Publications

Export 3 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Cardoso, António S., Nuno M. da Costa Guerra, Armando. N. Antão, and Manuel Matos Fernandes. "Cortinas tipo Berlim definitivas ancoradas em solos argilosos: a quest." Revista Portuguesa de Geotecnia. 100 (2004): 271-291. Abstract

n/a

Antão, Armando N., Nuno Costa M. da Guerra, Manuel Matos Fernandes, and António Cardoso. "Influence of tension cut-off on the stability of anchored concrete soldier-pile walls in clay." Canadian Geotechnical Journal. 45 (2008): 1036-1044. AbstractWebsite

A previous paper studied the stability of soldier-pile walls in clay under vertical loading using upper bound analyses. A classical Tresca yield criterion was assumed in that analysis. This paper extends that study by considering a tension truncated Tresca yield criterion in an upper bound numerical analysis of the problem. It shows that assuming zero tension soil strength has a significant influence on the values of the minimum soldier-pile resistance required to ensure stability.

Cardoso, António S., Nuno M. da Costa Guerra, Armando. N. Antão, and Manuel Matos Fernandes. "Limit analysis of anchored concrete soldier-pile walls in clay under vertical loading." Canadian Geotechnical Journal. 43 (2006): 516-530. AbstractWebsite

The vertical stability of anchored concrete soldier-pile walls is highly influenced by the complexity of the interaction between the different parts of the structure, i.e., wall, anchors, and supported soil mass. The problem is analyzed using upper bound limit analysis through published solutions and proposed closed-form equations. A comparison is made between these equations and numerical limit analyses. An estimate of the theoretical minimum pile resistance required to avoid excavation collapse is presented. Published finite element elastoplastic results are used for comparison.Key words: anchored retaining wall, concrete soldier-pile walls, vertical equilibrium, finite elements, limit analysis, soil-to-wall interface shear forces.