Publications

Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Finite element analysis of punching shear of R/C slabs: A hybrid approach for model calibration, Secci, L., Teoni E., Lapi M., Orlando M., and a Ramos , Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, p.643-650, (2019) Abstract
n/a
Eccentric punching strength of continuous flat slabs—Analysis of different experimental setups, Secci, Lorenzo, Lapi Massimo, Teoni Emanuele, Ramos Antonio Pinho, and Orlando Maurizio , Structural Concrete, Volume n/a, Number n/a, (2021) AbstractWebsite

Abstract This paper analyses the performance of the experimental setups to assess the punching strength of slab-column connections in continuous flat slabs under vertical and horizontal loading. In the last years, several experimental campaigns have been performed to investigate the punching strength of slab-column connections, but most of the experimental tests concerned isolated slab-column connections. Among the few setups aimed at reproducing the eccentric punching failure in continuous flat slabs, the setup developed at the NOVA School of Science and Technology in Lisbon is considered in this paper. The performance of the Lisbon setup is assessed through nonlinear finite element analyses, calibrated on experimental data, by comparison with numerical results of a theoretical continuous setup. Then, the performance of the isolated setups, used in many researches and at the base of some international codes, is also evaluated through the same finite element model. Numerical analyses highlight that the setup developed in Lisbon could provide reliable ultimate rotations of continuous flat slab connections, but it underestimates the punching strength. Despite isolated setups lead to similar results when compared with the Lisbon setup, the latter seems to provide a better representation of a continuous slab-column connection. The numerical analyses presented in this paper have been performed assuming monotonic lateral loading.

Accelerated action of external sulfate and chloride to study corrosion of tensile steel in reinforced concrete, Silva, M. A. G., Cunha M. P., Pinho Ramos A., Sena da Fonseca B., and Pinho F. F. S. , Materiales de Construcción, Volume 67, Issue 328, (2017)
A physical approach for considering how anchorage head size influences the punching capacity of slabs strengthened with vertical steel bolts, Silva, Ricardo, Faria Duarte Viúla M., Ramos Pinho A., and Inácio Micael , Structural Concrete, dec, Volume 14, Number 4, p.389–400, (2013) AbstractWebsite

n/a

Experimental and parametric 3D nonlinear finite element analysis on punching of flat slabs with orthogonal reinforcement, Silva Mamede, Nuno F., Pinho Ramos A., and Faria Duarte M. V. , Engineering Structures, mar, Volume 48, p.442–457, (2013) AbstractWebsite

This work refers to experimental and 3D nonlinear FEA on punching. Numerical results were compared with experimental ones in order to benchmark the FE model and afterwards a parametric study was conducted, changing the reinforcement ratio, slab thickness, concrete strength and column dimensions, running a total of 360 models, where their effect on punching capacity is shown. EC2 and MC2010 provisions agreed approximately with experimental and FEA results. Based in the FEA results it is proposed an equation to predict the punching capacity with the introduction of fracture mechanics parameter, which was compared with several experimental results, giving good approximation.