Publications

Export 19 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H [I] J K L M N O P Q R S T U V W X Y Z   [Show ALL]
I
Utilização de betão de elevada resistência em lajes fungiformes, Inácio, Micael, Almeida André, Lúcio Válter, and Ramos António , Revista Portuguesa de Engenharia de Estruturas, Volume III, Issue 5, p.27-36, (2017)
Punçoamento de lajes fungiformes reforçadas com parafusos – efeito da área e posicionamento da ancoragem, Inácio, Micael, Ramos António, Lúcio Válter, and Faria Duarte , Encontro Nacional Betão Estrutural 2012, Porto, p.1–8, (2012) Abstract

n/a

Punching of reinforced concrete flat slabs – Rational use of high strength concrete, Inácio, Micael M. G., Lapi Massimo, and Ramos Antonio Pinho , Engineering Structures, Volume 206, p.110194, (2020) AbstractWebsite

This paper deals with punching of reinforced high strength concrete (HSC) flat slabs. Despite the use of HSC increased significantly in the last years, the experimental research on punching behavior of HSC slabs is still limited. Furthermore, most of this past research adopted concrete compressive strength lower than 90 MPa. In a previous work by this research group three specimens with concrete compressive strength around 120 MPa and one with normal strength concrete (NSC) were tested. The present work represents the continuation of the previous activity and it is focused on the rational use of HSC. Four specimens with HSC and one of NSC were tested under monotonic vertical loading. The HSC was placed only in the slab-column connection region and it was limited to a thin layer in the compressive zone, in order to have a more economical and sustainable solution. This rational use of the HSC showed excellent results in terms of punching strength. Limiting the HSC to a thin layer in the compressive zone resulted in an almost equal punching strength to that obtained with the slab entirely casted in HSC.

Reforço de lajes fungiformes com armadura transversal pós-instalada usando diferentes técnicas de ancoragem, Inácio, Micael, Ramos António, and Faria Duarte , Revista Portuguesa de Engenharia de Estruturas, Volume III, Number 3, p.63–74, (2017) Abstract

n/a

Punching of high strength concrete flat slabs without shear reinforcement, Inácio, Micael M. G., Almeida André F. O., Faria Duarte M. V., Lúcio Válter J. G., and Ramos António Pinho , Engineering Structures, nov, Volume 103, p.275–284, (2015) AbstractWebsite

The experimental research carried out to study the punching behavior of high strength concrete (HSC) flat slabs is reported in the present work. Three flat slab specimens were cast using HSC and another one with normal strength concrete (NSC), to be used as a reference slab. The HSC mix presented a compressive strength of about 130MPa, with a basalt coarse aggregate. The tested specimens were square with 1650mm side and 125mm thickness. The longitudinal reinforcement ratio varied between 0.94{%} and 1.48{%}. The experimental results show that the use of HSC led to a significant load capacity increase when compared with the reference model made with NSC. Furthermore, the experimental results also indicated that as the longitudinal reinforcement ratio increased, the punching capacity also increased. The results obtained in this set of experimental tests and others collected from the literature were compared with the code provisions by EC2, MC2010 and ACI 318-11.

Strengthening of flat slabs with transverse reinforcement by introduction of steel bolts using different anchorage approaches, Inácio, Micael M. G., Pinho Ramos A., Faria Duarte M. V., and Lúcio Válter J. G. , Engineering Structures, nov, Volume 44, p.383–397, (2012) AbstractWebsite

This work presents an experimental study concerning the post-punching behaviour of flat slabs strengthened with a new technique based on post-tensioning with anchorages by bonding using an epoxy adhesive. This strengthening technique proved efficient with respect to ultimate and serviceability states. Five slab specimens were tested in the post-punching range and it was found that the post-punching resistance was on average 78{%} of the punching resistance. This paper reports the development of strand forces and slab displacements from the beginning of the tests, including the bond stresses developed at several stages of the loading process. It was observed that top reinforcement bars were capable of transmitting post-punching loads to the prestressing strands. Taking this into account and based on the load bath envisaged from the column to the slab, expressions for the vertical load capacities corresponding to the parts of the load path are presented and compared with the experimental results, showing their ability to predict both ultimate loads and modes of failure. Compared with other strengthening techniques, the one proposed here not only upgrades ultimate and serviceability behaviour but also adds post-punching resistance, which is a great advantage in the event of progressive collapse, since it may avoid the collapse of an entire structure, thus reducing the risk of material and human losses.

Seismic behaviour of slab-column connections with various punching shear enhancement methods, Isufi, Brisid, Marreiros Rui, Ramos António Pinho, and Lúcio Válter , fib Symposium, Volume 2021-June, p.978 – 986, (2021) Abstract
n/a
EXPERIMENTAL INVESTIGATION ON THE BEHAVIOUR OF HYBRID HPFRC FLAT SLABS, Isufi, Brisid, Marchão Carla, Marreiros Rui, and Ramos António Pinho , fib Symposium, p.1870 – 1879, (2022) Abstract
n/a
A review of tests on slab-column connections with advanced concrete materials, Isufi, Brisid, and Ramos António Pinho , Structures, Volume 32, p.849-860, (2021) AbstractWebsite

Advances in concrete technology during the last decades have resulted in the development of materials with enhanced mechanical properties, such as High Strength Concrete (HSC), Fibre Reinforced Concrete (FRC) and Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). The application of these materials in flat slabs, which are a popular structural solution in Reinforced Concrete (RC) buildings worldwide, has the potential of significantly reducing raw material consumption by enabling the design of slenderer and therefore lighter structures. However, flat slabs are susceptible to punching shear failure, which is a complex phenomenon that remains challenging, even though significant efforts have been made to experimentally study it. For advanced concrete materials (HSC, FRC and UHPFRC), the challenge is further accentuated by the continuous and rapid development of these materials. With the purpose of identifying and highlighting gaps in the published literature, a review of tests with HSC, FRC and UHPFRC slab-column connections in non-seismic and seismic loading applications is presented in this paper. It is shown that future research directions in this field include, among others, testing thicker slabs, HSC slabs with higher concrete compressive strength, HSC combined with FRC and several more cases related to seismic loading conditions.

Reversed horizontal cyclic loading tests of flat slab specimens with studs as shear reinforcement, Isufi, Brisid, Ramos António Pinho, and Lúcio Válter , Structural Concrete, (2018) AbstractWebsite

The results of a series of experiments on four reinforced concrete flat slab specimens with shear studs and a control specimen without any shear reinforcement are presented. The specimens were tested under constant gravity loads and reversed horizontal cyclic displacements. The main test variables were the applied gravity load and the number of perimeters of studs. One of the specimens was tested in two phases to study the postearthquake behavior. Results showed a considerable improvement of the deformation capacity of specimens with studs compared to the reference specimen. In agreement with previous research, increasing the applied gravity shear ratio resulted in a lower experimental drift capacity. It is shown that a better explanation of the observed ultimate drifts can be made by considering also the flexural capacity and the extent of shear reinforcement. The specimen tested in two phases exhibited considerable residual capacity, even after severe horizontal loading.

Post-earthquake Performance of a Slab-Column Connection with Punching Shear Reinforcement, Isufi, Brisid, Ramos António Pinho, and Lúcio Válter , Journal of Earthquake Engineering, Volume 26, Number 3, p.1171 – 1193, (2022) AbstractWebsite
n/a
Behavior of flat slabs with partial use of high-performance fiber reinforced concrete under monotonic vertical loading, Isufi, Brisid, Relvas João Pedro, Marchão Carla, and Ramos António Pinho , Engineering Structures, Volume 264, (2022) AbstractWebsite
n/a
Post-earthquake Performance of a Slab-Column Connection with Punching Shear Reinforcement, Isufi, Brisid, Ramos António Pinho, and Lúcio Válter , Journal of Earthquake Engineering, p.1-23, (2020) AbstractWebsite
n/a
Reversed horizontal cyclic loading tests of flat slab specimens with studs as shear reinforcement, Isufi, Brisid, Ramos António Pinho, and Lúcio Válter , Structural Concrete, Volume 20, Number 1, p.330-347, (2019) AbstractWebsite

The results of a series of experiments on four reinforced concrete flat slab specimens with shear studs and a control specimen without any shear reinforcement are presented. The specimens were tested under constant gravity loads and reversed horizontal cyclic displacements. The main test variables were the applied gravity load and the number of perimeters of studs. One of the specimens was tested in two phases to study the postearthquake behavior. Results showed a considerable improvement of the deformation capacity of specimens with studs compared to the reference specimen. In agreement with previous research, increasing the applied gravity shear ratio resulted in a lower experimental drift capacity. It is shown that a better explanation of the observed ultimate drifts can be made by considering also the flexural capacity and the extent of shear reinforcement. The specimen tested in two phases exhibited considerable residual capacity, even after severe horizontal loading.

Reversed lateral cyclic loading test of two flat slab specimens with punching shear stud reinforcement, Isufi, Brisid, Ramos António, and Lúcio Válter , ICCE 2017 International Conference of Civil Engineering, Tirana, Albania, p.9 pp, (2017)
Influence of flexural reinforcement on the seismic performance of flat slab – Column connections, Isufi, Brisid, Rossi Mariana, and Ramos António Pinho , Engineering Structures, Volume 242, (2021) AbstractWebsite
n/a
Slab–column connection punching and ductility improvement methods for seismic response of buildings with flat slabs, Isufi, Brisid, Almeida André, Marreiros Rui, Ramos António Pinho, and Lúcio Válter , Structural Concrete, Volume 23, Number 3, p.1385 – 1398, (2022) AbstractWebsite
n/a
Role of punching shear reinforcement in the seismic performance of flat slab frames, Isufi, B., Cismasiu I., Marreiros R., Pinho Ramos A., and Lúcio V. , Engineering Structures, Volume 207, (2020) AbstractWebsite
n/a
Post-earthquake strength and deformation capacity of a flat slab specimen with shear studs, Isufi, B., Lúcio V., and Ramos A. P. , Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, p.1684-1691, (2019) Abstract
n/a