Publications

Export 16 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
A review of punching behavior of slab–column connections with recycled coarse aggregate concrete, Ramos, António, Marchão Carla, Pacheco João Nuno, Enfedaque Alejandro, Coronelli Dario, Faria Duarte, de Brito Jorge, Ruiz Miguel Fernández, and Marreiros Rui , Structural Concrete, (2024) AbstractWebsite
n/a
2022
Deformation capacity evaluation for flat slab seismic design, Muttoni, A., Coronelli D., Lamperti Tornaghi M., Martinelli L., Pascu I. R., Pinho Ramos A., Tsionis G., Bamonte P., Isufi B., and Setiawan A. , Bulletin of Earthquake Engineering, Volume 20, Number 3, p.1619 – 1654, (2022) AbstractWebsite
n/a
Flat Plate Building and Frame Full Scale Tests for European Design Provisions, Coronelli, Dario, Muttoni Aurelio, Pascu Radu, and Ramos Antonio , American Concrete Institute, ACI Special Publication, Volume SP-353, p.73 – 96, (2022) Abstract
n/a
2021
Flat slab structural response for seismic european design. Full scale testing results, Coronelli, Dario, Martinelli Luca, Muttoni Aurelio, Pascu Radu, and Ramos Antonio , fib Symposium, Volume 2021-June, p.1831 – 1839, (2021) Abstract
n/a
Flat slab structural response for seismic european design. Full scale testing results, Coronelli, Dario, Martinelli Luca, Muttoni Aurelio, Pascu Radu, and Ramos Antonio , fib Symposium, Volume 2021-June, p.1831 – 1839, (2021) Abstract
n/a
Testing of a full-scale flat slab building for gravity and lateral loads, Coronelli, Dario, Lamperti Tornaghi Marco, Martinelli Luca, Molina Francisco-Javier, Muttoni Aurelio, Pascu Ion Radu, Pegon Pierre, Peroni Marco, Ramos António Pinho, Tsionis Georgios, and Netti Teresa , Engineering Structures, Volume 243, (2021) AbstractWebsite
n/a
2020
A state of the art of flat-slab frame tests for gravity and lateral loading, Coronelli, Dario, Muttoni Aurelio, Pascu Ion R., Ramos Antonio P., and Netti Teresa , Structural Concrete, Volume n/a, Number n/a, (2020) AbstractWebsite

Abstract This paper presents a critical review of the state of the art of experimental research concerning the seismic response of reinforced concrete flat slab frames. After a summary of tests on connections, the paper examines tests carried out on frames with gravity and cyclic lateral loading, and shake table tests; scaled specimens and one real scale study are included. A discussion of the results reached so far is provided focusing on the global response, the different load types and effects; the ultimate rotations at failure in relation to the gravity shear and a classification of different failure modes for different types of connections. Based on this analysis, the research needs are highlighted. An experimental program launched to address these open questions is described. Further open topics are highlighted.

Role of punching shear reinforcement in the seismic performance of flat slab frames, Isufi, B., Cismasiu I., Marreiros R., Pinho Ramos A., and Lúcio V. , Engineering Structures, Volume 207, (2020) AbstractWebsite
n/a
2017
Accelerated action of external sulfate and chloride to study corrosion of tensile steel in reinforced concrete, Silva, M. A. G., Cunha M. P., Pinho Ramos A., Sena da Fonseca B., and Pinho F. F. S. , Materiales de Construcción, Volume 67, Issue 328, (2017)
2013
Experimental and parametric 3D nonlinear finite element analysis on punching of flat slabs with orthogonal reinforcement, Silva Mamede, Nuno F., Pinho Ramos A., and Faria Duarte M. V. , Engineering Structures, mar, Volume 48, p.442–457, (2013) AbstractWebsite

This work refers to experimental and 3D nonlinear FEA on punching. Numerical results were compared with experimental ones in order to benchmark the FE model and afterwards a parametric study was conducted, changing the reinforcement ratio, slab thickness, concrete strength and column dimensions, running a total of 360 models, where their effect on punching capacity is shown. EC2 and MC2010 provisions agreed approximately with experimental and FEA results. Based in the FEA results it is proposed an equation to predict the punching capacity with the introduction of fracture mechanics parameter, which was compared with several experimental results, giving good approximation.

Discussion of “Strengthening Two-Way Reinforced Concrete Floor Slabs Using Polypropylene Fiber Reinforcement” by Matthew J. Radik, Ece Erdogmus, and Travis Schafer, Faria, Duarte M. V., Lúcio Valtér J. G., and Pinho Ramos António M. , Journal of Materials in Civil Engineering, aug, Volume 25, Number 8, p.1142–1142, (2013) AbstractWebsite

n/a

Discussion: Pull-out and push-in tests of bonded steel strands, VIULA FARIA, Duarte M., LUCIO Válter J. G., Pinho Ramos A., and MARTI-VARGAS José R. , Magazine of concrete research, Volume 65, Number 17-18, p.1128–1131, (2013) AbstractWebsite

n/a

2012
Strengthening of flat slabs with transverse reinforcement by introduction of steel bolts using different anchorage approaches, Inácio, Micael M. G., Pinho Ramos A., Faria Duarte M. V., and Lúcio Válter J. G. , Engineering Structures, nov, Volume 44, p.383–397, (2012) AbstractWebsite

This work presents an experimental study concerning the post-punching behaviour of flat slabs strengthened with a new technique based on post-tensioning with anchorages by bonding using an epoxy adhesive. This strengthening technique proved efficient with respect to ultimate and serviceability states. Five slab specimens were tested in the post-punching range and it was found that the post-punching resistance was on average 78{%} of the punching resistance. This paper reports the development of strand forces and slab displacements from the beginning of the tests, including the bond stresses developed at several stages of the loading process. It was observed that top reinforcement bars were capable of transmitting post-punching loads to the prestressing strands. Taking this into account and based on the load bath envisaged from the column to the slab, expressions for the vertical load capacities corresponding to the parts of the load path are presented and compared with the experimental results, showing their ability to predict both ultimate loads and modes of failure. Compared with other strengthening techniques, the one proposed here not only upgrades ultimate and serviceability behaviour but also adds post-punching resistance, which is a great advantage in the event of progressive collapse, since it may avoid the collapse of an entire structure, thus reducing the risk of material and human losses.

Post-punching behaviour of flat slabs strengthened with a new technique using post-tensioning, Faria, Duarte M. V., Lúcio Válter J. G., and Pinho Ramos A. , Engineering Structures, jul, Volume 40, p.383–397, (2012) AbstractWebsite

This work presents an experimental study concerning the post-punching behaviour of flat slabs strengthened with a new technique based on post-tensioning with anchorages by bonding using an epoxy adhesive. This strengthening technique proved efficient with respect to ultimate and serviceability states. Five slab specimens were tested in the post-punching range and it was found that the post-punching resistance was on average 78{%} of the punching resistance. This paper reports the development of strand forces and slab displacements from the beginning of the tests, including the bond stresses developed at several stages of the loading process. It was observed that top reinforcement bars were capable of transmitting post-punching loads to the prestressing strands. Taking this into account and based on the load bath envisaged from the column to the slab, expressions for the vertical load capacities corresponding to the parts of the load path are presented and compared with the experimental results, showing their ability to predict both ultimate loads and modes of failure. Compared with other strengthening techniques, the one proposed here not only upgrades ultimate and serviceability behaviour but also adds post-punching resistance, which is a great advantage in the event of progressive collapse, since it may avoid the collapse of an entire structure, thus reducing the risk of material and human losses.

2010
Estudo Experimental do Punçoamento em Lajes de Betão Reforçado com Fibras de Aço, Paias, Joana, and Ramos António , Encontro Nacional Betão Estrutural 2010, Lisbon, (2010) Abstract

n/a

2000
Reparação e Reforço do Viaduto do Fonte Nova, Ramos, A. M. P. e Lúcio, V. , Encontro Nacional Betão Estrutural 2000, Porto, (2000) Abstract

n/a