Publications

Export 130 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Punching behaviour of RC flat slabs under reversed horizontal cyclic loading, Almeida, André F. O., Inácio Micael M. G., Lúcio Válter J. G., and Ramos António Pinho , Engineering Structures, Volume 117, p.204–219, (2016) AbstractWebsite

The aim of this work is to study the behaviour of reinforced concrete flat slab structures under combined vertical and horizontal cyclic loading. A total of five specimens were cast and tested: a control specimen was punched without eccentricity, one specimen was tested under constant vertical loading and monotonically increased eccentricity until failure and the remaining three were tested under constant vertical load, at different shear ratios, and cyclic horizontal loading with increasing horizontal drift ratios. All slabs were similar, measuring 4.25×1.85×0.15m3. The reinforced concrete slab specimens were connected to two steel half columns by 0.25×0.25m2 rigid steel plates, prestressed against the slab using steel bolts, to ensure monolithic behaviour. The cyclic tests were performed using an innovative test setup that allows bending moment redistribution, line of inflection mobility, assures equal vertical displacements at the North-South borders and symmetrical shear forces. Results show that cyclic horizontal actions are very harmful to the slab–column connection, resulting in low horizontal drifts and energy dissipation.

Behavior of RC flat slabs with shear bolts under reversed horizontal cyclic loading, Almeida, André F. O., Ramos António P., Lúcio Válter, and Marreiros Rui , Structural Concrete, Volume n/a, Number n/a, (2019) AbstractWebsite

Abstract An experimental work on reinforced concrete flat slab specimens to test the efficiency of postinstalled bolts, as punching shear reinforcement in resisting vertical and cyclic horizontal loads, was conducted and is presented in this paper. The test protocol consisted in increasing horizontal drifts combined with constant vertical load until failure. Two different detailing solutions for the shear reinforcement were considered, one using a radial distribution around the column and another using a cross distribution, being the results compared with a previously tested reference specimen. The dimensions of the specimens were 4.25 x 1.85 x 0.15 m3. The test setup used for these tests was developed by the research team and simulates the boundary conditions with already recognized good results. Postinstalled steel bolts were proven to be an efficient solution for strengthening of existing structures, improving the structural behavior, and the punching resistance.

Resposta da ligação pilar-laje fungiforme sujeitas a ações horizontais cíclicas reforçadas com estribos, Almeida, André, Ramos António, Marreiros Rui, Lúcio Válter, and Faria Ricardo , Encontro Nacional Betão Estrutural 2018, 7-9 Nov., LNEC, Lisboa, (2018)
Flat Slabs under Cyclic Reversed Horizontal Loads, Almeida, André, Lúcio Válter, and Ramos António , 3rd NOVA-Yamaguchi International Seminar – Earthquake Resistant Structures, Caparica, (2016)
Behavior of RC flat slabs with shear bolts under reversed horizontal cyclic loading, Almeida, André F. O., Ramos António P., Lúcio Válter, and Marreiros Rui , Structural Concrete, Volume 21, Number 2, p.501-516, (2020) AbstractWebsite

Abstract An experimental work on reinforced concrete flat slab specimens to test the efficiency of postinstalled bolts, as punching shear reinforcement in resisting vertical and cyclic horizontal loads, was conducted and is presented in this paper. The test protocol consisted in increasing horizontal drifts combined with constant vertical load until failure. Two different detailing solutions for the shear reinforcement were considered, one using a radial distribution around the column and another using a cross distribution, being the results compared with a previously tested reference specimen. The dimensions of the specimens were 4.25 x 1.85 x 0.15 m3. The test setup used for these tests was developed by the research team and simulates the boundary conditions with already recognized good results. Postinstalled steel bolts were proven to be an efficient solution for strengthening of existing structures, improving the structural behavior, and the punching resistance.