Publications

Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Gomes, G., H. Rebelo, V. Lúcio, C. Cismasiu, and J. Mingote. "Experimental Research and Development on Blast Resistant Structures." Advances on Testing and Experimentation in Civil Engineering, Springer Tracts in Civil Engineering. Switzerland: Springer Nature, 2023. 1-20.
de Gomes, Gabriel Jesus, Valter José Guia da Lúcio, Corneliu Cismasiu, and José Luis Mingote. "Experimental Validation and Numerical Analysis of a High-Performance Blast Energy-Absorbing System for Building Structures." Buildings. 13.601 (2023): 1-20.
2022
Oliveira, Tiago, Pedro Matias, and Corneliu Cismasiu. "Comportamento de painéis de vidro laminado à ação de explosões - Geração de curvas Pressão-Impulso." PROTEDES2022. Região Sul da Ordem dos Engenheiros, Lisboa 2022.
Oliveira, Tiago, Pedro Matias, and Corneliu Cismasiu. "Análise Experimental e Numérica de Painéis de Vidro Laminado Sujeitos à Ação de Explosões." 4.o ENCONTRO DE I&D EM CIÊNCIAS MILITARES – ECM 2022. Sintra: Academia da Força Aérea, 2022.
2019
Rebelo, H. B., D. Lecompte, C. Cismaşiu, A. Jonet, B. Belkassem, and A. Maazoun. "3D printed PLA sacrificial honeycomb cladding blast mitigation." 18th International Symposium for the Interaction of Munitions with Structures (ISIEMS). Panama City Beach, FL, USA 2019.
Rebelo, H. B., D. Lecompte, C. Cismasiu, A. Jonet, B. Belkassem, and A. Maazoun. "Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding." International Journal of Impact Engineering. 131 (2019): 162-173.Website
2017
Cismasiu, C., A. P. Ramos, I. D. Moldovan, D. F. Ferreira, and J. B. Filho. "Applied element method simulation of experimental failure modes in RC shear walls." Computers and Concrete. 19.4 (2017): 365-374.
2011
de Freitas, J., I. Moldovan, and C. Cismaşiu. "Hybrid-Trefftz displacement element for poroelastic media." Computational Mechanics (2011): 1-15. AbstractWebsite

The elastodynamic response of saturated poroelastic media is modelled approximating independently the solid and seepage displacements in the domain and the force and pressure components on the boundary of the element. The domain and boundary approximation bases are used to enforce on average the dynamic equilibrium and the displacement continuity conditions, respectively. The resulting solving system is Hermitian, except for the damping term, and its coefficients are defined by boundary integral expressions as a Trefftz basis is used to set up the domain approximation. This basis is taken from the solution set of the governing differential equation and models the free-field elastodynamic response of the medium. This option justifies the relatively high levels of performance that are illustrated with the time domain analysis of unbounded domains.

2003
Silva, M. A. G., C. Cismaşiu, and C. G. Chiorean. "Low velocity impact on laminates reinforced with {P}olyethylene and {A}ramidic fibres." Computational Methods in Engineering and Science. Proceedings of the 9th International Conference EPMESC IX. Eds. V. P. Iu, L. N. Lamas, Y. - P. Li, and K. M. Mok. Macao, China: A.A.Balkema Publishers, 2003. 843-849. Abstract

The present study reports low velocity impact tests on composite laminate plates reinforced either with Kevlar 29 or Dyneema. The tests are produced using a Rosand Precision Impact tester. The experimental results obtained for Kevlar 29 are simulated numerically. The deflection history and the peak of the impact force are compared with experimental data and used to calibrate the numerical model.