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2 A. L. Custódio, J. F. A. Madeira

1 Introduction

When optimizing in engineering it is common the presence of additional challenges.
Functions evaluated by conducting large numerical simulations are often associ-
ated with the absence of analytical expressions for derivatives, making numerical
approximations impractical due to the large computational cost involved. There
are also cases where the function to be optimized is nonsmooth, which prevents
the use of derivative-based techniques. Several times there is more than one ob-
jective in this optimization process, generally conflicting, which motivates the use
of multiobjective derivative-free algorithms.

Solution techniques depend on the moment where the decision maker estab-
lishes preferences relating the different objectives to optimize [22]. Methods could
be classified as having an a prior articulation of preferences, when objectives are
aggregated into a single objective function which is then optimized, generating
a single point as solution to the multiobjective optimization problem. Changes
in preferences will cause changes in the aggregating function and the optimiza-
tion procedure will need to be reapplied. Additionally, it is well known that this
procedure can fail in capturing nonconvex parts of the Pareto front [12].

Another approach consists in a posteriori articulation of preferences. The algo-
rithms belonging to this class attempt to capture the whole Pareto front of the
problem, never establishing preferences among the several objectives. We will focus
on this last class of methods, providing to the decision maker a set of alternative
solutions, such that selecting one instead of another will always compromise the
quality of at least one of the objectives (while improving, at least, another). Typ-
ical approaches include evolutionary algorithms, like is the case of NSGA-II [15],
CMA-ES [17], or MOPSO [7]. These are random algorithms, for which general con-
vergence proofs have not yet been established. Different classes, presenting well-
established convergence analysis, include trust-region interpolation based methods,
until now only developed for biobjective optimization with algorithm BOTR [25],
and direct search methods, like is the case of DFMO [21], BIMADS [4] or Multi-
MADS [5]. A review on some classes of multiobjective derivative-free optimization
methods can be found in [9].

Direct MultiSearch (DMS) [11] is a well-established direct search method,
based on a posteriori articulation of preferences. In [11] convergence results were
derived, stating that at least one limit point of the sequence of iterates generated
by DMS lies in a stationary form of a Pareto front. Intensive numerical testing
showed its competitiveness with other state-of-art algorithms, like is the case of
NSGA-II [15] or BIMADS [4]. As result of its good performance, DMS continues
to be used for benchmark new derivative-free multiobjective optimization algo-
rithms [21].

Nevertheless, as mentioned in [14], the optimization of multimodal functions
raises issues regarding the convergence to the true Pareto front of a problem (the
global Pareto front). In fact, this question is not specific to multiobjective opti-
mization, since global optimization is an active field of research for single objective
optimization, both in presence or absence of derivatives.

Recently, in the context of single objective derivative-free optimization, the al-
gorithm GLODS [10] was proposed as a strategy for identifying global minimizers.
GLODS is a directional direct search method [8] equipped with a clever multistart

strategy. The different searches initialized with the multistart strategy are not all
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conducted until the end. Rather, when points generated by different searches start
to be close to each other, GLODS will merge searches, giving up on the ones that
are not promising. This procedure showed to be competitive when compared with
state-of-art solvers in global derivative-free optimization. Moreover, numerical ex-
periments showed its capability of identifying all the local (and global) optimums
of the problem, a distinguishing feature from the remaining global derivative-free
optimization solvers.

The goal of the present work is to address the computation of the global Pareto
front of the problem:

min F (x) ≡ (f1(x), . . . , fm(x))

s.t. x ∈ Ω ⊂ Rn,
(1)

where F : Rn → Rm ∪ {(+∞, . . . ,+∞)}, n,m ≥ 1 represents a real-extended multi-
valued function, and the compact set Ω ⊂ Rn denotes the feasible region of the
problem. Additionally, we would like to identify local Pareto fronts of the problem,
when they exist. We assume that derivatives are not available for use, neither can
they be numerically approximated.

Constraints will be addressed through an extreme barrier approach, meaning
that only feasible points will be evaluated. In a context of expensive function evalu-
ation, this avoids unnecessary computations. We also note that when the objective
function represents a real application, the evaluation of infeasible points could be
impossible, corresponding to points with no physical meaning. The extreme barrier
approach will be implemented through the use of a barrier function:

FΩ(x) =

{
F (x) , if x ∈ Ω,
(+∞, . . . ,+∞) , otherwise.

(2)

Using the concept of Pareto dominance, we will generalize the approach fol-
lowed by GLODS to multiobjective directional direct search, conferring a global
flavor to DMS. In Section 2 we will describe the proposed algorithmic structure.
The theoretical results associated with the new algorithm will be presented in
Section 3, and Section 4 illustrates the corresponding global features. We end in
Section 5 with some conclusions.

2 MultiGLODS: Global and Local Multiobjective Optimization using

Direct Search

In multiobjective optimization, where the objective function presents several com-
ponents, the concept of dominance is used for comparing pairs of points. We say
that point x dominates point y, and represent it by x ≺ y, if the following condition
is satisfied:

x ≺ y ⇔ FΩ(y)− FΩ(x) ∈ Rm+ \ {0}. (3)

It is now possible to define what is a solution for problem 1.

Definition 1 A point x∗ ∈ Ω is said to be a global Pareto minimizer of F in Ω if
@y ∈ Ω such that y ≺ x∗. If there exists a neighborhood N (x∗) of x∗ such that the
previous property holds in Ω ∩ N (x∗), then x∗ is called a local Pareto minimizer
of F .
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In general, a problem will have several points satisfying Definition 1. The set
of all these points will define a Pareto front for the problem (global or local,
depending on the type of condition satisfied).

Like any other directional direct search method, each iteration of MultiGLODS
is organized in a search step and a poll step. The convergence properties of the
algorithm are a direct consequence of the poll step. In the context of global op-
timization, the search step is mainly responsible for spreading the search in the
feasible region, ensuring that promising subregions will be located. The quality of
the computed Pareto front (as being local or global to the problem) is, in general,
a consequence of the search step.

The algorithm keeps a list of feasible points, Lk, which could be updated both
at the search and the poll steps. Points are stored in this list as tuples (x;αx; rx; ix),
where x represents the point to be stored, αx a step size, rx a comparison radius
and ix a binary indicator, which takes the value 1 if the point is active and 0,
otherwise.

Similarly to GLODS [10], a point is added to the list as active or inactive. A
point is added as active if it is far from all the points already stored, meaning
that it is located in a part of the feasible region not yet explored (see lines 1
and 2 in Algorithm 2.2). Radius ry is used in point comparisons, as a measure of
closeness (see lines 1 and 3 in Algorithm 2.2). Figure 1 illustrates this situation for
a biojective optimization problem. On the left we have a plot in the variables space,
where the painted box represents the feasible region. On the right we have a plot in
the objective functions space. Point L1 is already in the list. Point P1 will be added
to the list as an active point, since it is not comparable with L1 (the comparison
radius of L1 corresponds to the blue circle). This is a distinguishing feature of
MultiGLODS, when compared with DMS. In DMS, since point L1 dominates P1,
point P1 would not be added to the list, regardless of being located in a different
part of the feasible region.

Alternatively, points close to points already stored, which dominate active
points are also added to the list. If the point dominates an active point and it is
not dominated by any other close point already in the list, it will be added to the
list as active (see lines 5 and 6 in Algorithm 2.2). This situation is represented in
Figure 2. In this case, point P2 is comparable with L1, an active point already in
the list, and dominates it. This means that P2 will be added to the list as an active
point and L1 will remain in the list, but it will change its status to inactive. An
active point already in the list could change its status to inactive, if it is dominated
by a new point added to the list (see line 4 in Algorithm 2.2). An inactive point
will never change its status to active.

A point can also be added to the list as inactive when it dominates an active
point, but it is dominated by another point (see line 6 in Algorithm 2.2). In Figure 3
the blue point is comparable both with points A5 and B2, dominates the active
point B2, but it is dominated by A5. This means that the blue point will be added
to the list as an inactive point and point B2 will change its status to inactive. This
procedure motivates the definition of merging iteration. The sequences of points
indexed by Ai and Bi have been merged.

The possibility of adding points to the list that are dominated by other points
already in the list, since they are located in a different part of the feasible region is
one of the key features that distinguishes MultiGLODS from DMS. Adding inac-
tive points to the list, or keeping inactive points in the list when they change the
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Fig. 1: Adding active points to the list in MultiGLODS: points far from all the
points already stored.

Fig. 2: Adding active points to the list in MultiGLODS: points close to some points
already stored, dominating active points and being nondominated.
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Fig. 3: Adding inactive points to the list in MultiGLODS: merging searches.

corresponding status, is another one. This will allow the algorithm to track which
parts of the feasible region have already been explored, avoiding unnecessary ini-
tializations of new searches, unless that there is a clear evidence of an improvement
in the corresponding region (when a new point that dominates an active point is
found).

The relevance of the active indicator ix and the step size parameter αx respects
to the poll step of the algorithm. Each time that this step is performed, one active
point x will be selected as a poll center and a local search around it will be
conducted. This local search corresponds to the test of directions belonging to a
positive spanning set D [13], scaled by the step size parameter αx. As it will be
clear in the convergence analysis (see Section 3), the set of poll directions is not
required to positively span Rn (although for coherency with the smooth case we
will write it so in the algorithm below), and it is not necessarily drawn from a
finite set of directions. Opportunistic or complete approaches can be used in the
polling procedure. In the first case, the procedure will stop once that a new active
point is added to the list. In the latter, all poll directions will be tested.

Different strategies can be used for generating new points at the search step.
Random sampling [26], Latin hypercube sampling [23], Sobol sequences [19], Hal-
ton sequences [19] or 2n-Centers [10] are some possibilities. The major requisite
is using an asymptotically dense sequence in a compact set. Additionally, points
could be required to belong to an implicit mesh, depending on the globalization
strategy considered (see Section 3).

As result of the two steps described, each iteration is classified as successful,
unsuccessful, or merging. Successful iterations correspond to at least one active
point added to the list. In this case, the corresponding step size parameter could
be maintained or increased. Unsuccessful iterations occur when the list has no
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changes. In this case, it is mandatory that the step size corresponding to the poll
center would be decreased. Adding only inactive points to the list corresponds to
a merging iteration. In this case step size parameters are kept unchanged.

Comparison radius should always allow the comparison between the poll points
and the corresponding poll center. Thus, if after a successful iteration, as a con-
sequence of updating the step size parameter this property does not hold, the
comparison radius will be increased to an adequate value.

At each iteration, if the search step fails in adding a new active point to the
list of points, the poll step needs to be performed. The search step does not need
to be executed at every iteration (when it is not conducted, it will be considered
as a failure). Different strategies could be implemented to decide if the search step
should be performed or not. Some possibilities could consider the frequency of
unsuccessful iterations or the size of the step size parameters for active points.

A detailed description of the method proposed can be found in Algorithm 2.1.

Algorithm 2.1: MultiGLODS: Global and Local Multiobjective Optimiza-
tion using Direct Search

Initialization
Let D be a (possibly infinite) set of positive spanning sets, such that
∀d ∈ D ∈ D, 0 < dmin ≤ ‖d‖ ≤ dmax. Choose α0 > 0, r0 ≥ dmaxα0 > 0,
0 < β1 ≤ β2 < 1, and γ ≥ 1. Set L0 = ∅.

For k = 0, 1, 2, . . .

1. Search step: Compute a finite set of distinct points
Ak = {(xj ; 0; 0; 0) : FΩ(xj) < (+∞, . . . ,+∞)} (all xj should be in a mesh if
ρ̄(·) ≡ 0, see Section 3.1). Call Lk+1 = add(Lk,Ak) to possibly add some
new points in Ak to Lk. If k = 0, set L0 = L1 and go to the poll step.
Otherwise, if there is a new active point in Lk+1 declare the iteration
(and the search step) as successful and skip the poll step.

2. Poll step: Order the list Lk and select an active point (x;αx; rx; 1) ∈ Lk
as the current iterate, corresponding step size parameter and comparison
radius (thus setting (xk;αk; rk; ik) = (x;αx; rx; 1)).
Choose a positive spanning set Dk from the set D. Compute the set of
poll points
Pk = {(xk + αkd;αk;αk‖d‖; 0) : d ∈ Dk ∧ FΩ(xk + αkd) < (+∞, . . . ,+∞)}.
Call Lk+1 = add(Lk,Pk) to possibly add some new points in Pk to Lk. If
there is a new active point in Lk+1 declare the iteration (and the poll
step) as successful. If no new point was added to Lk declare the iteration
(and the poll step) as unsuccessful. Otherwise declare the iteration (and
the poll step) as merging.

3. Step size parameter and radius update: If the iteration was successful
then maintain or increase the corresponding step size parameters: αnew
∈ [α, γα] and replace all the new points (x;αx; rx; 1) in Lk+1 by
(x;αnew; dmaxαnew; 1), if dmaxαnew > rx, or by (x;αnew; rx; 1), when
dmaxαnew ≤ rx.
If the iteration was unsuccessful then decrease the corresponding step size
parameter: αnew ∈ [β1αk, β2αk] and replace the poll center (xk;αk; rk; 1)
in Lk+1 by (xk;αnew; rk; 1).
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Using (3), let us denote by Dom(x) the subset of Rm corresponding to the
images of the set of points dominated by x. Algorithm 2.2 corresponds to the
procedure used both in the search and poll steps to add new points to the list.

Algorithm 2.2: L1 = add (L1, L2)
Procedure for adding new points, stored in L2, to the current list, L1.

forall (x;αx; rx; 0) ∈ L2 do

1 if min
y∈L1

(‖x− y‖ − ry) > 0 then

2 L1 = L1 ∪ {(x;α0; r0; 1)}
else

if x /∈ L1 then

set αa = 0, ra = 0, idom = 0 and pdom = 0
forall (y;αy; ry; iy) ∈ L1 do

3 if ‖x− y‖ − ry ≤ 0 then

if F (y) ∈ Dom(x) + ρ̄(αy) then

idom = idom + iy
4 iy = 0

if αy > αa then

αa = αy
ra = ry

end

else

if F (x) ∈ Dom(y) then

pdom = 1
end

end

end

end

if pdom = 0 then

5 ix = 1
end

if αa = 0 then

αa = α0

ra = r0

end

6 if (idom > 0 ∨ (pdom = 0 ∧ ρ̄(.) ≡ 0)) then

if αx = 0 then

7 L1 = L1 ∪ {(x;αa; ra; ix)}
else

8 L1 = L1 ∪ {(x;αx; rx; ix)}
end

end

end

end

end

Function ρ̄(.) is related to the type of globalization strategy considered in the
algorithm (see Section 3). If globalization is based on the use of integer lattices, it
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represents the constant zero function. When globalization results from requiring
sufficient decrease for accepting new points, ρ̄(.) ≡ ρ(.) will be a forcing function
ρ : (0,+∞) → (0,+∞), i.e., a continuous and nondecreasing function, satisfying
ρ(t)/t → 0 when t ↓ 0 (see [20]). Typical examples of forcing functions are ρ(t) =
t1+a, for a > 0.

Considering integer lattices as globalization strategy allows an additional situ-
ation where points are added to the list as active. This occurs when the new point
is comparable with other points already stored in the list (independently of being
active or inactive points) and it is not dominated by any of them (see line 6 in
Algorithm 2.2).

When adding points to the list, the corresponding step size parameters and
comparison radius need to be defined. Similarly to GLODS [10], if the point was
not comparable with any of the points already in the list, meaning that it belongs
to a part of the feasible region not yet explored, the algorithm uses the initialization
values (line numbered as 2 in Algorithm 2.2). Otherwise, if the point was generated
at the poll step, both parameters will be equal to the ones of the poll center (line
numbered as 8 in Algorithm 2.2). When the new point x was generated in the
search step, it inherits the parameters of the point y, presenting the largest step
size, comparable with it, for which F (y) ∈ Dom(x) + ρ̄(αy) (line numbered as 7 in
Algorithm 2.2).

3 Convergence analysis

The convergence analysis of MultiGLODS relies on the properties of the poll step,
which begins with the choice of a poll center from the active points stored in the
list. Merging iterations in MultiGLODS correspond to situations where no new
active points are added to the list and some stored active points change their status
to inactive. Thus, it is crucial to ensure that at each iteration of MultiGLODS there
is always an active point in the list that could be selected as poll center. This is
a major difference in what respects to DMS, where all the points kept in the list
are candidates to poll centers.

Proposition 1 At the end of each iteration of Algorithm 2.1, all elements of the set

of nondominated points in the list are active.

Proof Suppose not. Let z be one inactive point of the set of nondominated points
in the list, computed at the end of the current iteration. Two situations need to
be analyzed:

– z could have been added as inactive to the list (and to the set of nondominated
points), during the current iteration;

– z was an active point already in the list (and in the set of nondominated points),
but has changed its status to inactive during the current iteration.

In the latter situation, there should have been a point x such that F (z) ∈
Dom(x) + ρ̄(αz) ⊆ Dom(x). Since z was active, x will be added to the list of
points, contradicting the fact of z being nondominated.

In the former situation, there should have been y already in the list, such that
F (z) ∈ Dom(y), again contradicting the fact of z being nondominated.
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Similarly to any other directional direct search method, the convergence anal-
ysis of MultiGLODS starts by establishing the existence of a subsequence of step
size parameters that converges to zero. This will allow us to ensure the existence of
at least one limit point for the sequence of iterates generated by the algorithm. The
stationarity properties of this limit point will be further analyzed in Section 3.4.

Two globalization strategies can be adopted in order to ensure the existence
of a subsequence of step size parameters with the above mentioned property. The
first considers that all points generated by the algorithm lie in an implicit mesh
(corresponding to an integer lattice) and will be analyzed in Section 3.1. In this
case ρ̄(.) ≡ 0. Another possibility is to exchange the freedom in the type of points
generated by the algorithm by a more strict condition when accepting new points.
In this case ρ̄(.) corresponds to a forcing function (see Section 3.2).

For establishing the results, we will need the following two assumptions.

Assumption 31 The set Ω ⊂ Rn is compact.

Assumption 32 The function F is lower bounded in Ω ⊂ Rn.

3.1 Using integer lattices

The type of positive spanning sets that can be used by the algorithm depend
on the level of smoothness present in the objective function. If the function is
continuously differentiable, a finite set of directions with appropriate integrality
requirements will suffice [2,20].

Assumption 33 The set D = D of positive spanning sets is finite and the elements

of D are of the form Gz̄j , j = 1, . . . , |D|, where G ∈ Rn×n is a nonsingular matrix

and each z̄j is a vector in Zn.

In the presence of nonsmooth functions, the integrality requirements should be
respected but additionally the union of the sets of directions (after normalization)
considered through the iterations needs to be asymptotically dense in the unit
sphere [3].

Assumption 34 Let D represent a finite set of positive spanning sets satisfying As-

sumption 33.

The set D is so that the elements dk ∈ Dk ∈ D satisfy the following conditions:

1. dk is a nonnegative integer combination of the columns of D.

2. The distance between xk and the point xk + αkdk tends to zero if and only if αk
does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K.

3. The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈ Dk} are

positive spanning sets for Rn.

The third requirement above is included as part of the Mesh Adaptive Direct
Search (MADS) original presentation [3], for coherency with the smooth case, but
it is not used in the convergence analysis for nonsmooth objective functions.

Integrality requirements also impose conditions in the update of the step size
parameter.
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Assumption 35 Let τ > 1 be a rational number and mmax ≥ 0 and mmin ≤ −1
integers. If the iteration is successful, then the step size parameter is maintained or

increased by considering αnew = τm
+

α, with m+ ∈ {0, . . . ,mmax}. If the iteration is

unsuccessful, then the step size parameter is decreased by setting αnew = τm
−
α, with

m− ∈ {mmin, . . . ,−1}.

Notice that the step size update strategy proposed in Algorithm 2.1 complies

to the one of Assumption 35 by setting β1 = τm
min

, β2 = τ−1, and γ = τm
max

.
Additionally, the points generated by the search step need to lie in the implicit

mesh considered at each iteration by the algorithm (trivially all the poll points
generated by the algorithm will also lie in this implicit mesh).

Assumption 36 At iteration k, the search step in Algorithm 2.1 only evaluates points

in

Mk =
⋃
x∈Ek

{x+ αkDz : z ∈ N|D|0 },

where Ek represents the set of all points evaluated by the algorithm previously to iter-

ation k.

We are now in a position to establish the first result, regarding the sequence of
step size parameters generated by MultiGLODS. Since both successful and merging
iterations correspond to adding new feasible points to the list, the arguments
consider are quite similar to the ones used for stating the same type of result in
DMS.

Theorem 1 Let Assumption 31 hold. Algorithm 2.1 under one of the Assumptions 33

or 34 combined with Assumptions 35–36 and ρ̄(·) ≡ 0 generates a sequence of iterates

satisfying

lim inf
k→+∞

αk = 0.

Proof Let us assume that there is α∗ such that αk > α∗ > 0, ∀k. Assumptions 33
or 34 combined with Assumptions 35–36 ensure that all points generated by Al-
gorithm 2.1 lie in an integer lattice (see [2,3]). The intersection of a compact set
with an integer lattice is finite. Since Ω is compact, there is only a finite number of
different points that could be generated by the algorithm. Successful or merging
iterations correspond to at least one new feasible point added to the list. Once
a point is added to this list it will always remain on it (eventually changing its
status to inactive). Thus, the number of successful and merging iterations must
be finite, and consequently there is an infinite number of unsuccessful iterations
and a finite number of points in the list. The step size at unsuccessful iterations
is reduced by at least β2 ∈]0, 1[, which contradicts the existence of a lower bound
for the step size parameter.

3.2 Imposing sufficient decrease

When the globalization strategy is based on imposing a sufficient decrease con-
dition, there is more flexibility in the update of the step size parameter and in
the type of directions that could be considered by the algorithm. In fact, the only
requirement is now expressed in Assumption 37, and it is trivially satisfied since
we are considering bounded sets of directions.
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Assumption 37 The distance between xk and the point xk + αkdk tends to zero if

and only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for all dk ∈ Dk and for any infinite subsequence K.

A similar result to the one of Theorem 1 can now be derived. Differently from
DMS, we start by establishing that after some iterations, a new active point added
to the list has to be compared with some points already stored in the list.

Theorem 2 Let Assumptions 31–32 hold. Algorithm 2.1, when ρ̄(·) is a forcing func-

tion and Assumption 37 holds, generates a sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

Proof Assume that there is α∗ such that αk > α∗ > 0, ∀k. Let us start by showing
that there is an infinite number of successful iterations.

Suppose not. Active points are added to the list only at successful iterations.
Thus, the number of active points in the list must be finite. At each merging
iteration at least one of the active points in the list changes its status to inactive.
Thus, the number of merging iterations is also finite.

Consequently, the number of unsuccessful iterations (where no points are added
to the list) needs to be infinite. At each unsuccessful iteration the step size param-
eter of the corresponding active poll center is reduced by at least β2 ∈]0, 1[, which
contradicts the existence of the lower bound α∗ > 0 for the step size.

The previous arguments allow us to conclude that there is an infinite number
of successful iterations. Let x represent a new feasible active point added to the
list Lk, at iteration k. Then, min

y∈Lk
(‖x− y‖ − ry) > 0 or there should have been an

active point y ∈ Lk such that ‖x− y‖ ≤ ry and F (y) ∈ Dom(x) + ρ̄(αy).
Let us assume that for each successful iteration k there is always a new active

point, xk+1 ∈ Ω, to be added to Lk, such that min
y∈Lk

(‖xk+1 − y‖ − ry) > 0. Thus,

∀y ∈ Lk, ‖xk+1 − y‖ > ry ≥ dminαy > dminα∗ > 0.

Once a point is added to the point list it will always remain in it (eventually
being inactive). Thus, at each successful iteration the measure of

Ω \
⋃
k∈S

B(xk+1; dminα∗)

decreases by a strictly positive quantity. Here S represents the set of indexes
corresponding to successful iterations and B(xk+1; dminα∗) the closed ball of radius
dminα∗, centered at xk+1. Since Ω is compact there should have been k∗ ∈ N such
that for each successful iteration k ≥ k∗ and for each new feasible active point x
added to Lk, there is an active point y ∈ Lk, which changes the corresponding
status to inactive, with ‖x− y‖ ≤ ry and F (y) ∈ Dom(x) + ρ̄(αy). Points are only
added to the list at successful and merging iterations. For each point x added to
Lk at a merging iteration, there should also have been an active point y ∈ Lk,
which changes the corresponding status to inactive, and such that ‖x − y‖ ≤ ry
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with F (y) ∈ Dom(x) + ρ̄(αy). Thus, each time that a point is added to the list,
it will add a hypercube of side no smaller than ρ∗ to the dominance region of an
active point already in the list, which changes the corresponding status to inactive.
After a finite number of iterations, a hypercube of side no smaller than ρ∗ would
have been added to the dominance region defined by all the points in the list. Since
there is an infinite number of successful iterations, this contradicts Assumption 32.

3.3 Refining subsequences, refining directions and generalized directional
derivatives

Convergence results for MultiGLODS are derived for limit points of the so-called
refining subsequences.

Definition 2 A subsequence {xk}k∈K of iterates corresponding to unsuccessful
poll steps is said to be a refining subsequence if {αk}k∈K converges to zero.

Having established the existence of a subsequence of step size parameters con-
verging to zero, the updating rules of the step size parameter allow us to ensure
the existence of at least one convergent refining subsequence (see, for example,
[8]).

Theorem 3 Let the conditions required for establishing Theorem 1 or Theorem 2 hold.

Algorithm 2.1 generates at least one refining subsequence {xk}k∈K , converging to x∗ ∈
Ω.

MultiGLODS behavior will be analyzed at limit points of convergent refining
subsequences, along refining directions. This last concept was introduced in [3], in
the context of MADS.

Definition 3 Let x∗ be the limit point of a convergent refining subsequence {xk}k∈K .
If the limit limk∈K′ dk/‖dk‖ exists, where K′ ⊆ K and dk ∈ Dk, and if xk+αkdk ∈
Ω, for sufficiently large k ∈ K′, then this limit is said to be a refining direction
for x∗.

Given the nonsmoothness present in the objective function, we will need to
use a generalized definition of Pareto stationarity. This definition makes use of
the Clarke-Jahn [18] generalized directional derivative, computed for directions
belonging to the tangent cone to the feasible region or to its interior.

Definition 4 A vector d ∈ Rn is said to be a Clarke tangent vector to the set
Ω ⊂ Rn at the point x in the closure of Ω if for every sequence {yk} of elements
of Ω that converges to x and for every sequence of positive real numbers {tk}
converging to zero, there exists a sequence of vectors {wk} converging to d such
that yk + tkwk ∈ Ω.

The Clarke tangent cone to Ω at x (TClΩ (x)) is defined as the set of all Clarke
tangent vectors to Ω at x and it is a generalization of the tangent cone commonly
used in Nonlinear Programming (see, e.g., [24, Definition 12.2 and Figure 12.8]).

The interior of this cone defines the hypertangent cone (THΩ (x)), which corre-
sponds to the set of hypertangent vectors to Ω at x.
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Definition 5 A vector d ∈ Rn is said to be a hypertangent vector to the set
Ω ⊂ Rn at the point x in Ω if there exists a scalar ε > 0 such that

y + tw ∈ Ω, ∀y ∈ Ω ∩B(x; ε), w ∈ B(d; ε), and 0 < t < ε.

The Clarke tangent cone can also be regarded as the closure of the hypertangent
cone.

The Clarke-Jahn generalized directional derivative is well defined for functions
locally Lipschitz continuous. Function F (x) is said to be Lipschitz continuous near
x if each fi(x), i = 1, . . . ,m is Lipschitz continuous in a neighborhood of x.

In these conditions, the Clarke-Jahn generalized directional derivative can be
defined for a component of F , fj , in a direction d belonging to the hypertangent
cone to Ω at x as,

f◦j (x; d) = lim sup
x′ → x, x′ ∈ Ω
t ↓ 0, x′ + td ∈ Ω

fj(x
′ + td)− fj(x′)

t
, j = 1, . . . ,m. (4)

The extension of this derivative to directions v in the tangent cone to Ω at x is
computed by taking a limit, i.e., f◦j (x; v) = lim

d∈THΩ (x),d→v
f◦j (x; d), for j = 1, . . . ,m

(see Proposition 3.9 in [3]).
We are now in conditions of defining the type of stationarity results that we

intend to obtain for MultiGLODS.

Definition 6 Let F be Lipschitz continuous near a point x∗ ∈ Ω. We say that x∗
is a Pareto-Clarke critical point of F in Ω if, for all directions d ∈ TClΩ (x∗), there
exists a j ∈ {1, . . . ,m} such that f◦j (x∗; d) ≥ 0.

When each component of the objective function is strictly differentiable, the
previous definition can be restated using the gradient vectors.

Definition 7 Let F be strictly differentiable at a point x∗ ∈ Ω. We say that x∗
is a Pareto-Clarke-KKT critical point of F in Ω if, for all directions d ∈ TClΩ (x∗),
there exists a j ∈ {1, . . . ,m} such that ∇fj(x∗)>d ≥ 0.

3.4 Convergence results

Let us start by stating a first stationarity result, not for the whole set of direc-
tions belonging to the Clarke tangent cone to the feasible region, but for refining
directions in the hypertangent cone. Crucial to establishing this result is the fact
that the comparison radius always allows the comparison between the poll center
and the poll points. The proof follows the classical reasoning of directional direct
search, and in particular the one of DMS.

Theorem 4 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω and let

d ∈ THΩ (x∗) be a refining direction for x∗. Assume that F is Lipschitz continuous near

x∗. Then there exists a j ∈ {1, . . . ,m} such that f◦j (x∗; d) ≥ 0.
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Proof Let {xk}k∈K be a refining subsequence converging to x∗ ∈ Ω and

d = lim
k∈K′′

dk/‖dk‖ ∈ THΩ (x∗)

a refining direction for x∗, with dk ∈ Dk and xk + αkdk ∈ Ω, ∀k ∈ K′′ ⊆ K.
Since F is Lipschitz continuous near x∗, the Clarke-Jahn generalized directional

derivative is well defined for each fj(x∗), j = 1, . . . ,m and we have:

f◦j (x∗; d) = lim sup
x→ x∗, x ∈ Ω
t ↓ 0, x+ td ∈ Ω

fj(x+ td)− fj(x)

t

≥ lim sup
k∈K′′

fj(xk + αk‖dk‖(dk/‖dk‖))− fj(xk)

αk‖dk‖
+ rk

= lim sup
k∈K′′

fj(xk + αkdk)− fj(xk) + ρ̄(αk)

αk‖dk‖
− ρ̄(αk)

αk‖dk‖
+ rk.

The first inequality follows from {xk}k∈K′′ being a feasible refining subsequence
and the fact that xk+αkdk is feasible for k ∈ K′′. The term rk is bounded above by
ν||d−dk/‖dk‖‖, where ν is the Lipschitz constant of F near x∗. Note, also, that the
limit limk∈K′′ ρ̄(αk)/(αk‖dk‖) is 0 for both globalization strategies (Subsections 3.1
and 3.2). In the case of using integer lattices (Subsection 3.1), one uses ρ̄(·) ≡ 0.
When imposing sufficient decrease (Subsection 3.2), this limit follows from the
properties of the forcing function and the existence of dmin, a strictly positive
lower bound for the norm of the poll directions.

Since xk+αkdk corresponds to a point evaluated at the unsuccessful iteration k,
it was necessarily compared with the active poll center xk. Thus F (xk) /∈ Dom(xk+
αkdk)+ ρ̄(αk), meaning that there should be j(k) ∈ {1, . . . ,m} such thatfj(k)(xk +
αkdk)− fj(k)(xk) + ρ̄(αk) > 0. Considering that the number of components of the
objective function is finite, by passing to a subsequence indexed in K′′′ ⊆ K′′,
there exists j = j(d) such that

f◦j(d)(x∗; d) ≥ lim sup
k∈K′′′

fj(d)(xk + αkdk)− fj(d)(xk) + ρ̄(αk)

αk‖dk‖
≥ 0.

Assuming strict differentiability of the objective function we can state a similar
result but considering the gradient vectors of each component of F .

Corollary 31 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω and let

d ∈ THΩ (x∗) be a refining direction for x∗. Assume that F is strictly differentiable at

x∗. Then there exists a j ∈ {1, . . . ,m} such that ∇fj(x∗)>d ≥ 0.

Proof The result follows immediately from Theorem 4 by noticing that strict dif-
ferentiability implies that f◦j (x∗; d) = ∇fj(x∗)>d (see [18]).

The previous results can now be extended to the whole Clarke tangent cone by
assuming density of the set of refining directions associated with x∗. For complete-
ness, we include the proof, which relies in the same arguments used to establish a
similar result in DMS.
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Theorem 5 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω. Assume

that TClΩ (x∗) 6= ∅ and F is Lipschitz continuous near x∗. If the set of refining directions

for x∗ is dense in TClΩ (x∗), then x∗ is a Pareto-Clarke critical point.

In addition, if F is strictly differentiable at x∗, then this point is a Pareto-Clarke-

KKT critical point.

Proof Given a direction v ∈ TClΩ (x∗), for each j ∈ {1, . . . ,m} the Clarke-Jahn
generalized directional derivative can be obtained as

f◦j (x∗; v) = lim
d→ v

d ∈ THΩ (x∗)

f◦j (x∗; d).

Since the set of refining directions for x∗ is dense in TClΩ (x∗) then v = limr∈R dr
with dr a refining direction for x∗ belonging to THΩ (x∗). Considering the result of
Theorem 4 and since the number of components of the objective function is finite,
by passing to a subsequence R′ ⊆ R we have v = limr∈R′ dr, with dr ∈ THΩ (x∗),
and f◦j(v)(x∗; dr) ≥ 0, ∀r ∈ R′. The first statement of the theorem results from
considering limits of this sequence of generalized derivatives. The second statement
of the theorem results trivially.

4 Numerical experiments

In this section we intend to illustrate the numerical behavior of MultiGLODS. In
particular, we aim at stating its ability to approximate local and global Pareto
fronts of a given multiobjective derivative-free optimization problem. We have
considered a test set with 14 bound constrained analytical problems collected
from the multiobjective optimization literature:

min F (x) ≡ (f1(x), . . . , fm(x))

s.t. l ≤ x ≤ u
(5)

and a constrained real application problem related to styrene production [1,5].

Table 1 reports the dimensions (n), the number of components of the objective
function (m), and the variable bounds for the analytical problems.

As part of our test set, we have problems belonging to the ZDT [27] and the
DTLZ [16] collections, and also two additional problems described in [14] (Sec-
tions 4.1 and 5.1.2), named as Deb213 and Deb218, respectively. Additionally, the
technique described in Section 4 of [14] was used to generate two new biobjective
problems, both presenting local and global Pareto fronts. The goal of testing the
two first collections is to state the quality of MultiGLODS as a general multiob-
jective derivative-free optimization solver. Problems proposed in [14] are useful to
test its ability to identify local and global Pareto fronts of a given problem.

A Matlab numerical implementation of MultiGLODS is available at:

http://ferrari.dmat.fct.unl.pt/personal/alcustodio/multiglods.
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Problem n m l u

ZDT1 30 2 [0, . . . , 0] [1, . . . , 1]

ZDT2 30 2 [0, . . . , 0] [1, . . . , 1]

ZDT3 30 2 [0, . . . , 0] [1, . . . , 1]

ZDT4 10 2 [0,−5, . . . ,−5] [1, 5, . . . , 5]

ZDT6 10 2 [0, . . . , 0] [1, . . . , 1]

DTLZ1 7 3 [0, . . . , 0] [1, . . . , 1]

DTLZ2 12 3 [0, . . . , 0] [1, . . . , 1]

DTLZ3 12 3 [0, . . . , 0] [1, . . . , 1]

DTLZ5 12 3 [0, . . . , 0] [1, . . . , 1]

DTLZ7 22 3 [0, . . . , 0] [1, . . . , 1]

Deb213 2 2 [0.1, 0] [1, 1]

Deb218 2 2 [0, 0] [1, 1]

CAM1 2 2 [0.1, 0] [1, 1]

CAM2 2 2 [0.1, 0] [1, 1]

Table 1: Analytical problems considered in the numerical experiments.

This implementation was compared with version 0.3 of Direct MultiSearch (DMS) [11].
DMS is a well-established algorithm, suited for derivative-free multiobjective op-
timization, which has proved to be competitive with state-of-art solvers, including
NSGA-II [15], BIMADS [4], and AMOSA [6]. Nowadays it is still used as bench-
mark for new multiobjective derivative-free algorithms [21].

In order to access the real impact of the clever multistart strategy, both al-
gorithms were run with parameters similar to the defaults of DMS. Exception
occurs in the use of a cache, which was disabled for both algorithms. The idea
is to access the value of each algorithmic structure by itself, without any further
improvements. Initialization considered a number of points equal to the problem
dimension, evenly spaced in a line joining the problem bounds. Inspired by the de-
faults of GLODS, MultiGLODS additionally considered the center of the feasible
region. As globalization strategy, both algorithms used integer lattices. Coordinate
directions were used as positive spanning sets and complete polling was performed.

Regarding MultiGLODS, each time that three consecutive unsuccessful itera-
tions occurred, the search step was performed, using Sobol sequences to generate a
number of feasible points equal to problem dimension. As poll center, MultiGLODS
selected the active point, not yet identified as a local Pareto point, presenting the
largest step size. A point is identified as a local Pareto point when the correspond-
ing step size parameter is below 10−3.

The step size was initialized as n×maxi∈{1,...,n}(ui − li) in MultiGLODS and
was set equal to 1 in DMS. Successful iterations kept constant the step size, which
was halved at unsuccessful ones.

Both algorithms would stop when a maximum of 20000 function evaluations
was reached or when the step sizes for all points were below 10−3 (in the case of
MultiGLODS, only active points were considered).
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Fig. 4: Plot of function g, used in the definition of problems CAM1 (left) and
CAM2 (right).

4.1 Additional multimodal multiobjective problems

According to [14], let us consider the biobjective optimization problem defined as:

min F (x1, x2) ≡
(
x1,

g(x2)

x1

)
s.t. (x1, x2) ∈ Ω ⊂ R2,

(6)

where g(x2) > 0.
Theorem 1 in [14] states that this problem has local or global Pareto optimal

solutions (x1, x
∗
2), where x∗2 corresponds to a local or global minimum of g(x2),

respectively, and x1 can take any feasible value.
Using the proposed technique, we have generated problems CAM1 and CAM2,

considering the function g defined as below,

g(x2) = 2− e−( x2−0.2
0.004 )

2

− c1 e−( x2−0.6
0.4 )

2

− c2 e−( x2−0.9
0.002 )

2

.

For CAM1, c1 = 1.9 and c2 = 0, while in CAM2, c1 = 0.8 and c2 = 1.2. In both
problems x1 ∈ [0.1, 1] and x2 ∈ [0, 1].

Figure 4 provides a graphical representation of function g for CAM1 and
CAM2, respectively. Comparing with the function g considered in [14], we see
that for CAM1 the global minimum is no longer in a narrow valley. Problem
CAM2 presents three local minimums, which correspond to two local and one
global Pareto fronts.

4.2 Results on the ZDT and DTLZ collections

Starting with the ZDT collection, Figure 5 represents the approximations to the
Pareto front generated by DMS and MultiGLODS.

As can be observed, the results obtained with each solver are very similar,
supporting the quality of the final Pareto fronts generated by MultiGLODS. For
problem ZDT6, MultiGLODS presents some points far from the global Pareto
front. This is a direct consequence of the stopping criteria considered. If a higher



MultiGLODS: Global and Local Multiobjective Optimization using Direct Search 19

ZDT1 ZDT2

ZDT3 ZDT4

ZDT6

Fig. 5: Approximations to the Pareto front generated by DMS and MultiGLODS
for the ZDT collection. For each problem, the support of the true global Pareto
front is represented in yellow.

number of function evaluations would have been allowed, eventually these points
would change their status to inactive, not being part of the final approximation
to the Pareto front generated by MultiGLODS. In the case of problem ZDT4,
MultiGLODS is able not only to generate an approximation to the global Pareto
front but also to some of the 219 local Pareto fronts reported in [27].

Figure 6 reports the results obtained with both solvers for the DTLZ collection.
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DTLZ1 DTLZ2

DTLZ3 DTLZ5

DTLZ7

Fig. 6: Approximations to the Pareto front generated by DMS and MultiGLODS
for the DTLZ collection.

The behavior of MultiGLODS for problems DTLZ1 and DTLZ3 is quite peculiar.
In fact, these problems present several local Pareto fronts, all parallel to the global
one [16]. MultiGLODS is able to identify one of these local Pareto fronts and also
to move to the global one, as we can see in Figure 7, where the plots are zoomed
in.

Problem DTLZ7 presents four disconnected Pareto-optimal regions. MultiGLODS
was able to provided a quite good representation of each one of these areas. In
problems DTLZ2 and DTLZ4, similarly to problem ZDT6, the results are a con-
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DTLZ1 DTLZ3

Fig. 7: Partial representation of the approximations to the Pareto front generated
by DMS and MultiGLODS for problems DTLZ1 and DTLZ3.

sequence of the stopping criteria, which considers a maximum number of function
evaluations.

4.3 Results on the multimodal problems

Having stated the quality of the Pareto fronts generated by MultiGLODS, by
comparison with the results obtained with DMS in ZDT and DTLZ collections,
we would like to test its capability to identify local and global Pareto fronts of a
given problem.

We had already a flavor of it, with the results reported for problems ZDT4,
DTLZ1, and DTLZ3. The last two problems present 3 objectives and are of dimen-
sion 7 and 12, respectively, for which a computational budget of 20000 function
evaluations could somehow be limited. So we decided to use the two dimension,
biobjective problems reported in [14] (Sections 4.1 and 5.1.2) and the two addi-
tional problems described in Section 4.1. Figure 8 presents the final approximations
to the Pareto fronts obtained with DMS and MultiGLODS.

In all problems, MultiGLODS was able to identify the global Pareto front.
The identification of all local Pareto fronts was well succeeded in the majority
of the situations. The exception occurs in problem CAM1, where the nature of
the narrow local minimum of function g prevented MultiGLODS from successfully
identifying the corresponding local Pareto front.

4.4 A chemical engineering problem of styrene production

In [1] the authors describe the simulation of a styrene production process and
the corresponding optimization problem. Basically, the styrene production process
presents four phases: reactants preparation, catalytic reactions, styrene recovery
and benzene recovery, which have been implemented in a black-box simulator using
the Sequential Modular Simulation (SMS) paradigm. There are three objectives
to be maximized: the net present value of the styrene production process (f1), the
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Deb213, problem reported in [14],
Section 4.1

Deb 218, problem reported in [14],
Section 5.1.2

CAM1 CAM2

Fig. 8: Approximations to the Pareto front generated by DMS and MultiGLODS
for multimodal, two dimension, biobjective problems.

purity of the produced styrene (f2) and the purity of the produced benzene (f3).
Eight variables define parameters of the simulation model. Variables are subject
to bounds and to nine other constraints related with industrial and environmental
regulations.

Two different approaches have been proposed for the problem. In [1], the au-
thors consider a single objective optimization problem by maximizing f1, defining
upper bounds for f2 and f3, and treating these last two objectives as constraints.
Using the single objective derivative-free optimization algorithm MADS, with a
search step defined by a variable neighborhood search, the authors obtained a sin-
gle point as solution of the problem. In the process, a budget of 10000 function
evaluations was considered and surrogates were used to guide the search in the
variable space.

In [5] a multiobjective derivative-free optimization approach was taken. Mul-
tiMADS was applied to the three-objective optimization problem, generating an
approximation to the Pareto front of the problem comprising 22 points, when con-
sidering a budget of 30000 function evaluations. None of the 22 points dominates
the point generated by MADS, neither the single objective solution dominates any
of the 22 points generated by MultiMADS.
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Fig. 9: Approximations to the Pareto front of the styrene production problem
generated by DMS, MultiGLODS, MultiMADS and MADS, in the last case solving
a single objective version of the problem.

We kept the settings used through the whole numerical section, in particular
the budget of 20000 function evaluations, and ran both DMS and MultiGLODS in
the styrene production problem. DMS ended without using the maximum number
of function evaluations allowed, generating an approximation to the Pareto front
of the problem with 3 points. In the case of MultiGLODS, the 20000 function
evaluations were required and it ended with 613 active points. Figure 9 represents
the approximations to the Pareto front obtained by the four solvers. The plot
corresponds to the symmetric of the objective function, since it is a maximization
problem.

The final active points generated by MultiGLODS dominate all the solutions
generated both by MultiMADS and DMS. Results obtained with DMS indicate
the existence of a local Pareto front of the problem, which was also identified by
MultiGLODS. Regarding the point produced by MADS, as result of the single
objective optimization, it is not dominated by the final active points generated
by MultiGLODS. In fact, it presents the best value for f1, which is natural since
a single objective optimization was performed in this objective. Although, there
are also active points generated by MultiGLODS which are not dominated by the
point generated by MADS. The best values obtained for f2 and f3 correspond to
points generated by MultiGLODS.

5 Conclusions

In this paper we have proposed, analyzed, and numerically tested a new algorithm
for optimizing multiobjective, multifront, derivative-free functions.

The new directional direct search method generalizes GLODS [10] to multiob-
jective optimization and confers a global behavior to DMS [11]. Multistart is used
to initialize new searches, generally not conducted until the end, since they merge
when start to be close to each other. A comparison radius, directly related to the
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step size parameter, is the keystone in this merging procedure. Points sufficiently
close to each other are compared and only nondominated points will remain active.
In the end of the optimization process, the set of all active points will define the
approximations to the Pareto fronts of the problem (local and global).

Under the common assumptions of directional direct search, convergence re-
sults were derived. Numerical experiments evidence the quality of the final solu-
tions generated by the new algorithm and its capability in identifying approxima-
tions to global and local Pareto fronts of a given problem.
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