VaR) is a common risk measure, defined as a large quantile of the log-returns,
i.e., of Lt = ln(Xt+1/Xt), 1 ≤ t ≤ n − 1, assumed to be stationary and weakly dependent. Working
with the n− = 384 negative log-returns, we show in Figure 1 (left) the sample paths of the ρ-estimates
associated to τ = 0 and τ = 1. They lead us to choose, on the basis of any stability criterion for
large values of k, the estimate associated to τ = 0. From the experience we have with this class of
estimates, this means that |ρ| ≤ 1 and the tuning parameter τ = 0 is then advisable. We have got
ρ̂ = −0.61. The use of β̂ in (20), computed at the level k1 in (19), i.e., at k1 = (n−)0.995 = 372, leads
then us to the estimate β̂ = 1.06.

The sample paths of the classical Hill estimator in (8) and the second order reduced-bias tail
index estimator H in (17) are presented also in Figure 1 (center). The associated Var-estimators in
(7) and (25), respectively, for p = 0.001, are pictured in Figure 1 (right).
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Figure 1: Estimates of the first-order parameter γ (left) and of the high quantile χ0.001 (right).

For the Hill estimator, as we know how to estimate the second order parameters ρ and β, we can
estimate the optimal sample fraction and the extreme value index. We get k̂H

0 = 24 and H(24) = 0.16.
Since we do not have yet the possibility of adaptively estimate the optimal sample fraction associated
to any second order reduced-bias estimator, the estimate pictured, γ̂ = 0.24, is the median of the
H(k) estimates for k between kH

0 and 5 × kH
0 . A similar technique led us to the quantile estimate

χ0.001 = 0.0197, as pictured in Figure 1 (right).
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