Publications

Export 68 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Seismic Performance of Strengthened Slab-Column Connections in a Full-Scale Test, Ramos, António Pinho, Isufi Brisid, Marreiros Rui, Coronelli Dario, Netti Teresa, Lamperti Tornaghi Marco, Tsionis Georgios, and Muttoni Aurelio , Journal of Earthquake Engineering, Volume 27, Number 9, p.2299 – 2318, (2023) AbstractWebsite
n/a
2022
Deformation capacity evaluation for flat slab seismic design, Muttoni, A., Coronelli D., Lamperti Tornaghi M., Martinelli L., Pascu I. R., Pinho Ramos A., Tsionis G., Bamonte P., Isufi B., and Setiawan A. , Bulletin of Earthquake Engineering, Volume 20, Number 3, p.1619 – 1654, (2022) AbstractWebsite
n/a
Post-earthquake Performance of a Slab-Column Connection with Punching Shear Reinforcement, Isufi, Brisid, Ramos António Pinho, and Lúcio Válter , Journal of Earthquake Engineering, Volume 26, Number 3, p.1171 – 1193, (2022) AbstractWebsite
n/a
Slab–column connection punching and ductility improvement methods for seismic response of buildings with flat slabs, Isufi, Brisid, Almeida André, Marreiros Rui, Ramos António Pinho, and Lúcio Válter , Structural Concrete, Volume 23, Number 3, p.1385 – 1398, (2022) AbstractWebsite
n/a
2021
Eccentric punching strength of continuous flat slabs—Analysis of different experimental setups, Secci, Lorenzo, Lapi Massimo, Teoni Emanuele, Ramos Antonio Pinho, and Orlando Maurizio , Structural Concrete, Volume n/a, Number n/a, (2021) AbstractWebsite

Abstract This paper analyses the performance of the experimental setups to assess the punching strength of slab-column connections in continuous flat slabs under vertical and horizontal loading. In the last years, several experimental campaigns have been performed to investigate the punching strength of slab-column connections, but most of the experimental tests concerned isolated slab-column connections. Among the few setups aimed at reproducing the eccentric punching failure in continuous flat slabs, the setup developed at the NOVA School of Science and Technology in Lisbon is considered in this paper. The performance of the Lisbon setup is assessed through nonlinear finite element analyses, calibrated on experimental data, by comparison with numerical results of a theoretical continuous setup. Then, the performance of the isolated setups, used in many researches and at the base of some international codes, is also evaluated through the same finite element model. Numerical analyses highlight that the setup developed in Lisbon could provide reliable ultimate rotations of continuous flat slab connections, but it underestimates the punching strength. Despite isolated setups lead to similar results when compared with the Lisbon setup, the latter seems to provide a better representation of a continuous slab-column connection. The numerical analyses presented in this paper have been performed assuming monotonic lateral loading.

Eccentric punching strength of rc slab-column connections: A parametric numerical analysis based on the lisbon setup, Teoni, Emanuele, Secci Lorenzo, Lapi Massimo, Ramos Antonio Pinho, and Orlando Maurizio , fib Symposium, Volume 2021-June, p.1640 – 1647, (2021) Abstract
n/a
Seismic behaviour of slab-column connections with various punching shear enhancement methods, Isufi, Brisid, Marreiros Rui, Ramos António Pinho, and Lúcio Válter , fib Symposium, Volume 2021-June, p.978 – 986, (2021) Abstract
n/a
Testing of a full-scale flat slab building for gravity and lateral loads, Coronelli, Dario, Lamperti Tornaghi Marco, Martinelli Luca, Molina Francisco-Javier, Muttoni Aurelio, Pascu Ion Radu, Pegon Pierre, Peroni Marco, Ramos António Pinho, Tsionis Georgios, and Netti Teresa , Engineering Structures, Volume 243, (2021) AbstractWebsite
n/a
2020
Behavior of RC flat slabs with shear bolts under reversed horizontal cyclic loading, Almeida, André F. O., Ramos António P., Lúcio Válter, and Marreiros Rui , Structural Concrete, Volume 21, Number 2, p.501-516, (2020) AbstractWebsite

Abstract An experimental work on reinforced concrete flat slab specimens to test the efficiency of postinstalled bolts, as punching shear reinforcement in resisting vertical and cyclic horizontal loads, was conducted and is presented in this paper. The test protocol consisted in increasing horizontal drifts combined with constant vertical load until failure. Two different detailing solutions for the shear reinforcement were considered, one using a radial distribution around the column and another using a cross distribution, being the results compared with a previously tested reference specimen. The dimensions of the specimens were 4.25 x 1.85 x 0.15 m3. The test setup used for these tests was developed by the research team and simulates the boundary conditions with already recognized good results. Postinstalled steel bolts were proven to be an efficient solution for strengthening of existing structures, improving the structural behavior, and the punching resistance.

A hybrid method for the calibration of finite element models of punching-shear in R/C flat slabs, Lapi, Massimo, Secci Lorenzo, Teoni Emanuele, Ramos Antonio Pinho, and Orlando Maurizio , Computers & Structures, Volume 238, p.106323, (2020) AbstractWebsite

The paper is focused on the calibration of non-linear 3D finite element (FE) analyses to simulate punching failure of R/C flat slabs. The calibration procedure is developed with reference to the code ABAQUS, which is one of the most used computer codes in nonlinear modelling of R/C structures. Generally, the calibration of a nonlinear FE model is grounded on one test only, so its reliability could be limited. Here a hybrid method for the calibration of FE models of R/C flat slabs failing in punching is proposed and discussed. The method consists in calibrating input data by comparison of finite element model (FEM) results with both experimental data and predictions provided by analytical models. The procedure allows for a consistent calibration to be performed, valid for a wide range of longitudinal reinforcement ratios, from 0.5% to 2.00%, and concrete grades, from C20/25 to C50/60. A case study is investigated using the proposed method. Results show that calibrated values of the fracture energy lie between those provided by Model Code 1990 and Model Code 2010. From the new calibration procedure, a relationship between fracture energy and concrete compressive strength is also derived and blind analyses are performed to check its reliability against experimental results.

Post-earthquake Performance of a Slab-Column Connection with Punching Shear Reinforcement, Isufi, Brisid, Ramos António Pinho, and Lúcio Válter , Journal of Earthquake Engineering, p.1-23, (2020) AbstractWebsite
n/a
Punching of reinforced concrete flat slabs – Rational use of high strength concrete, Inácio, Micael M. G., Lapi Massimo, and Ramos Antonio Pinho , Engineering Structures, Volume 206, p.110194, (2020) AbstractWebsite

This paper deals with punching of reinforced high strength concrete (HSC) flat slabs. Despite the use of HSC increased significantly in the last years, the experimental research on punching behavior of HSC slabs is still limited. Furthermore, most of this past research adopted concrete compressive strength lower than 90 MPa. In a previous work by this research group three specimens with concrete compressive strength around 120 MPa and one with normal strength concrete (NSC) were tested. The present work represents the continuation of the previous activity and it is focused on the rational use of HSC. Four specimens with HSC and one of NSC were tested under monotonic vertical loading. The HSC was placed only in the slab-column connection region and it was limited to a thin layer in the compressive zone, in order to have a more economical and sustainable solution. This rational use of the HSC showed excellent results in terms of punching strength. Limiting the HSC to a thin layer in the compressive zone resulted in an almost equal punching strength to that obtained with the slab entirely casted in HSC.

Role of punching shear reinforcement in the seismic performance of flat slab frames, Isufi, B., Cismasiu I., Marreiros R., Pinho Ramos A., and Lúcio V. , Engineering Structures, Volume 207, (2020) AbstractWebsite
n/a
2019
Behavior of RC flat slabs with shear bolts under reversed horizontal cyclic loading, Almeida, André F. O., Ramos António P., Lúcio Válter, and Marreiros Rui , Structural Concrete, (2019) AbstractWebsite

Abstract An experimental work on reinforced concrete flat slab specimens to test the efficiency of postinstalled bolts, as punching shear reinforcement in resisting vertical and cyclic horizontal loads, was conducted and is presented in this paper. The test protocol consisted in increasing horizontal drifts combined with constant vertical load until failure. Two different detailing solutions for the shear reinforcement were considered, one using a radial distribution around the column and another using a cross distribution, being the results compared with a previously tested reference specimen. The dimensions of the specimens were 4.25 x 1.85 x 0.15 m3. The test setup used for these tests was developed by the research team and simulates the boundary conditions with already recognized good results. Postinstalled steel bolts were proven to be an efficient solution for strengthening of existing structures, improving the structural behavior, and the punching resistance.

Behavior of RC flat slabs with shear bolts under reversed horizontal cyclic loading, Almeida, André F. O., Ramos António P., Lúcio Válter, and Marreiros Rui , Structural Concrete, Volume n/a, Number n/a, (2019) AbstractWebsite

Abstract An experimental work on reinforced concrete flat slab specimens to test the efficiency of postinstalled bolts, as punching shear reinforcement in resisting vertical and cyclic horizontal loads, was conducted and is presented in this paper. The test protocol consisted in increasing horizontal drifts combined with constant vertical load until failure. Two different detailing solutions for the shear reinforcement were considered, one using a radial distribution around the column and another using a cross distribution, being the results compared with a previously tested reference specimen. The dimensions of the specimens were 4.25 x 1.85 x 0.15 m3. The test setup used for these tests was developed by the research team and simulates the boundary conditions with already recognized good results. Postinstalled steel bolts were proven to be an efficient solution for strengthening of existing structures, improving the structural behavior, and the punching resistance.

Flat slab strenghtening techniques against punching-shear, Lapi, M., Ramos A. P., and Orlando M. , Engineering Structures, Volume 180, p.160-180, (2019) AbstractWebsite

n/a

Resposta da ligação pilar-laje fungiforme sujeitas a ações horizontais cíclicas reforçadas com estribos, Almeida, André, Ramos António, Marreiros Rui, Lúcio Válter, and Faria Ricardo , Revista Portuguesa de Engenharia de Estruturas, Volume Série III, Issue 9, p.67-74, (2019)
Finite element analysis of punching shear of R/C slabs: A hybrid approach for model calibration, Secci, L., Teoni E., Lapi M., Orlando M., and a Ramos , Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, p.643-650, (2019) Abstract
n/a
Post-earthquake strength and deformation capacity of a flat slab specimen with shear studs, Isufi, B., Lúcio V., and Ramos A. P. , Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, p.1684-1691, (2019) Abstract
n/a
Reversed horizontal cyclic loading tests of flat slab specimens with studs as shear reinforcement, Isufi, Brisid, Ramos António Pinho, and Lúcio Válter , Structural Concrete, Volume 20, Number 1, p.330-347, (2019) AbstractWebsite

The results of a series of experiments on four reinforced concrete flat slab specimens with shear studs and a control specimen without any shear reinforcement are presented. The specimens were tested under constant gravity loads and reversed horizontal cyclic displacements. The main test variables were the applied gravity load and the number of perimeters of studs. One of the specimens was tested in two phases to study the postearthquake behavior. Results showed a considerable improvement of the deformation capacity of specimens with studs compared to the reference specimen. In agreement with previous research, increasing the applied gravity shear ratio resulted in a lower experimental drift capacity. It is shown that a better explanation of the observed ultimate drifts can be made by considering also the flexural capacity and the extent of shear reinforcement. The specimen tested in two phases exhibited considerable residual capacity, even after severe horizontal loading.

Static and seismic behaviour of R/C slabs with openings adjacent to columns, Lapi, M., Orlando M., Spinelli P., and a Ramos , Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, p.1795-1802, (2019) Abstract
n/a
2018
Resposta da ligação pilar-laje fungiforme sujeitas a ações horizontais cíclicas reforçadas com estribos, Almeida, André, Ramos António, Marreiros Rui, Lúcio Válter, and Faria Ricardo , Encontro Nacional Betão Estrutural 2018, 7-9 Nov., LNEC, Lisboa, (2018)
Experimental and theoretical evaluation of punching strength of steel fiber reinforced concrete slabs, Gouveia, Nuno D., Lapi Massimo, Orlando Maurizio, Faria Duarte M. V., and Ramos António M. P. , Structural Concrete, Volume 19, Issue 1, Number 1, p.217-229, (2018) AbstractWebsite

This paper deals with the experimental and theoretical evaluation of punching shear capacity of steel fiber reinforced concrete (SFRC) slab–column connections. Five experimental specimens with a thickness of 160 mm, different fiber volume contents (0, 1.0, and 1.5%) and different flexural reinforcement ratios (0.75 and 1.5%) have been tested. The experimental results were evaluated using a physical–mechanical model based on the critical shear crack theory (CSCT). The model has given a good approximation of experimental punching shear strengths. In general, tests have highlighted a significant increase in load and deformation capacity of fiber reinforced concrete slab–column connections in comparison with reinforced concrete connections.

Reversed horizontal cyclic loading tests of flat slab specimens with studs as shear reinforcement, Isufi, Brisid, Ramos António Pinho, and Lúcio Válter , Structural Concrete, (2018) AbstractWebsite

The results of a series of experiments on four reinforced concrete flat slab specimens with shear studs and a control specimen without any shear reinforcement are presented. The specimens were tested under constant gravity loads and reversed horizontal cyclic displacements. The main test variables were the applied gravity load and the number of perimeters of studs. One of the specimens was tested in two phases to study the postearthquake behavior. Results showed a considerable improvement of the deformation capacity of specimens with studs compared to the reference specimen. In agreement with previous research, increasing the applied gravity shear ratio resulted in a lower experimental drift capacity. It is shown that a better explanation of the observed ultimate drifts can be made by considering also the flexural capacity and the extent of shear reinforcement. The specimen tested in two phases exhibited considerable residual capacity, even after severe horizontal loading.

Performance assessment of flat slabs strengthened with a bonded reinforced-concrete overlay, Lapi, M., Fernandes H., Orlando M., a Ramos, and Lúcio V. , Magazine of Concrete Research, Volume 70, Number 9, p.433-451, (2018) AbstractWebsite
n/a