Shear and flexural strengthening of deficient flat slabs with post-installed bolts and CFRP composites bonded through EBR and EBROG,
Torabian, Ala, Isufi Brisid, Mostofinejad Davood, and Ramos António Pinho
, Structural Concrete, Volume n/a, Number n/a, (2020)
AbstractAbstract Fiber reinforced polymer (FRP) composites can be efficient for flexural strengthening of flat slabs if debonding of the FRP is postponed. However, with the increase of the flexural capacity, the flat slab becomes more susceptible to punching shear failure. In this context, four flexural or simultaneous flexural and punching shear retrofitting systems are investigated in this study to strengthen a flexure-deficient flat slab. Externally Bonded Reinforcement on Grooves (EBROG) and externally bonded reinforcement (EBR) methods are used for flexural strengthening in two cases: slabs without punching shear reinforcement and with post-installed shear bolts as shear reinforcement. According to the results, flexural strengthening of the slab using the EBR and EBROG techniques increased its load capacity by 12% and 21%, respectively. Simultaneous flexural and shear strengthening of the slab using the EBROG technique was the most effective, leading to a 57% enhancement of the load capacity. For specimens whose failure was governed by punching, comparing the results with code predictions showed that Eurocode and ACI (and the respective guide documents fib bulletin 90 and ACI 440.2R) overestimated the capacity of these specimens. In cases where failure was governed by flexure, a simple application of the yield line theory predicted reasonably well the load capacity of the specimens.
Flexural strengthening of flat slabs with FRP composites using EBR and EBROG methods,
Torabian, Ala, Isufi Brisid, Mostofinejad Davood, and Ramos António Pinho
, Engineering Structures, Volume 211, p.110483, (2020)
AbstractOne of the major disadvantages of conventional fibre-reinforced polymer (FRP) strengthening techniques is the premature debonding of the FRP, leading to an underutilization of the materials. The externally bonded reinforcement on grooves (EBROG) method, which has been proven successful in postponing debonding in several structural applications, is examined in this study for the first time for realistic conditions in flat slabs. To this end, two different layouts of the strengthening solution are tested under concentric monotonic loading: one representing roof-level slab-column connections in which carbon FRP (CFRP) sheets are laid on top of the joint region (cross layout); and another one representing intermediate floors, in which the aforementioned layout is not possible due to the presence of the column (grid layout). For each layout, two FRP bonding techniques are used: conventional externally bonded reinforcement (EBR) and EBROG. Another specimen, without FRP strengthening, is used as a reference. It is shown that the EBROG technique is effective in postponing debonding for both layouts. Compared to the specimens in which EBR was used, the load capacity was increased in case of EBROG by 36% when FRP sheets were bonded on top of the joint (cross layout) and by 15% when sheets were attached outside the joint region (grid layout). Debonding strains are shown to be significantly higher in the case of EBROG compared to EBR. The experimentally observed debonding strains were compared with code provisions and predictions of models from the literature. A simple calculation method giving reasonably good results for the load capacity of the FRP-strengthened specimens is presented.
A hybrid method for the calibration of finite element models of punching-shear in R/C flat slabs,
Lapi, Massimo, Secci Lorenzo, Teoni Emanuele, Ramos Antonio Pinho, and Orlando Maurizio
, Computers & Structures, Volume 238, p.106323, (2020)
AbstractThe paper is focused on the calibration of non-linear 3D finite element (FE) analyses to simulate punching failure of R/C flat slabs. The calibration procedure is developed with reference to the code ABAQUS, which is one of the most used computer codes in nonlinear modelling of R/C structures. Generally, the calibration of a nonlinear FE model is grounded on one test only, so its reliability could be limited. Here a hybrid method for the calibration of FE models of R/C flat slabs failing in punching is proposed and discussed. The method consists in calibrating input data by comparison of finite element model (FEM) results with both experimental data and predictions provided by analytical models. The procedure allows for a consistent calibration to be performed, valid for a wide range of longitudinal reinforcement ratios, from 0.5% to 2.00%, and concrete grades, from C20/25 to C50/60. A case study is investigated using the proposed method. Results show that calibrated values of the fracture energy lie between those provided by Model Code 1990 and Model Code 2010. From the new calibration procedure, a relationship between fracture energy and concrete compressive strength is also derived and blind analyses are performed to check its reliability against experimental results.