Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
The Behaviour of GFRP Reinforced Concrete Columns Under Monotonic and Cyclic Axial Compression, Chastre Rodrigues, C., and Silva M. G. , CCC2001, Composites in Construction, Porto, p.245-250, (2001) Abstractchastre_rodrigues2001si_-_ccc2001.pdf


The behaviour of RC columns retrofitted with FRP or polymeric concrete under axial compression and cyclic horizontal loads, Chastre Rodrigues, C., and Silva M. A. G. , 9th International Conference on Inspection, Appraisal, Repairs and Maintenance of Structures, Oct 20-21, Fuzhou, PEOPLES R CHINA, p.393-400, (2005) Abstract

The seismic retrofit of reinforced concrete columns with FRP jackets has received a considerable increment in recent years due the high strength-weight and stiffness-weight ratios of FRP compared to other materials. The FRP outer shell also contributes to prevent or delay environmental degradation of the concrete and corrosion of the steel reinforcement. An experimental program conducted in order to analyze the behavior of reinforced concrete columns jacketed with FRP composites or repaired with polymeric concrete and subjected to axial compression and cyclic horizontal loads is described. The dimensions of the cylindrical columns were 1500 mm height by 250 mm diameter. The influence of various parameters on the response, including the type of confining material and the number of FRP layers, is reported. The results of the tests are shown and interpreted.

Bond characteristics of CFRP-to-steel joints, Yang, Yongming, Biscaia Hugo, Chastre Carlos, and Silva Manuel A. G. , Journal of Constructional Steel Research, Volume 138, p.401-419, (2017) Abstract

Carbon Fiber Reinforced Polymer (CFRP) composites have a large potential for strengthening and retrofitting steel parts but due to their premature debonding from steel, further data and research are still required for wider application in such situations. In the present paper, the bond characteristics of CFRP-to-steel joints in pull-pull loaded conditions were studied. Monotonic loading of the double strap joints with different bond lengths was applied and the failure modes and interfacial bond-slip curves were obtained. A tri-linear bondslip model is proposed and it was derived from the experimental data. A closed-form solution approach is also proposed based on the tri-linear bond-slip model. The strength of the CFRP-to-steel interface, the distribution of the relative displacements between bonded materials, the strains developed in the CFRP laminate and the bond stresses along the interface are reported and the closed-form solution is compared with the experimental results. Two cases are selected for presentation: (i) one with the bond length greater than the effective bond length; and, inversely, (ii) one with bond length which is shorter than the effective bond length. The results predicted by the closed-form solutions are shown to be accurate enough when compared to the experiments.

Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw, Yang, Yongming, Silva Manuel A. G., Biscaia Hugo, and Chastre Carlos , Composite Structures, 2019/03/15/, Volume 212, p.243-258, (2019) AbstractWebsite

The degradation mechanisms of bonded joints between CFRP laminates and steel substrates under severe environmental conditions require more durability data and studies to increase the database and better understand their causes. Studies on bond properties of double-strap CFRP-to-steel bonded joints with two different composite materials as well as adhesive coupons subjected to freeze-thaw cycles for 10,000 h were conducted to reduce that gap. In addition, the equivalent to the number of thermal cycles and their slips induced in the CFRP laminates was replicated by an equivalent (mechanical) loading-unloading history condition imposed by a static tensile machine. The mechanical properties of the adhesive coupons and the strength capacity of the bonded joints were only slightly changed by the artificial aging. It was confirmed that the interfacial bond strength between CFRP and adhesive is critically related to the maximum shear stress and failure mode. The interfacial bond strength between adhesive and steel degraded with the aging. However, the equivalent thermal cyclic bond stress caused no detectable damage on the bond because only the interfacial elastic regime was actually mobilized, which confirmed that pure thermal cycles aging, per se, at the level imposed, have a low impact on the degradation of CFRP-to-steel bonded joints.

Bond GFRP-Concrete under environmental exposure, Biscaia, H., Silva M. G., and Chastre C. , 15th International Conference on Composite Structures ICCS 15, Porto, (2009) Abstractbiscaia2009sich_-_iccs15.pdf

Fiber reinforced polymers (FRP) are often used to strengthen RC structures.
Despite intense research, durability of reinforced concrete (RC) retrofitted with FRP remains insufficiently known. Long time behavior of the bond laminate-concrete, in flexural strengthening, under environmental action is not well known, conditioning Codes and engineers. An experimental program that subjected RC beams, externally reinforced with Glass FRP (GFRP) strips, to temperature and salt water cycles, for up to 10000h is reported.
At selected intermediate times, the RC beams were loaded to failure in bending. Rupture took place, normally, by tensile failure of concrete at a short distance from the interface with GFRP. The results showed that freeze-thaw cycles were the most severe of the environmental
conditions. The study also generated also non-linear bond-slip relationships from the experimental data. Numerical modeling has been undertaken, based on a commercial code.
The model is based on smeared cracking. Parameters needed for the characterization, namely cohesion and friction angle, were obtained from shear tests conceived for the effect.

Bond-slip model for FRP-to-concrete bonded joints under external compression, Biscaia, Hugo C., Chastre Carlos, and Silva Manuel A. G. , Composites Part B: Engineering, 10//, Volume 80, p.246-259, (2015) AbstractWebsite

The influence of compressive stresses exerted on FRP-concrete joints created by external strengthening of structural members on the performance of the system requires better understanding especially when mechanical devices are used to anchor the externally bonded reinforcement (EBR). The numerical modelling of those systems is a tool that permits insight into the performance of the corresponding interfaces and was used in the present study, essentially directed to analyse the effectiveness of EBR systems under compressive stresses normal to the composite surface applied to GFRP-to-concrete interfaces. The compressive stresses imposed on the GFRP-to-concrete interface model the effect produced by a mechanical anchorage system applied to the EBR system. An experimental program is described on which double-lap shear tests were performed that created normal stresses externally applied on the GFRP plates. A corresponding bond-slip model is proposed and the results of its introduction in the numerical analysis based in an available 3D finite element code are displayed, showing satisfactory agreement with the experimental data. The results also showed that lateral compressive stresses tend to increase the maximum bond stress of the interface and also originate a residual bond stress which has significant influence on the interface strength. Also, the strength of the interface increases with the increase of the bonded length which have consequences on the definition of the effective bond length.