Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Lavareda, G., C. Nunes de Carvalho, A. M. Ferraria, A. M. Botelho Do Rego, and A. Amaral. "p-Type Cuo(X) Thin Films by rf-Plasma Enhanced Reactive Thermal Evaporation: Influence of rf-Power Density." JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 12 (2012): 6754-6757. Abstract

Copper oxide is a well known p-type semiconductor material, usually obtained by thermal oxidation of copper thin-films within few minutes, at atmospheric pressure. In this paper, thin films of copper oxide that were deposited by radio-frequency plasma enhanced reactive thermal evaporation of copper at room temperature, without any post-deposition annealing treatment, are studied. The deposition of good quality p-type semiconductor oxide to be used in the fabrication of p-TFTs is the purpose of this work. The thickness of the films varies from 97 up to 160 nm. The influence of rf power density on chemical, electrical and optical properties of the films was studied. Samples present conductivity within the range of 6 x 10(-5) to 4 x 10(2) Omega(-1) cm(-1) (thermal activation energy in the interval 0.46 to 0.01 eV). The p-type conductivity of the films was confirmed by Seebeck effect in the more conductive samples. Surface composition obtained by XPS analysis was correlated with optical and electrical properties, showing that rf-power plays a main role in changes of material characteristics.

Nunes de Carvalho, C., P. Parreira, G. Lavareda, P. Brogueira, and A. Amaral. "P-type CuxS thin films: Integration in a thin film transistor structure." THIN SOLID FILMS 543 (2013): 3-6. Abstract

CuxS thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu2S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of CuxS films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 degrees C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show CuxS films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the CuxS films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of CuxS surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of CuxS films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the CuxS material. (c) 2013 Elsevier B.V. All rights reserved.

Lavareda, G., A. de Calheiros Velozo, C. Nunes de Carvalho, and A. Amaral. "p/n junction depth control using amorphous silicon as a low temperature dopant source." THIN SOLID FILMS 543 (2013): 122-124. Abstract

Phosphorus-doped amorphous silicon thin films, deposited at low temperatures by Plasma Enhanced Chemical Vapour Deposition were used as a dopant source on p-type c-Si substrates. A careful step of dehydrogenation was done in order to maintain the a-Si thin-film integrity. Subsequently, a fine-controlled drive-in of dopant, from the amorphous layer to the crystalline wafer was done, to form the p/n junction, using different time periods and temperatures. Dopant profiling in c-Si wafers as well as dopant concentration in a-Si: H films prior to diffusion, both measured by Secondary Ion Mass Spectrometry, are presented. Junction depths obtained are in the range of 98 nm to 2.4 mu m and surface concentrations are in the range of 1.1 x 10(21) to 4.3 x 10(20) at/cm(3). A dual diffusion mechanism explains the ``kink-and-tail{''} shape found for dopant profile. (C) 2013 Elsevier B.V. All rights reserved.

M., Vieira, Fantoni A., Fernandes M., Louro P., Lavareda G., and Nunes Carvalho de C. "Pinpi'n and pinpii'n multilayer devices with voltage controlled readout"." Journal of Nanoscience and Nanotechnology 9 (2009): 4022.