Publications

Export 130 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Repair and Strengthening Methods of Flat Slabs for Punching, Ramos, Antonio, Lucio Valter, and Regan Paul E. , International Workshop on Punching Shear Capacity of RC Flat Slabs, Stockholm, p.125–133, (2000) Abstract

The present work reports experimental research carried out on repair and strengthening methods of flat slabs for punching. The repair and strengthening methods studied are: strengthening using transversal prestress, repair by substitution of the damaged concrete; and strengthening using steel beams as a column head, connected to the column and to the slab with epoxy resin and mechanical expansion anchors. Four experimental test slabs (AR1 to AR4) were produced and tested: two with transversal prestress, one only repaired and one strengthened with a steel column head. The execution process, its efficiency and design, are discussed.

Resistência ao Punçoamento de Lajes Fungiformes Pré-Esforçadas - Método Alternativo de Cálculo, Ramos, António, and Lúcio Válter , Revista Internacional Construlink, Volume 4, p.4–14, (2006) Abstract

n/a

Estudo Experimental de Punçoamento em Lajes Fungiformes Pré Esforçadas, a Ramos, and Lúcio V. , Encontro Nacional Betão Estrutural 2004, Porto, (2004) Abstract

n/a

The effect of the vertical component of prestress forces on the punching strength of flat slabs, Ramos, Pinho A., Lúcio Válter J. G., and Faria Duarte M. V. , Engineering Structures, Volume 76, p.90–98, (2014) Abstract

The use of prestress in flat slabs is a common solution, mainly because it allows larger spans and thinner slabs. Nevertheless, smaller thicknesses near the slab-column connections, along with the superposition of high shear and flexural stresses, arise the question of the slab capacity to resist punching. The punching failure results from the superposition of shear and flexural stresses near the column, and is associated to the formation of a pyramidal plug of concrete which punches through the slab. It is a local and brittle failure. The use of prestress can increase the punching capacity of flat slabs-column connections.This work presents the experimental analysis of flat slab specimens with tendons under punching. Nine slabs were tested using unbonded prestress with high strength steel tendons. The influences on the punching capacity of the vertical component of the prestress forces resulting from inclined tendons near the column and their distance to the column are analysed. The in-plane compression force due to prestress was not applied to the slabs, in order to evaluate only the deviation force influence. This work aims to improve the understanding of the behaviour of prestressed flat slabs under punching load in order to properly evaluate the punching resistance of this kind of structures. The experimental punching loads are compared with the provisions of EC2, ACI 318-11 and MC2010. © 2014 Elsevier Ltd.

Rational use of HPFRC in slab – column connections under reversed horizontal cyclic loading, Ramos, António, Isufi Brisid, Marreiros Rui, Bolešová Mária, and Gajdošová Katarina , Engineering Structures, Volume 270, (2022) AbstractWebsite
n/a
Punching of Flat Slabs under Reversed Horizontal Cyclic Loading, Ramos, António, Marreiros Rui, Almeida André, Isufi Brisid, and Inácio Micael , ACI Fall Convention 2016, Philadelphia, (2016) Abstract

Flat slab structures are a very common structural solution nowadays, due to their architectural and economic advantages. However, flat slab-column connections may be vulnerable to punching failure, especially in an event of an earthquake, with potentially high human and economic losses. This type of structural solution is adequately covered by design codes and recommendations in North America, due to a large amount of experimental research carried out. In Europe the situation is different, missing specific guidance to flat slab design under earthquake action in most European codes. The ACI 318-14 prescriptive approach to the gravity shear ratio-drift ratio relationship shows good agreement with experimental results. Following a similar approach and, based in a databank containing cyclic horizontally loaded tests of slab-column connections found in literature, proposals are made applicable to EC2 and MC2010.

Punching of prestressed flat slabs: Experimental analysis, Ramos, A. M. P., and Lúcio V. J. G. , International Workshop on Punching Shear Capacity of RC Flat Slabs, Volume 57, Stockholm, p.441–448, (2000) Abstract

The experimental analysis of nine prestressed flat slab models under punching is described and the results are compared with the recommendations of EC2 and MC90. The tests were performed on specimens at a scale 1/3, prestressed with unbonded high strength steel. In the first set, the specimens (AR2 to AR5 and AR7) were only subjected to in-plane compression, to evaluate the effect of the in-plane forces on the punching resistance. The second set of tests (AR8 to AR11) intended to study the effect of the vertical component of the tendon forces near the column in the punching resistance. This work aims to improve the understanding of the behaviour of prestressed flat slabs under punching load and the evaluation of the punching resistance.

Comportamento Pós-Rotura de Lajes Fungiformes Pré Esforçadas, Ramos, António Pinho, and Lúcio Válter , Revista Portuguesa de Engenharia de Estruturas, Volume 1, Number Série II, p.5–14, (2007) Abstract

n/a

A review of punching behavior of slab–column connections with recycled coarse aggregate concrete, Ramos, António, Marchão Carla, Pacheco João Nuno, Enfedaque Alejandro, Coronelli Dario, Faria Duarte, de Brito Jorge, Ruiz Miguel Fernández, and Marreiros Rui , Structural Concrete, (2024) AbstractWebsite
n/a
Reparação e Reforço de Lajes Fungiformes ao Punçoamento, Ramos, António , IST-UTL, Lisbon, (1995) Abstract

n/a

Análise Experimental de Técnicas de Reparação e Reforço ao Punçoamento, Ramos, A. M. P. e Lúcio, V. , 5º Encontro Nacional sobre Estruturas Pré-esforçadas, Porto, (1994) Abstract

n/a

SEISMIC BEHAVIOR OF SLAB–COLUMN CONNECTIONS USING HIGH PERFORMANCE FIBER REINFORCED CONCRETES, Ramos, António, Isufi Brisid, and Marreiros Rui , American Concrete Institute, ACI Special Publication, Volume SP-357, p.123 – 138, (2023) Abstract
n/a
Comportamento de Lajes Fungiformes Sujeitas a Acções Horizontais Cíclicas, Ramos, António Pinho , Construção Magazine, Issue 76, p.44-45, (2016)
Gestão de Pontes Classificadas de Alvenaria inseridas na Rede Rodoviária Nacional, Rodrigues, Neuza, and Ramos António , ASCP 2011 – 2º Congresso Segurança e Conservação de Pontes, Coimbra, (2011) Abstract

n/a

As obras de arte classificadas sob jurisdição da EP – Estradas de Portugal S.A.-Metodologias de manutenção e reabilitação, Rodrigues, Neuza, and Ramos António , CIRea2012 – Conferência Internacional sobre Reabilitação de Estruturas Antigas de Alvenaria, Lisbon, (2012) Abstract

n/a

Damage and Diagnosis of Masonry Bridges-A Case Study, Rodrigues, Neuza, and Ramos António , 1st Historical Mortars Conference, Lisbon, (2008) AbstractWebsite

n/a

Reabilitação de Pontes Históricas de Alvenaria – Um Caso de Estudo, Rodrigues, Neuza, and Ramos António , ASCP'09 – 1º Congresso de Segurança e Conservação de Pontes ASCP, Lisbon, (2009) Abstract

n/a

Seismic behavior of slab-column connections with varying flexural reinforcement ratio, Rossi, Mariana, Isufi Brisid, and Ramos António Pinho , fib Symposium, Volume 2021-June, p.987 – 994, (2021) Abstract
n/a
S
Eccentric punching strength of continuous flat slabs—Analysis of different experimental setups, Secci, Lorenzo, Lapi Massimo, Teoni Emanuele, Ramos Antonio Pinho, and Orlando Maurizio , Structural Concrete, Volume n/a, Number n/a, (2021) AbstractWebsite

Abstract This paper analyses the performance of the experimental setups to assess the punching strength of slab-column connections in continuous flat slabs under vertical and horizontal loading. In the last years, several experimental campaigns have been performed to investigate the punching strength of slab-column connections, but most of the experimental tests concerned isolated slab-column connections. Among the few setups aimed at reproducing the eccentric punching failure in continuous flat slabs, the setup developed at the NOVA School of Science and Technology in Lisbon is considered in this paper. The performance of the Lisbon setup is assessed through nonlinear finite element analyses, calibrated on experimental data, by comparison with numerical results of a theoretical continuous setup. Then, the performance of the isolated setups, used in many researches and at the base of some international codes, is also evaluated through the same finite element model. Numerical analyses highlight that the setup developed in Lisbon could provide reliable ultimate rotations of continuous flat slab connections, but it underestimates the punching strength. Despite isolated setups lead to similar results when compared with the Lisbon setup, the latter seems to provide a better representation of a continuous slab-column connection. The numerical analyses presented in this paper have been performed assuming monotonic lateral loading.

Finite element analysis of punching shear of R/C slabs: A hybrid approach for model calibration, Secci, L., Teoni E., Lapi M., Orlando M., and a Ramos , Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, p.643-650, (2019) Abstract
n/a
A physical approach for considering how anchorage head size influences the punching capacity of slabs strengthened with vertical steel bolts, Silva, Ricardo, Faria Duarte Viúla M., Ramos Pinho A., and Inácio Micael , Structural Concrete, dec, Volume 14, Number 4, p.389–400, (2013) AbstractWebsite

n/a

Accelerated action of external sulfate and chloride to study corrosion of tensile steel in reinforced concrete, Silva, M. A. G., Cunha M. P., Pinho Ramos A., Sena da Fonseca B., and Pinho F. F. S. , Materiales de Construcción, Volume 67, Issue 328, (2017)
Experimental and parametric 3D nonlinear finite element analysis on punching of flat slabs with orthogonal reinforcement, Silva Mamede, Nuno F., Pinho Ramos A., and Faria Duarte M. V. , Engineering Structures, mar, Volume 48, p.442–457, (2013) AbstractWebsite

This work refers to experimental and 3D nonlinear FEA on punching. Numerical results were compared with experimental ones in order to benchmark the FE model and afterwards a parametric study was conducted, changing the reinforcement ratio, slab thickness, concrete strength and column dimensions, running a total of 360 models, where their effect on punching capacity is shown. EC2 and MC2010 provisions agreed approximately with experimental and FEA results. Based in the FEA results it is proposed an equation to predict the punching capacity with the introduction of fracture mechanics parameter, which was compared with several experimental results, giving good approximation.

T
Eccentric punching strength of rc slab-column connections: A parametric numerical analysis based on the lisbon setup, Teoni, Emanuele, Secci Lorenzo, Lapi Massimo, Ramos Antonio Pinho, and Orlando Maurizio , fib Symposium, Volume 2021-June, p.1640 – 1647, (2021) Abstract
n/a
Shear and flexural strengthening of deficient flat slabs with post-installed bolts and CFRP composites bonded through EBR and EBROG, Torabian, Ala, Isufi Brisid, Mostofinejad Davood, and Ramos António Pinho , Structural Concrete, Volume n/a, Number n/a, (2020) AbstractWebsite

Abstract Fiber reinforced polymer (FRP) composites can be efficient for flexural strengthening of flat slabs if debonding of the FRP is postponed. However, with the increase of the flexural capacity, the flat slab becomes more susceptible to punching shear failure. In this context, four flexural or simultaneous flexural and punching shear retrofitting systems are investigated in this study to strengthen a flexure-deficient flat slab. Externally Bonded Reinforcement on Grooves (EBROG) and externally bonded reinforcement (EBR) methods are used for flexural strengthening in two cases: slabs without punching shear reinforcement and with post-installed shear bolts as shear reinforcement. According to the results, flexural strengthening of the slab using the EBR and EBROG techniques increased its load capacity by 12% and 21%, respectively. Simultaneous flexural and shear strengthening of the slab using the EBROG technique was the most effective, leading to a 57% enhancement of the load capacity. For specimens whose failure was governed by punching, comparing the results with code predictions showed that Eurocode and ACI (and the respective guide documents fib bulletin 90 and ACI 440.2R) overestimated the capacity of these specimens. In cases where failure was governed by flexure, a simple application of the yield line theory predicted reasonably well the load capacity of the specimens.