Publications

Export 91 results:
Sort by: Author Title Type [ Year  (Asc)]
2010
Duarte AR, Mano JF, Reis RL. {Novel 3D scaffolds of chitosan-PLLA blends for tissue engineering applications: Preparation and characterization}. Journal of Supercritical Fluids. 2010;54:282-9. Abstract

This work addresses the preparation of 3D porous scaffolds of blends of chitosan and poly(l-lactic acid), CHT and PLLA, using supercritical fluid technology. Supercritical assisted phase-inversion was used to prepare scaffolds for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage regeneration. On the other hand, PLLA is a synthetic biodegradable polymer widely used for biomedical applications. Supercritical assisted phase-inversion experiments were carried out in samples with different polymer ratios and different polymer solution concentrations. The effect of CHT:PLLA ratio and polymer concentration and on the morphology and topography of the scaffolds was assessed by SEM and Micro-CT. Infra-red spectroscopic imaging analysis of the scaffolds allowed a better understanding on the distribution of the two polymers within the matrix. This work demonstrates that supercritical fluid technology constitutes a new processing technology, clean and environmentally friendly for the preparation of scaffolds for tissue engineering using these materials. © 2010 Elsevier B.V.

Martins A, Duarte AR, Faria S, Marques AP, Reis RL, Neves NM. {Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality}. Biomaterials. 2010;31. Abstract

Electrospun structures were proposed as scaffolds owing to their morphological and structural similarities with the extracellular matrix found in many native tissues. These fibrous structures were also proposed as drug release systems by exploiting the direct dependence of the release rate of a drug on the surface area. An osteogenic differentiation factor, dexamethasone (DEX), was incorporated into electrospun polycaprolactone (PCL) nanofibers at different concentrations (5, 10, 15 and 20 wt.{%} polymer), in a single-step process. The DEX incorporated into the polymeric carrier is in amorphous state, as det ermined by DSC, and does not influence the typical nanofibers morphology. In vitro drug release studies demonstrated that the dexamethasone release was sustained over a period of 15 days. The bioactivity of the released dexamethasone was assessed by cultivating human bone marrow mesenchymal stem cells (hBMSCs) on 15 wt.{%} DEX-loaded PCL NFMs, under dexamethasone-absent osteogenic differentiation medium formulation. An increased concentration of alkaline phosphatase and deposition of a mineralized matrix was observed. Phenotypic and genotypic expression of osteoblastic-specific markers corroborates the osteogenic activity of the loaded growth/differentiation factor. Overall data suggests that the electrospun biodegradable nanofibers can be used as carriers for the sustained release of growth/differentiation factors relevant for bone tissue engineering strategies. © 2010 Elsevier Ltd.

Duarte AR, Mano JF, Reis RL. {Preparation of chitosan scaffolds for tissue engineering using supercritical fluid technology}. Vol 636-637.; 2010. Abstract

The aim of this study was to evaluate the possibility of preparing chitosan porous matrixes using supercritical fluid technology. Supercritical immersion precipitation technique was used to prepare scaffolds of a natural biocompatible polymer, chitosan, for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage. Immersion precipitation experiments were carried out at different operational conditions in order to optimize the processing method. The effect of different organic solvents on the morphology of the scaffolds was assessed. Additionally, different parameters that influence the process were tested and the effect of the processing variables such as polymer concentration, temperature and pressure in the chitosan scaffold morphology, porosity and interconnectivity was evaluated by micro computed tomography. The preparation of a highly porous and interconnected structure of a natural material, chitosan, using a clean and environmentally friendly technology constitutes a new processing technology for the preparation of scaffolds for tissue engineering using these materials. © (2010) Trans Tech Publications.

Duarte AR, Mano JF, Reis RL. {Supercritical phase inversion of starch-poly($ε$-caprolactone) for tissue engineering applications}. Journal of Materials Science: Materials in Medicine. 2010;21:533-40. Abstract

In this work, a starch-based polymer, namely a blend of starch-poly(epsilon-caprolactone) was processed by supercritical assisted phase inversion process. This processing technique has been proposed for the development of 3D structures with potential applications in tissue engineering applications, as scaffolds. The use of carbon dioxide as non-solvent in the phase inversion process leads to the formation of a porous and interconnected structure, dry and free of any residual solvent. Different processing conditions such as pressure (from 80 up to 150 bar) and temperature (45 and 55 degrees C) were studied and the effect on the morphological features of the scaffolds was evaluated by scanning electron microscopy and micro-computed tomography. The mechanical properties of the SPCL scaffolds prepared were also studied. Additionally, in this work, the in vitro biological performance of the scaffolds was studied. Cell adhesion and morphology, viability and proliferation was assessed and the results suggest that the materials prepared are allow cell attachment and promote cell proliferation having thus potential to be used in some for biomedical applications.

2011
Silva SS, Duarte AR, Carvalho AP, Mano JF, Reis RL. {Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology}. Acta Biomaterialia. 2011;7:1166-72. Abstract

The application of green chemistry principles in the processing of materials for advanced technologies is a steadily increasing field of research. In this work porous chitin-based materials were developed by combining the processing of chitin using ionic liquids (ILs) as a green solvent together with the use of supercritical fluid technology (SCF) as clean technology. Chitin was dissolved in 1-butyl-3-imidazolium acetate, followed by regeneration of the polymer in ethanol in specific moulds. The IL was removed using Soxhlet extraction and successive steps of extraction with SCF using carbon dioxide/ethanol ratios of 50/50 and 70/30. The developed porous chitin-based structures (ChIL) can be classified as mesoporous materials, with very low density and high porosity. The cytotoxicity of ChIL extracts was investigated using L929 fibroblast-like cells, and the results demonstrated that the produced materials have extremely low cytotoxicity levels. Therefore, the findings suggest that the porous chitin structures may be potential candidates for a number of biomedical applications, including tissue engineering. © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Trueba AT, Rovetto LJ, Florusse LJ, Kroon MC, Peters CJ. {Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters}. Fluid Phase Equilibria. 2011;307:6-10. Abstract

Phase equilibrium measurements of single and mixed organic clathrate hydrates with hydrogen were determined within a pressure range of 2.0-14.0. MPa. The organic compounds studied were furan, 2,5-dihydrofuran, tetrahydropyran, 1,3-dioxolane and cyclopentane. These organic compounds are known to form structure II clathrate hydrates with water. It was found that the addition of hydrogen to form a mixed clathrate hydrate increases the stability compared to the single organic clathrate hydrates. Moreover, the mixed clathrate hydrate also has a much higher stability compared to a pure hydrogen structure II clathrate hydrate. Therefore, the organic compounds act as promoter materials. The stabilities of the single and mixed organic clathrate hydrates with hydrogen showed the following trend in increasing order: 1,3-dioxolane {\textless} 2,5-dihydrofuran {\textless} tetrahydropyran {\textless} furan {\textless} cyclopentane, indicating that both size and geometry of the organic compound determine the stability of the clathrate hydrates. © 2011 Elsevier B.V.

Duarte AR, Mano JF, Reis RL. {Thermosensitive polymeric matrices for three-dimensional cell culture strategies}. Acta Biomaterialia. 2011;7. Abstract

A completely new strategy for cell culture focusing on the design of three-dimensional (3D) smart surfaces by supercritical fluid technology has been developed. This approach might overcome the limitations on cell expansion and proliferation of currently existing techniques. An alternative technology, based on supercritical carbon dioxide, was used to polymerize poly(N- isopropylacrylamide) (PNIPAAm) and to foam poly(d,l-lactic acid) (P D,L LA), creating a thermosensitive 3D structure which has proven to have potential as a substrate for cell growth and expansion. We demonstrated that the thermosensitive matrices promoted cell detachment, thus P D,L LA scaffolds have the potential to be used as substrates for cell growth and expansion avoiding enzymatic and mechanical methods of cell harvesting. The harvested cells were replated to evaluate their viability, which was not compromised. A major advantage of this technology is the fact that the prepared materials can be recovered and reused. Therefore, the same substrate can be recycled and reused for different batches. An indirect impact of the technology developed is related to the field of biotechnology, as this novel technology for cell expansion can be applied to any adherent cell cultures. © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

2012
Correia C, Pereira AL, Duarte AR, Frias AM, Pedro AJ, Oliveira JT, Sousa RA, Reis RL. {Dynamic culturing of cartilage tissue: The significance of hydrostatic pressure}. Tissue Engineering - Part A. 2012;18. Abstract

Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×10 6 cells/mL) were encapsulated in GG hydrogels (1.5{%}) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×10 6 cells/mL) were encapsulated in GG hydrogels (1.5{%}) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner. © Copyright 2012, Mary Ann Liebert, Inc.

Santo VE, Duarte AR, Popa EG, Gomes ME, Mano JF, Reis RL. {Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming}. Journal of Controlled Release. 2012;162. Abstract

A new generation of scaffolds capable of acting not only as support for cells but also as a source of biological cues to promote tissue regeneration is currently a hot topic of in bone Tissue Engineering (TE) research. The inclusion of growth factor (GF) controlled release functionalities in the scaffolds is a possible strategy to achieve such goal. Platelet Lysate (PL) is an autologous source of GFs, providing several bioactive agents known to act on bone regeneration. In this study, chitosan-chondroitin sulfate nanoparticles loaded with PL were included in a poly(d,l-lactic acid) foam produced by supercritical fluid foaming. The tridimensional (3D) structures were then seeded with human adipose-derived stem cells (hASCs) and cultured in vitro under osteogenic stimulus. The osteogenic differentiation of the seeded hASCs was observed earlier for the PL-loaded constructs, as shown by the earlier alkaline phosphatase peak and calcium detection and stronger Runx2 expression at day 7 of culture, in comparison with the control scaffolds. Osteocalcin gene expression was upregulated in presence of PL during all culture period, which indicates an enhanced osteogenic induction. These results suggest the synergistic effect of PL and hASCs in combinatory TE strategies and support the potential of PL to increase the multifunctionality of the 3D hybrid construct for bone TE applications. © 2012 Elsevier B.V. All rights reserved.

Duarte AR, Silva SS, Mano JF, Reis RL. {Ionic liquids as foaming agents of semi-crystalline natural-based polymers}. Green Chemistry. 2012;14. Abstract

In this work, the ability to foam semi-crystalline natural-based polymers by supercritical fluid technology is evaluated. The application of this technique to natural polymers has been limited due to the fact that they are normally semi-crystalline polymers, which do not plasticize in the presence of carbon dioxide. This can be overcome by the use of plasticizers, such as glycerol, which is a commonly used plasticizer, or ionic liquids, which have recently been proposed as plasticizing agents for different polymers. Following the green chemistry principles, the main aim is, hereafter, the design and development of new 3D architectures of natural-based polymers, combining ionic liquids (IL) and supercritical fluid (SCF) technology. A polymeric blend of starch, one of the most abundantly occurring natural polymers, and poly-$ε$-caprolactone, a synthetic polymer, which is a biodegradable aliphatic polyester commonly used in an array of biomedical applications (SPCL), was processed by supercritical fluid foaming, at different operating conditions, namely pressure (10.0 up to 20.0 MPa), temperature (35 up to 60 °C) and soaking time (30 min up to 3 h). The ionic liquid tested in this work was 1-butyl-3-methylimidazolium acetate ([bmim]Ac). The interactions between SPCL and [bmim] Ac or glycerol were analysed by Fourier transform infrared spectroscopy, differential scanning calorimetry and by mechanical tests, using both tensile and compressive modes. Morphological analysis, porosity, interconnectivity and pore size distribution of the matrixes were evaluated and the morphology was analyzed by scanning electron microscopy and by micro-computed tomography. To our knowledge the use of ionic liquids as foaming agents is reported here for the first time. The results obtained suggest that this approach can further promote the development of composite polymer-IL materials, particularly for catalysis, chromatography, extraction and separation purposes. © The Royal Society of Chemistry 2012.

Alves A, Duarte AR, Mano JF, Sousa RA, Reis RL. {PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering}. Journal of Supercritical Fluids. 2012;65:32-8. Abstractpdf

A marine derived polysaccharide, ulvan, extracted from green algae, was combined with poly-d, l-lactic acid (PDLLA) in order to produce a novel scaffold for bone tissue engineering applications. Three dimensional (3D) scaffolds of PDLLA loaded with ulvan particles were originally prepared by subcritical fluid sintering with carbon dioxide at 40°C and 50 bar. Prepared matrixes were characterized in order to validate their suitability to be used as scaffolds for bone tissue regeneration. Characterization included micro-computed tomography, mechanical compression testing, water uptake and degradation testing, and cytotoxicity assays. In addition, ulvan particles loaded with dexamethasone, were also dispersed within the PDLLA matrix and the respective release profile from the samples was evaluated. Prepared PDLLA scaffolds enriched with ulvan particles demonstrated appropriate physicochemical and cytocompatible features to be used for the envisaged applications. On the other hand, the release of dexamethasone from ulvan particles embedded within the PDLLA matrix revealed that the designed systems can be potentially suitable for localized drug delivery. These results further contribute to the establishment of ulvan as a potential novel biomaterial. © 2012 Elsevier B.V. All rights reserved.

Duarte AR, Mano JF, Reis RL. {The role of organic solvent on the preparation of chitosan scaffolds by supercritical assisted phase inversion}. Journal of Supercritical Fluids. 2012;72:326-32. Abstract

The aim of this study was to evaluate the possibility of preparing chitosan porous matrixes using supercritical fluid technology. Supercritical immersion precipitation technique was used to prepare scaffolds of a natural biocompatible polymer, chitosan for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage. Supercritical assisted phase inversion experiments were carried out and the effect of different organic solvents on the morphology of the scaffolds was assessed. Chitosan scaffold morphology, porosity and pore size were evaluated by SEM and micro-CT. A thermodynamic analysis of the process was carried out and insights on the solubility parameter and Flory-Huggins interaction parameters are given. The preparation of a highly porous and interconnected structure of a natural material, chitosan, using a clean and environmentally friendly technology constitutes a new processing technology for the preparation of scaffolds for tissue engineering using these materials. © 2011 Elsevier B.V.

Tutak W, Farooque T, Simon GC. {Tissue Engineering and Regenerative Medicine}. Journal of Tissue Engineering and Regenerative Medicine. 2012;6:1-429. Abstractpdf
n/a
Turner NJ, Sicari BM, Keane TJ, Londono R, Crapo PM, Tottey S, Matsushima R, Shimatsu Y, Nam K, Kimura T, Fujisato T. {Tissue Engineering and Regenerative Medicine}. Journal of Tissue Engineering and Regenerative Medicine. 2012;6:1-429. Abstractpdf
n/a
2013
Silva SS, Duarte AR, Oliveira JM, Mano JF, Reis RL. {Alternative methodology for chitin-hydroxyapatite composites using ionic liquids and supercritical fluid technology}. Journal of Bioactive and Compatible Polymers. 2013;28. Abstract

An alternative, green method was used to develop chitin-based biocomposite (ChHA) materials by an integrated strategy using ionic liquids, supercritical fluid drying, and salt leaching. ChHA matrices were produced by dissolving chitin in 1-butyl-methylimidazolium acetate along with salt and/or hydroxyapatite particles and then subsequent drying. The ChHA composite formed had a heterogeneous porous microstructure with 65{%}-85{%} porosity and pore sizes in the range of 100-300 $μ$m. The hydroxyapatite was found to be well distributed within the composite structures and had a positive effect in the viability and proliferation of osteoblast-like cells, in vitro. Our findings indicate that these ChHA matrices have potential applications in bone tissue engineering. © The Author(s) 2013.

Silva SS, Duarte AR, Mano JF, Reis RL. {Design and functionalization of chitin-based microsphere scaffolds}. Green Chemistry. 2013;15:3252. Abstractpdf

Chitin agglomerated scaffolds were produced and functionalized using the green chemistry principles and clean technologies. Such combination enabled the functionalization of chitin microparticles prepared through dissolution of the polymer in ionic liquids, followed by of the application of a sol-gel method. Finally, the 3D constructs were moulded and dried using a supercritical assisted agglomeration method. Structural and morphological characterization is presented using scanning electronic microscopy (SEM) and micro-computed tomography ([small micro]-CT). An evaluation of the bioactive behavior of the matrices was made by immersing them in simulated body fluid (SBF) for up to 21 days. The potential of such matrices as drug delivery systems was evaluated after the incorporation of dexamethasone into the matrices during drying in supercritical assisted agglomeration. The findings suggested that the morphological features such as porosity, interconnectivity and pore size distribution of the matrices can be tunned by changing particle size, chitin concentration and the pressure applied during moulding. Chitin microspheres were modified by siloxane and silanol groups, providing a bioactive behavior; the apatite formation was shown to be dependent on the amount and arrangement of silanol groups. Furthermore, in vitro drug release studies showed that dexamethasone was sustainably released. All findings suggest that this strategy is a feasible and advantageous process to obtain chitin-based 3D structures with both functional and structural characteristics that make then suitable for regenerative medicine applications.

Fernandes-Silva S, Moreira-Silva J, Silva TH, Perez-Martin RI, Sotelo CG, Mano JF, Duarte AR, Reis RL. {Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere}. Macromolecular Bioscience. 2013;13. Abstract

The possibility to fabricate marine collagen porous structures crosslinked with genipin under high pressure carbon dioxide is investigated. Collagen from shark skin is used to prepare pre-scaffolds by freeze-drying. The poor stability of the structures and low mechanical properties require crosslinking of the structures. Under dense CO 2 atmosphere, crosslinking of collagen pre-scaffolds is allowed for 16 h. Additionally, the hydrogels are foamed and the scaffolds obtained present a highly porous structure. In vitro cell culture tests performed with a chondrocyte-like cell line show good cell adherence and proliferation, which is a strong indication of the potential of these scaffolds to be used in tissue cartilage tissue engineering. The development of an optimized processing technique for the preparation of stable structures from marine origin collagen is described. The samples are processed under a dense carbon dioxide atmosphere that promotes crosslinking and enhances the morphology of the 3D architectures obtained. © 2013 WILEY-VCH Verlag GmbH {&} Co. KGaA, Weinheim.

Engineering T, Based C, Gualtar CD, Manuela M, Gomes E, Rita AN, Duarte C, Fornecer SD, Estrutura UM, Interconectada PE, Crescimento SD. {PT 106220}.. 2013;106220. Abstract
n/a
Engineering T, Based C, Gualtar CD, Manuela M, Gomes E, Rita AN, Duarte C, Fornecer SD, Estrutura UM, Interconectada PE, Crescimento SD. {PT 106220}.. 2013;106220. Abstract
n/a
Duarte AR, Santo VE, Alves A, Silva SS, Moreira-Silva J, Silva TH, Marques AP, Sousa RA, Gomes ME, Mano JF, Reis RL. {Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine}. Journal of Supercritical Fluids. 2013;79:177-85. Abstractpdf

One of the major scientific challenges that tissue engineering and regenerative medicine (TERM) faces to move from benchtop to bedside regards biomaterials development, despite the latest advances in polymer processing technologies. A variety of scaffolds processing techniques have been developed and include solvent casting and particles leaching, compression molding and particle leaching, thermally induced phase separation, rapid prototyping, among others. Supercritical fluids appear as an interesting alternative to the conventional methods for processing biopolymers as they do not require the use of large amounts of organic solvents and the processes can be conducted at mild temperatures. However, this processing technique has only recently started to receive more attention from researchers. Different processing methods based on the use of supercritical carbon dioxide have been proposed for the creation of novel architectures based on natural and synthetic polymers and these will be unleashed in this paper. © 2013 Elsevier B.V. All rights reserved.

Duarte AR, Santo VE, Alves A, Silva SS, Moreira-Silva J, Silva TH, Marques AP, Sousa RA, Gomes ME, Mano JF, Reis RL. {Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine}. Journal of Supercritical Fluids. 2013;79:177-85. Abstractpdf

One of the major scientific challenges that tissue engineering and regenerative medicine (TERM) faces to move from benchtop to bedside regards biomaterials development, despite the latest advances in polymer processing technologies. A variety of scaffolds processing techniques have been developed and include solvent casting and particles leaching, compression molding and particle leaching, thermally induced phase separation, rapid prototyping, among others. Supercritical fluids appear as an interesting alternative to the conventional methods for processing biopolymers as they do not require the use of large amounts of organic solvents and the processes can be conducted at mild temperatures. However, this processing technique has only recently started to receive more attention from researchers. Different processing methods based on the use of supercritical carbon dioxide have been proposed for the creation of novel architectures based on natural and synthetic polymers and these will be unleashed in this paper. © 2013 Elsevier B.V. All rights reserved.

2014
pubs.acs.org/acssce.. 2014;2:2014. Abstract
n/a
Martins M, Aroso IM, Reis RL, Duarte AR, Craveiro R, Paiva A. {Enhanced performance of supercritical fluid foaming of natural-based polymers by deep eutectic solvents}. AIChE Journal. 2014;60. Abstract

© 2014 American Institute of Chemical Engineers. Significance: Natural deep eutectic solvents (NADES) are defined as a mixture of two or more solid or liquid components, which at a particular composition present a high melting point depression becoming liquids at room temperature. NADES are constituted by natural molecules and fully represent the green chemistry principles. For these reasons, the authors believe that the submitted manuscript is a highly valuable contribution to the field of green chemistry and chemical engineering. For the first time, the possibility to use NADES as enhancers of supercritical fluid technology is revealed.

Silva JM, Duarte AR, Custódio CA, Sher P, Neto AI, Pinho AC, Fonseca J, Reis RL, Mano JF. {Nanostructured Hollow Tubes Based on Chitosan and Alginate Multilayers}. Advanced Healthcare Materials. 2014;3:433-40. Abstract

The design and production of structures with nanometer-sized polymer films based on layer-by-layer (LbL) are of particular interest for tissue engineering since they allow the precise control of physical and biochemical cues of implantable devices. In this work, a method is developed for the preparation of nanostructured hollow multilayers tubes combining LbL and template leaching. The aim is to produce hollow tubes based on polyelectrolyte multilayer films with tuned physical-chemical properties and study their effects on cell behavior. The final tubular structures are characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), microscopy, swelling, and mechanical tests, including dynamic mechanical analysis (DMA) in physiological simulated conditions. It is found that more robust films could be produced upon chemical cross-linking with genipin. In particular, the mechanical properties confirms the viscoelastic properties and a storage and young modulus about two times higher. The water uptake decreases from about 390{%} to 110{%} after the cross-linking. The biological performance is assessed in terms of cell adhesion, viability, and proliferation. The results obtained with the cross-linked tubes demonstrate that these are more suitable structures for cell adhesion and spreading. The results suggest the potential of these structures to boost the development of innovative tubular structures for tissue engineering approaches.