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ABSTRACT
In this paper, we analyze the worst-case complexity (WCC) of Nonlinear Stepsize
Control (NSC) algorithms for solving convex smooth unconstrained optimization
problems. We show that, to drive the norm of the gradient below some given posi-
tive ε, such methods take at mostO(ε−1) iterations, which shows that the complexity
bound for these methods is in parity with that of gradient descent methods for the
same class of problems. As NSC algorithm is a generalization of several methods
such as trust-region and adaptive cubic with regularization methods, such bound
holds automatically for these methods as well.
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1. Introduction

In this paper, we consider unconstrained optimization problems of the form

min
x∈Rn

f(x), (1)

where f : Rn → R is a convex continuously differentiable function. For this class
of optimization problems, we are interested in evaluating the worst-case complexity
(WCC) of the Nonlinear Stepsize Control (NSC) framework for driving the norm of
the gradient of the objective function below some given positive threshold. In other
words, we are interested in measuring the effort needed for finding a point x̄ ∈ Rn
such that ‖∇f(x̄)‖ ≤ ε.

Over the past couple of decades, there have been some interests in measuring the
WCC (in terms of the number of iterations, functions or gradient evaluations) of
various optimization algorithms for bringing the norm of the gradient of the objective
function (as a measure of criticality) below some given positive threshold. In the
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following we mostly review those works that measure the effort needed for finding
a point x̄ ∈ Rn such that ‖∇f(x̄)‖ ≤ ε. There are also numerous research studies
in the literature that establish complexity bounds for finding a point x̄ ∈ Rn such
that f(x̄)− f∗ ≤ ε, where f∗ is the optimal function value.

In the context of nonconvex smooth unconstrained optimization, a WCC bound
of O(ε−2) has been derived by Nesterov for gradient methods [16]; Cartis et al. [3] for
basic adaptive regularization with cubic (ARC); Vicente for direct-search methods [20];
Gratton et al. [12] for direct-search methods based on probabilistic descent; Konecnỳ
and Richtárik for restricted direct-search methods where no stepsize increases are al-
lowed [14]. An improved WCC bound of O(ε−1.5) has been derived by Nesterov and
Polyak for Cubic Newton Method [18]; Cartis et al. for ARC [3], and a derivative-free
version of it [5]; Curtis et al. for a novel trust-region algorithm [7]; Mart́ınez and Ray-
dan for Cubic-regularization counterpart of a variable norm trust-region method [15];
Birgin and Mart́ınez for quadratic regularization with a cubic descent condition [2].

When the objective function is convex, a WCC bound of O(ε−1) has been estab-
lished by Nesterov [16, 17] for gradient methods; Dodangeh and Vicente [8] for direct-
search methods. Nesterov has derived a bound of O(ε−0.5 log ε−1) for fast gradient
methods [17].

With regard to the WCC of trust-region methods for nonconvex smooth un-
constrained optimization problems, Gratton et al. [13] have shown a WCC bound
of O(ε−2). Garmanjani et al. [9] have obtained a bound of O(n2ε−2) for derivative-free
trust-region methods.

Some research works have developed the WCC analysis of the class of noncon-
vex nonsmooth optimization problems using a smoothing approach. A WCC bound
of O(ε−3 log ε−1) has been developed by Garmanjani and Vicente for direct search
methods of directional type [10]. Bian and Chen [1] have proposed a smoothing
quadratic regularization algorithm and have derived a WCC of O(ε−2) and O(ε−3) for
reaching an ε scaled stationary and ε-Clarke stationary point, respectively.

For problem (1), Cartis et al. [4], have established a WCC bound of O(ε−2)
(resp. O(ε−1)) for finding a point x̄ ∈ Rn such that ‖∇f(x̄)‖ ≤ ε (resp. f(x̄)− f∗ ≤ ε).
Similar bounds have been derived by Grapiglia et al. [11] for Nonlinear Stepsize Con-
trol (NSC) algorithms, which is a framework proposed by Toint [19] that generalizes
trust-region and regularization methods.

When the WCC analysis of deriving the norm of the gradient below some given
positive threshold is of interest, to the best of our knowledge, no bound of O(ε−1)
has been derived in the literature for NSC algorithm, trust-region methods, and ARC
algorithm when applied to the class of convex smooth unconstrained optimization
problems. Therefore, inspired by the above-mentioned studies, in particular [4, 16, 17],
we analyze the WCC of NSC methods for such class of optimization problems. We
show that the WCC bound of the NSC algorithm is of O(ε−1) for minimizing convex
objective functions. As a byproduct, since NCS framework is a generalization of several
methods such as trust-region methods and adaptive cubic with regularization [4], a
similar bound holds for those methods as well.

The rest of the paper is organized as follows. In Section 2 we present the NSC
algorithm and some preliminary results. The WCC analysis of the NSC is established
in Section 3. The paper ends in Section 4 with some conclusions.

Notation. In this paper, for simplicity we assume all the norms are Euclidean norm.
Notation | · | represents the cardinality of a set. By B = O(A) we mean B ≤ MA,
where constant M > 0 does not depend on the iteration counter. We represent the
global solution of (1) with x∗, and the corresponding optimal function value with f∗.
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2. The NSC framework and some preliminary results

In this section, we will use the NSC framework presented in [11], which was based
originally in [19]. Similarly to [11], for compact presentation of the NSC framework, we
will use auxiliary functions φ, ψ, χ : Rn → R, which satisfy the following assumptions:

Assumption 2.1. Let φ, ψ, χ be continuous non-negative functions, such that

min{φ(x), φ(x), χ(x)} = 0 =⇒ ‖∇f(x)‖ = 0.

Assumption 2.2. There exists κχ > 0 such that

χ(x) ≤ κχ for all x.

Hereafter, for the sake of conciseness we use the following notations:

φk = φ(xk), ψk = ψ(xk), and χk = χ(xk).

Algorithm 2.1 (NSC Algorithm [11, 19]).
Step 0 Given x0 ∈ Rn, H0 ∈ Rn×n, δ1 > 0, 0 < γ1 < γ2 < γ3 < 1 < γ4, and

0 < η1 ≤ η2 < 1, set k = 0.
Step 1 Choose a model mk(xk + s) : Rn → R such that

mk(xk) = f(xk), and f(xk + s)−mk(xk + s) ≤ κm‖s‖2, ∀s ∈ Rn, (2)

for some constant κm > 0. Then compute a step sk ∈ Rn such that

‖sk‖ ≤ κs∆(δk, χk), whenever δk ≤ κδχk, (3)

for some constants κs ≥ 1 and κδ > 0, and

mk(xk)−mk(xk + sk) ≥ κcψk min

{
φk

1 + ‖Hk‖
,∆(δk, χk)

}
, (4)

for some constant κc ∈ (0, 1), where ∆(δk, χk) = δαkχ
β
k with powers α ∈ (0, 1]

and β ∈ [0, 1].
Step 2 Compute the ratio

ρk =
f(xk)− f(xk + sk)

m(xk)−m(xk + sk)
. (5)

If ρk ≥ η1 then xk+1 = xk + sk; else, xk+1 = xk, and update δk+1 as follows

δk+1 ∈

 [γ1δk, γ2δk) if ρk < η1,
[γ2δk, γ3δk] if ρk ∈ [η1, η2),
[δk, γ4δk] if ρk ≥ η2.

(6)

Step 3 Compute Hk+1 ∈ Rn×n, set k = k + 1 and go to Step 1.
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We let S be the set of all successful (i.e. ρk ≥ η1 in (6)) or very successful (i.e.
ρk ≥ η2 in (6)) iterations:

S = {k ≥ 0 : iteration k is successful or very successful}, (7)

and S` be the set of all such iterations up to iteration `, i.e.,

S` = {k ≤ ` : k ∈ S}. (8)

We also denote the set of all unsuccessful iterations (i.e. ρk < η1 in (6)) with U and
the ones up to iteration ` with U`. Henceforth, we will call all successful and very
successful iterations as successful iterations.

The following assumptions will be required in the continuation.

Assumption 2.3. The objective function f is continuously differentiable and bounded
from below on Rn.

Assumption 2.4. The gradient of the function f is Lipschitz continuous with con-
stant Lg.

Assumption 2.5. There is a constant κH > 0 such that ‖Hk‖ ≤ κH , for all k ≥ 0.

Assumption 2.6. The powers α and β satisfy α+ β = 1.

Assumption 2.7. For all k, φk ≥ χk and ψk ≥ χk.

The following lemma, which is a slightly modified version of Lemma 2.2 in [11], will
be central in establishing the WCC results in this manuscript.

Lemma 2.1. Let Assumptions 2.1–2.5 hold. Also, let ε ∈ (0, 1] such that

min
{
χαk , χ

−β
k φk, χ

−β
k ψk

}1/α
> ε, for all k = 0, · · · , j, where j ≤ +∞. Then,

δk ≥ C1ε, (9)

where C1 = γ1/κ
1/α
HB and κHB = max

{
κmκ2

s

(1−η2)κc ,
1+κH
καδ

, 1 + κH

}
.

Remark 1. In [11], the inequality (9) is of the form

δk ≥ min{δ0, C1}ε. (10)

Here, without loss of generality, we assume that δ0 chosen in a way that δ0 ≥ C1.
Thus, inequality (10) becomes of the form (9).

Before moving to the next section, we state a result that shows that the number
of unsuccessful iterations is a function of the number of successful iterations. Hence,
in order to count the total number of iterations, it suffices to count the number of
successful iterations. This is a typical approach that is taken for establishing the WCC
analysis of those class of methods for which iterations are of two types or more. The
proof is similar to the corresponding results in [3, 13, 20], but we bring it for the sake
of completeness.
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Theorem 2.2. Given any ε ∈ (0, 1). Let Assumptions 2.1–2.5 hold. Let

min{χk, χ
(1−β)/α
k } > ε for k = 0, 1, · · · , `. Then the set of all unsuccessful iterations

up to iteration ` satisfies

|U`| ≤ − logγ2(γ3)|S`|+ logγ2
C1ε

∆0
,

for having min{χ`+1, χ
(1−β)/α
`+1 } ≤ ε.

Proof. If k ∈ S` then δk+1 ≤ γ4δk, and if k ∈ U` then δk+1 ≤ γ2δk. Thus by induction
we have

δ` ≤ γ
|U`|
2 γ

|S`|
4 ∆0.

Hence, by taking logarithm and considering that log γ2 < 0 , we have

|U`| ≤ − logγ2(γ4)|S`|+ logγ2
δ`
δ0
.

Now, since δ` ≥ C1ε in view of Lemma 2.1, we thus derive the desired upper bound
on the number of unsuccessful iterations.

3. WCC of NSC framework for minimizing convex functions

In this section we analyze the WCC of the NSC framework for minimization of convex
smooth unconstrained optimization problems.

Similarly to [11], hereafter we will assume that the following condition holds for the
class of problems under consideration.

Assumption 3.1. There exists κd > 0 such that

Dk ≡ f(x`)− f∗ ≤ κd min{χαk , χ
−β
k φk, χ

−β
k ψk}1/α,

for all k.

Assumption 3.2. We assume that function f is convex and there exists R ≥ 1 such
that {x|f(x) ≤ f(x0)} ⊆ {x|‖x− x∗‖ ≤ R}

The following lemma shows that, under Assumptions 2.3 and 3.2, and by setting
φ(x) = ψ(x) = χ(x) = ∇f(x), Assumption 3.1 hold.

Lemma 3.1. [4, Lemma 2.4] Let Assumptions 2.3 and 3.2 hold. Then, for any
iteration xk produced by Algorithm 2.1, we have

f(xk)− f(x∗) ≤ R‖∇f(xk)‖.

In [11], the authors have shown (cf. Theorem 3.3 in [11]) that the NSC framework
takes at most O(ε−2) iterations for bringing the norm of the gradient below some ε > 0.
In this section, we will show a bound of O(ε−1) could be established for NSC frame-
work, which is in parity with that of gradient descent methods for the problem (1).
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Since the NSC framework is a generalization of several methods, as a byproduct sim-
ilar upper bound is automatically established for those methods as well. We will need
the following key lemma, which could be proved similarly to the Theorem 2.4 in [11].

Lemma 3.2. Let Assumptions 2.1–2.6, and 3.1 hold. Then, by applying Algo-
rithm 2.1, we have

D` ≤
1

|S`|η1C2
, ∀` ≥ 0,

where

C2 =
1

2
κcc2 min

{
c2

1 + κH
,
cβ1
καG

}
,

and

κG = max

{
D0

δ0
, γ−11 κdκ

1/α
HB

}
.

Now, we are ready to present the main result of this paper. In the continuation,
without loss of generality, we assume that N ≥ 1 can be chosen such that |SN | ≥ 2.

Theorem 3.3. Let Assumptions 2.1–2.7, and 3.1 hold. Then, for any ε ∈ (0, 1),

the NSC algorithm takes at most O(ε−max{1, α

1−β }) successful iterations to find a point
x̄ ∈ Rn such that min{χ(x̄), χ(x̄)(1−β)/α} ≤ ε.

Proof. Let 0 ≤ ` < N be chosen in a way that |S`| ≥ 1, and |SN | ≥ 2|S`|. In view of
Lemma 3.2, we have

f(x`)− f∗ = D` ≤
1

|S`|η1C2
, ∀` ≥ 0.

Hence, in view of (4) and (5), we have

1

|S`|η1C2
≥ f(x`)− f∗

≥ f(xN+1)− f∗ + f(x`+1)− f(xN+1)

= f(xN+1)− f∗ +

N∑
k=`+1
k∈S

f(xk)− f(xk+1)

≥ f(xN+1)− f∗ +
η1κc

2

N∑
k=`+1
k∈S

‖ψk‖min

{
‖φk‖

1 + κH
, δαkχ

β
k

}

≥ η1
2
|S`| min

0≤k≤N
k∈S

{
‖ψk‖min

{
‖φk‖

1 + κH
, δαkχ

β
k

}}
.
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Thus, there exists 1 ≤ k0 ≤ N such that

2

|S`|2η21C2
≥ ‖ψk0‖min

{
‖φk0‖

1 + κH
, δαk0χ

β
k0

}
, (11)

which, in view of Assumption 2.7, leads to

2

|S`|2η21C2
≥ χk0 min

{
χk0

1 + κH
, δαk0χ

β
k0

}
. (12)

Now, we consider two cases:

a) If
χk0

1+κH
≤ δαk0χ

β
k0

, then (12) leads to

2(1 + κH)

|S`|2η21C2
≥ χ2

k0 . (13)

Hence, in order to drive χk0 ≤ ε, for some 0 ≤ k0 ≤ N , Algorithm 2.1 takes at most

|SN | = 2|S`| = 2

⌈√
2(1 + κH)

η1
√
C2

ε−1

⌉

successful iterations.
b) If

χk0
1+κH

≥ δαk0χ
β
k0

, then we have χk0 ≥
(
(1 + κH)δαk0

) 1

1−β , which in view of (12) we
obtain

2

|SN |2η21C2
≥ δαk0χ

1+β
k0

≥ δαk0
(
(1 + κH)δαk0

) 1+β

1−β

≥ (1 + κH)
1+β

1−β δ
2α

1−β
k0

.

Thus, we have (
2

|S`|2η21C2(1 + κH)
1+β

1−β

) 1−β
2α

≥ δk0 . (14)

Hence, in order to obtain δk0 < C1ε, for some 0 ≤ k0 ≤ N , Algorithm 2.1 takes at
most

|SN | = 2|S`| = 2


√

2

C
α

1−β
1 η1

√
C2(1 + κH)

1+β

1−β

ε−
α

1−β


successful iterations. On the other hand, Lemma 2.1 implies that if δk0 < C1ε

then, min
{
χαk1 , χ

−β
k1
φk1 , χ

−β
k1
ψk1

}1/α
≤ ε for some 0 ≤ k1 ≤ N , which in view of

Assumption 2.7 leads to min
{
χk1 , χ

α/(1−β)
k1

}
≤ ε for some 0 ≤ k1 ≤ N .
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Therefore, by combining both cases, the number of successful iterations for finding a

point x̄ ∈ Rn such that min
{
χ(x̄), χ(x̄)α/(1−β)

}
≤ ε is of O(ε−max{1, α

1−β }), and the
proof is completed.

The following corollary is readily resulted from Theorem 3.3.

Corollary 3.4. Let Assumptions 2.1–2.6, and 3.2 hold. Let ε ∈ (0, 1) and φ(x) =
ψ(x) = χ(x) = ‖∇f(x)‖. Then, the NSC framework takes at most O(ε−1) iterations
for driving the norm of gradient below ε.

Proof. In view of Lemma 3.1, Assumption 3.1 holds. Now, by applying Theorem 3.3,
the proof is completed.

As it has been mentioned in [19] (see also [11]), the following methods are resulted
from NSC framework:

• the classical trust-region method [6], by setting

mk(xk + s) := f(xk) +∇f(xk)
>s+

1

2
s>Hks,

φ(x) = ψ(x) = χ(x) = ‖∇f(x)‖,

δk = ∆k, α = 1, β = 0,

Thus, in view of Corollary 3.4, the WCC of this class of method for deriving the
norm of the gradient below some given positive threshold is of O(ε−1).
• the ARC algorithm [4], by setting

mk(xk + s) := f(xk) +∇f(xk)
>s+

1

2
s>Bks+

1

3
σk‖s‖3,

φ(x) = ψ(x) = χ(x) = ‖∇f(x)‖,

δk =
1

σk
, α =

1

2
, β =

1

2
.

Thus in view of Corollary 3.4, the WCC bound of O(ε−1) is established for the
ARC algorithm too.
• the nonlinear trust-region method [19], by setting

mk(xk + s) := f(xk) +∇f(xk)
>s+

1

2
s>Hks,

φ(x) = ψ(x) = χ(x) = ‖∇f(x)‖,
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α =
1

2
, β =

1

2
.

Thus, in view of Corollary 3.4 the WCC bound of O(ε−1) is also established for
this method when deriving the norm of the gradient below some given positive
threshold is required.

Finally, we should add that there are other methods which are covered by the NSC
framework (see [11] and the references therein). For those methods the WCC bound
of O(ε−1) is easily derived as well.

4. Conclusions

In this paper, we analyzed the WCC of NSC framework for minimization of convex
smooth unconstrained problems. We showed that, in order to drive the norm of the
gradient of the objective function below some predefined positive ε, the required num-
ber of iterations this framework takes is at most of O(ε−1). As the NSC framework is
a generalization of several methods, such bound is automatically established for those
methods. To the best of our knowledge, it is for the first time that is shown that
these class of methods enjoys the same WCC bound as that of the gradient descent
methods. We should add that the bound O(ε−1) for both NSC and ARC, when the
goal is to drive the norm of the gradient below ε, has not been previously established
in the literature.
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