Publications

Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Amaral, A., P. Brogueira, O. Conde, G. Lavareda, and C. Nunes de Carvalho. "Device quality InOx:Sn and InOx thin films deposited at room temperature with different rf-power densities." THIN SOLID FILMS 526 (2012): 221-224. Abstract

The influence of tin doping on the electrical, optical, structural and morphological properties of indium oxide films produced by radio-frequency plasma enhanced reactive thermal evaporation is studied, as transport properties are expected to improve with doping. Undoped and tin doped indium oxide thin films are deposited at room temperature using both pure In rods and (95-80) % In:(5-20) % Sn alloys as evaporation sources and 19.5 mW/cm(2) and 58.6 mW/cm(2) as rf-power densities. The two most important macroscopic properties - visible transparency and electrical resistivity - are relatively independent of tin content (0-20%). Visible transmittance of about 75% and electrical resistivity around 5 x 10(-4) Omega.cm can be observed in the films. The structural features are similar for all samples. Nevertheless, the surface morphology characterization shows that the homogeneity of the films varies according to the tin content. Moreover this variation is a balance between the rf-power and the tin content in the alloy: i) films with small and compact grains are produced at 58.6 mW/cm(2) from a 5% Sn alloy or at 19.5 mW/cm(2) from a 15% Sn alloy and consequently, smooth surfaces with reduced roughness and similar grain size and shape are obtained; ii) films showing the presence of aggregates randomly distributed above a tissue formed of thinner grains and higher roughness are produced at the other deposition conditions. (C) 2012 Elsevier B. V. All rights reserved.

L., Ricardo, Amaral A., Nunes Carvalho de C., and Lavareda G. "Dopant transfer from poly-Si thin films to c-Si: an alternative technique for device processing"." Materials Science in Semiconductor Processing 42 (2016): 210.
Parreira, P., E. Torres, C. Nunes, C. Nunes de Carvalho, G. Lavareda, A. Amaral, and M. J. Brites. "Dye-sensitized 1D anatase TiO2 nanorods for tunable efficient photodetection in the visible range." SENSORS AND ACTUATORS B-CHEMICAL 161 (2012): 901-907. Abstract

TiO2 films with enhanced photosensitivity were deposited on alkali free glass substrates without intentional substrate heating by pulsed DC magnetron reactive sputtering with an average thickness of about 2 mu m. Three dyes, commercial N719 and two new organic dyes were impregnated in order to control the optical spectral selectivity of such films. The type of dye used proved to dramatically influence the device's response to radiation pulses. The practical breakthrough is the use of different dyes according to the region of the electromagnetic spectrum one wants to detect. Devices with photocurrent 6 orders of magnitude higher than the dark current (from similar to 2 x 10(-12) to 2 x 10(-6) A for a 100 V bias) were fabricated with a spectral response within the visible range of the electromagnetic spectrum. In addition, this approach is likely to allow for the fabrication of hybrid photodetectors on cheap heat sensible flexible polymeric substrates. (C) 2011 Elsevier B.V. All rights reserved.