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Abstract

In this paper, we analyze the worst-case complexity of trust-region methods for solving
unconstrained smooth multiobjective optimization problems. We particularly focus on the
method proposed by Villacorta et al. [J. Optim. Theory Appl., 160:865–889]. When the
component functions are convex (respectively strongly convex), we will derive a complex-
ity bound of O(ε−1) (respectively O(log ε−1)) for driving some criticality measure below
some given positive ε. The derived complexity bounds recover those of classical trust-region
methods for solving (strongly) convex smooth unconstrained single-objective problems.
Keywords: trust-region methods, multiobjective optimization, worst-case com-
plexity, convex smooth unconstrained
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1 Introduction

In multiobjective optimization, in contrast to single-objective optimization, one needs to mini-
mize more than one possibly conflicting objectives at the same time. This kind of optimization
problems appears in many applications in science, engineering, finance, and economic, among
others. There are various approaches and a vast number of methods in literature which have been
devoted to solving multiobjective optimization problems. An extensively studied approach for
solving a multiobjective optimization problem is the so-called scalarization approach in which
a single (and sometimes more than one) objective, made by, for instance, a weighted sum of
all the objectives, is minimized. The weighting parameters are set by the optimizer based on
his/her preference in advance or are chosen adaptively as the algorithm proceeds. Further de-
tails on such approach can been found in [1, 2, 3]. Another approach is based on the extension
of single-objective optimization algorithms to multiobjective setting, and tries to find a descent
direction for all the component functions at the same time, by solving a subproblem at each
iteration. These methods do not use a set of parameters in advance for converting the problem
to a single-objective optimization. They include steepest descent [4], Newton [5], trust-region
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methods [6, 7, 8, 9], among others. Further information on such methods can be found in the
survey [10] and the references therein.

In this paper, we consider unconstrained multiobjective optimization problems of the form

min
x∈Rn

F (x) = (f1(x), . . . , fm(x)), (1)

where fi : Rn → R, i ∈ I := {1, . . . ,m}, is a smooth function. For this class of optimization
problems, under the convexity assumption of the component functions, we are interested in
analyzing the worst-case complexity (WCC) of a trust-region method for driving the criticality
measure below some given positive threshold. The WCC of an algorithm measures the cost of
running the algorithm, which is expressed in terms of number of iterations or function evalua-
tions, in the worst-case scenario when starting from any initial point and arriving at a point for
which the stationary measure is small enough.

Hereafter, when we refer to nonconvex, convex, or strongly convex case, we mean all the
component functions in (1) are nonconvex, convex, or strongly convex, respectively.

By setting m = 1 in (1), we will have an unconstrained single-objective optimization problem.
The WCC analysis of optimization algorithms, when the goal is to find a point at which the norm
of the gradient becomes less than some given positive threshold, has been the subject of many
research studies in single-objective optimization of which we will review the ones more related to
the current study. For nonconvex smooth unconstrained optimization problems, a WCC bound
of O(ε−2) has been derived for steepest descent methods [11] [see Example 1.2.3] and trust-region
methods [12]. The same complexity bound has been shown to hold for adaptive regularization
with cubic (ARC) [13]. A complexity bound of O(n2ε−2) has been obtained in [14] for derivative-
free trust-region methods. Assuming the convexity of the objective function, a complexity bound
of O(ε−1) has been derived in [15] for nonlinear stepsize control (NSC) framework [16], which is
a generalized framework for ARC and trust-region methods. Under strong convexity condition,
a WCC bound of O(log(ε−1)) has been derived in [17] for NSC framework.

Despite ubiquity of the WCC analysis of algorithms for single-objective optimization, there
are rather few studies addressing the complexity of multiobjective optimization algorithms. The
complexity of gradient descent for multiobjective optimization has been analyzed in [18]. A
complexity bound of O(ε−2) has been established for the nonconvex case for bringing the Pareto
criticality measure below ε. The authors have further derived a complexity bound of O(ε−1)
and O(log(ε−1)) for the weighted sum of the component functions. In [19], complexity bounds
have been derived for gradient descent multiobjective optimization on Riemannian manifolds.
Complexity bounds of O(ε−2) and O(ε−1) have been derived for the nonconvex and convex case,
respectively. In [20], under the assumption of β–Hölder continuity of the p–th order derivative
of component functions, the authors have developed a high-order regularization mutliobjective

method along with a complexity bound of O(ε
− p+β
p+β−1 ), which when p = β = 1 (i.e. when fis are

continuously differentiable with Lipschitz continuous gradient) leads to the complexity bound
of O(ε−2). The complexity of the Direct Multisearch (DMS) algorithm and a particular version
of it has been analyzed in [21], and a complexity bound of O(ε−2) has been derived for the latter
case. In [22], it has been shown that a stochastic multi-gradient method enjoys complexity
bounds of O(ε−2) and O(ε−1) under convexity and strong convexity assumptions, respectively.

In [9], a trust-region multiobjective method, which is called TRMP, has been proposed for
solving (1). The WCC of TRMP algorithm for the nonconvex case (i.e. when the component
functions in (1) are nonconvex) has been analyzed in [23]. The authors have derived a complexity
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bound of O(ε−2) for the method. To the best of our knowledge, when the component functions
in (1) are (strongly) convex, no complexity bound has been derived for trust-region methods
and more specifically for TRMP algorithm. In this paper, we aim to address this gap. Under
convexity (resp. strong convexity) assumption of the component functions in (1), we derive
a complexity bound of O(ε−1) (resp. O(log ε−1)) for finding an ε–Pareto critical point (see
Definition 2.2). For the convex case, the bound matches the one derived in [19] for steepest
descent multiobjective optimization on Riemannian manifolds. Furthermore, when m = 1, this
recovers the complexity bound of driving the norm of gradient below ε, which has been derived
for the trust-region methods under the NSC framework in [15] and [17] for convex and strongly
convex case, respectively. Additionally, as a byproduct of our WCC analysis, we obtain the
WCC bounds also for trust-region methods for a class of structured nonsmooth (strongly) convex
single-objective problems (i.e. pointwise maximum of (strongly) convex functions). We should
further add that, although we use a minimax approach for converting the original problem to
a single-objective optimization problem, the resulting function is no longer smooth. Therefore,
the WCC result derived here is not resulted in a trivial way by applying the techniques used
in [15] for establishing WCC bound of single-objective optimization problems, which rely on the
smoothness of the objective function.

The rest of the paper is organized as follows. In Section 2 we present the TRMP algorithm
in its original form as given in [9], and introduce some preliminary results. The WCC analysis of
the method for the convex case is established in Section 3. Finally, we will draw some conclusions
and mention some future lines of research in Section 5.

Notation. In this paper, we mostly follow the related notations used in [9]. For simplicity,
we assume all the norms are Euclidean norm. Notation | · | represents the cardinality of a set.
For set X ⊂ Rn, conv(X) denotes its convex hull. The subgradient of function f : Rn → R
at x ∈ Rn with ∂f . For q ∈ N, we define the nonegative orthant (which is also called Pareto cone
) Rq+ =: {(u1, . . . , uq) ∈ Rq|ui ≥ 0}, and the positive orthant Rq++ =: {(u1, . . . , uq) ∈ Rq|ui > 0}.
Given u, v ∈ Rq, we say u � v (resp. u ≺ v) iff v − u ∈ Rq+ (resp. v − u ∈ Rq++). We denote the
set of all symmetric matrices of size n× n belonging to Rn×n with Sn×n.

2 TRMP algorithm and some preliminary results

Throughout the paper, we will use the following quantity as the criticality measure:

ω(x) := − min
‖d‖≤1

(
max
i∈I
∇fi(x)>d

)
. (2)

We notice that for the single-objective case (i.e. m = 1 in (1)), we have ω(x) = ‖∇F (x)‖.

Definition 2.1 [4, 5] Let x∗ ∈ Rn. We call x∗

(i) a Pareto optimal if there does not exists y ∈ Rn such that

F (y) � F (x∗) and F (y) 6= F (x∗);

(ii) a weakly Pareto optimal if there does not exists y ∈ Rn such that

F (y) ≺ F (x∗);
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(iii) a Pareto critical for F if
range(JF (x)) ∩ (−Rm++) = ∅, (3)

where range(JF (x)) denotes the linear subspace generated by the columns of Jacobian of F
at x, and −Rm++ = {−u|u ∈ Rm++}.

Let
D(x) = {d(x) : d(x) is a solution of (2)}.

The following lemma lists some properties of ω and its relation with Pareto criticality.

Lemma 2.1 [4]

(i) ω(x) ≥ 0, for all x ∈ Rn;

(ii) if x is Pareto critical of (1), then 0 ∈ D(x) and ω(x) = 0;

(iii) if x is not Pareto critical of (1), then ω(x) > 0 and for any d ∈ D(x) we have

∇fj(x)>d ≤ max
i∈I

{
∇fi(x)>d

}
< 0, ∀j ∈ I,

i.e., d is a descent direction of (1);

(iv) the application x 7→ ω(x) is continuous.

Definition 2.2 [24] Let x ∈ Rn. We call x an ε–Pareto critical point if

ω(x) ≤ ε. (4)

The following lemma, which is a slightly modified version of Theorem 3.1 in [5], establishes
relationship between (weak) Pareto optimality and Pareto criticality.

Lemma 2.2 [5, Theorem 3.1] Assume the component function fi, for each i ∈ I, is continu-
ously differentiable on Rn.

1. If x̄ is locally weak Pareto optimal point, then x̄ is a critical point for F .

2. If fi, for each i ∈ I, is convex and x̄ ∈ Rn is Pareto critical for F , then x̄ is weak Pareto
optimal.

3. If ∇2fi(x) is positive definite for all i ∈ I and x ∈ Rn, and if x̄ ∈ Rn is Pareto critical
for F , then x̄ is Pareto optimal.

In view of Lemma 2.2, under the convexity assumption of the component functions, any weak
Pareto optimal is Pareto critical for F and vice versa.

The following lemma states that the subgradient of a pointwise maximum of m closed and
convex functions at a point is equal to the convex hull of the subgradients of those functions
that are active at that point.
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Lemma 2.3 [11, Lemma 3.1.10] Let function fi(x), for all i ∈ I, be closed and convex. Then
function

φ(x) := max
i∈I

fi(x) (5)

is also closed and convex. For any x ∈ int(domφ) = ∩mi=1 int (dom fi) we have

∂φ(x) = conv{∂fi(x) : i ∈ I(x)} (6)

where I(x) = {i : fi(x) = φ(x)}.

In trust-region methods for minimizing single-objective optimization problems, to find a new
point, typically a quadratic model within a region is minimized. If the magnitude of a quotient,
which is resulted from dividing the actual reduction (i.e. reduction in function value) by the
predicted reduction (i.e. reduction in model value), is close enough to 1, the new point would
then be accepted and the trust-region radius is either retained or increased; otherwise the new
point is rejected and the trust-region radius is reduced and the quadratic model is minimized
within the new region. Further details on trust-region methods for single-objective optimization
can be found in the comprehensive monograph [25].

In the following, we briefly describe TRMP algorithm, as originally proposed in [9], which is
a trust-region algorithm for solving (1). We refer the interested reader to [9] for further details
on the method and its application. We should mention that there are other trust-region type
methods developed for solving multiobjective optimization problems [6, 7].

In TRMP algorithm, which is an extension of the classical trust-region method [25], the idea
of solving (1) revolves around substituting it with the following strict scalarization:

min
x∈Rn

φ(x) = max
i∈I

fi(x). (7)

(We notice that, in view of (6) and as the component functions fi are assumed to be continuously
differentiable, we have

∂φ(x) = conv{∇fi(x) : i ∈ I(x)}.) (8)

Remark 2.1 The aforementioned scalarization approach is different from the so-called standard
scalarization approach, which is based on transforming the original problem to a single-objective
function by a choosing a set of parameters a priori. In the case of the TRMP algorithm, similarly
to the methods proposed in [4, 5], these parameters are determined by solving a subproblem (see
subproblem (9) below) at each iteration of the algorithm.

The TRMP method uses the following quadratic approximation of function φ at point x:

m(x,H, d) := max
i∈I

{
fi(x) +∇fi(x)>d

}
+

1

2
d>Hd, with H ∈ Sn×n.

Then, for step calculation, at each iteration of the TRMP algorithm the following subproblem
is solved:

minm(xk, Hk, d), (9)

s.t. ‖d‖ ≤ ∆k,

where ∆k is the trust-region radius. Function φ and model m are then used to compute the
quotient for acceptance of trial point. Finally, the strategy for updating the trust-region is
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similar to the classical trust-region methods in single-objection optimization. We notice, by
setting m = 1, we recover the basic trust-region algorithms proposed in [25] for minimization of
single-objective problems.

In the continuation, we will use the following notations:

mk(·) := m (xk, Hk, ·)

and
Bk := {d ∈ Rn : ‖d‖ ≤ ∆k} .

Algorithm 2.1 (TRMP Algorithm [9])

Step 0: Initialization. Choose x0, H0, ∆0, 0 < η1 ≤ η2 < 1, and 0 < γ1 ≤ γ2 < 1 < γ3.
Set k = 0.

Step 1: Step calculation. Compute a step dk ∈ Bk that “sufficiently reduces” the func-
tion mk.

Step 3: Acceptance of trial point. Compute φ(xk + dk) and

ρk =
φ(xk)− φ(xk + dk)

mk(0)−mk(dk)
. (10)

If ρk ≥ η1, then define xk+1 = xk + dk; otherwise define xk+1 = xk.

Step 4: Trust-region radius update. Set

∆k+1 ∈


[∆k, γ3∆k) if ρk ≥ η2, [k very successful];
[γ2∆k,∆k] if ρk ∈ [η1, η2), [k successful];
[γ1∆k, γ2∆k] if ρk < η1, [k unsuccessful].

(11)

Update Hk to Hk+1. Set k = k + 1 and go to Step 1.

We denote S the set of all successful or very successful iterations, i.e.,

S = {k ≥ 0 : iteration k is successful or very successful}, (12)

and S` be the set of all such iterations up to iteration `, i.e.,

S` = {k ≤ ` : k ∈ S}. (13)

We also denote the set of all unsuccessful iterations with U and the ones up to iteration ` with U`.
Henceforth, for the sake of simplicity, we will call all successful and very successful iterations as
successful iterations.

In the following, we will list several assumptions in a more formal way, which will be required
in the continuation for establishing the WCC results.

Assumption 2.1 For each i ∈ I, the component function fi is twice continuously differentiable
on Rn and lower bounded.
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Remark 2.2 For establishing the results in this paper, we need to assume the component func-
tions fis are just continuously differentiable with Lipschitz continuous gradient rather than being
twice continuous differentiable. However, for the sake of conciseness, we stick to the set of
assumptions given in [9] in order to avoid proving the results presented there anew under such
assumption. In fact, with just some simple modifications in the proofs given in [9], we will be able
to show the results there hold under the continuous differentiability of the component functions
and the Lipschitz continuity of their gradients.

Remark 2.3 As it has been discussed in [9], the assumption on the lower boundedness of all
the component functions fi is not restrictive. As, if unbounded, we can replace (1) with the
following problem:

min
x∈Rn

F (x) = (exp (f1(x)) , . . . , exp (fm(x))). (14)

Then, one can easily see that all the component functions in (14) are convex and lower bounded
and both problems (1) and (14) have the same set of Pareto critical points.

We need to assume that the norm of the Hessian of the component function is bounded from
above.

Assumption 2.2 [9, Assumption 5.1] There exists a positive constant κuFh such that, for
all x ∈ Rn,

‖∇2fi(x)‖ ≤ κuFh, for all i ∈ I.

When the gradient of the function fi is Lipschitz continuous with constant L∇fi , then As-
sumption 2.2 is satisfied with κuFh = L∇fi .

We also need to assume that the matrix Hk used for building the model in (9) is uniformly
bounded from above.

Assumption 2.3 [9, Assumption 5.2] The matrix Hk is uniformly bounded, that is, there exists
a constant κumh ≥ 1 such that

‖Hk‖ ≤ κumh − 1, for all k.

As for the next assumption, we will use the same assumption as [9], which states that the
model is sufficiently reduced at every iteration. Assumptions 2.1–2.3 are essential in justifying
this assumption. We refer the interested reader to [9] for justification on having such assumption.

Assumption 2.4 [9, Assumption 4.1] For all k,

mk(0)−mk(dk) > κdlamω(xk) min

{
ω(xk)

1 + ‖Hk‖
,∆k

}
,

for some κdlam ∈ (0, 1).

The following key lemma, which is a slightly modified version of Proposition 6.2 in [9], gives
a lower bound on trust-region radius when the corresponding gradient is lower bounded. This
lemma is of central importance in establishing our WCC analysis.
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Lemma 2.4 Let Assumptions 2.1, 2.2, 2.3,and 2.4 hold. Suppose furthermore that there exists
a constant κ > 0 such that ω(xk) ≥ κ for all k. Then

∆k ≥ κ1κ, for all k. (15)

where

κ1 =
γ1κdlam(1− η2)

κH
, κH = max{κuFh, κumh}, (16)

and κdlam ∈ (0, 1).

Proof. See the proof of Proposition 6.2 in [9].

The following results states that the number of unsuccessful iterations is bounded by the
number of successful iterations. As a result, in order to count the total number of iterations,
it suffices to count the number of successful iterations. The proof follows along the lines of the
proof of corresponding results given, for instance, in [15].

Theorem 2.1 Given any ε ∈ (0, 1). Let ω(xk) > ε for k = 0, 1, · · · , `. Then Algorithm 2.1
takes at most |U`| unsuccessful iterations, where

|U`| ≤ − logγ2(γ3)|S`|+ logγ2
κ1ε

∆0

for having ‖ω`+1‖ ≤ ε.

3 WCC of TRMP algorithm under convexity

In this section, we analyze the WCC of TRMP algorithm for minimization of (1). In the
following assumption, we formally assume the convexity of the component functions along with
the boundedness of the level set of their pointwise maximum function.

Assumption 3.1 For each i ∈ I, the component function fi is convex and there exists D ≥ 1
such that L(x0) ⊂ B(x∗;D), where x∗ is any global minimizer of φ defined in (5).

We notice, in view of Lemma 2.3, that function φ is convex.
The following auxiliary lemma relates the value of ω at a point to the norm of an element

of the subgradient of φ.

Lemma 3.1 For any x ∈ Rn, there exists g0 ∈ ∂φ(x) such that ω(x) = ‖g0‖.

Proof. If x is Pareto critical then, in view of Lemma 2.1, we have ω(x) = 0, and the result
holds with g0 = 0. Suppose x is not a Pareto critical point. Now, the following minimization
problem

ω(x) = − min
‖d‖≤1

(
max
i∈I
∇fi(x)>d

)
, (17)

can be rewritten as
min
d,t

t

s.t. ∇fi(x)>d ≤ t ∀i ∈ I,
‖d‖ ≤ 1,

(18)
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with the Lagrangian function

L(d, t, α, β) = t+
∑
i∈I

αi(∇fi(x)>d− t) +
β

2

(
‖d‖2 − 1

)
.

In view of KKT conditions, we have
∑

i∈I αi = 1 and
∑

i∈I αi∇fi(x) + βd = 0, where αi, β ≥ 0.
Since x is not a Pareto critical point, we have β > 0. Thus, the dual objective function is given
as follows

q(α, β) = − 1

2β

∥∥∥∥∥∑
i∈I

αi∇fi(x)

∥∥∥∥∥
2

− β

2
.

Hence

ω(x) = −max
α,β

q(α, β) = min
α,β

1

2β

∥∥∥∥∥∑
i∈I

αi∇fi(x)

∥∥∥∥∥
2

+
β

2
.

s.t.
∑
i∈I

αi = 1, αi ≥ 0, s.t.
∑
i∈I

αi = 1, αi ≥ 0,

Now, from ∇βq(α, β) = 0, we obtain β = ‖
∑

i∈I αi∇fi(x)‖. Therefore, we have

ω(x) = min
α

∥∥∥∥∥∑
i∈I

αi∇fi(x)

∥∥∥∥∥ ,
s.t.
∑
i∈I

αi = 1, αi ≥ 0,

and as ∂φ(x) = conv{∇fi(x) : i ∈ I(x)}, the thesis follows.

We will need the following lemma which shows that the difference between the function value
at any point and optimal function value is of the same order as the value of ω at that point.

Lemma 3.2 Let Assumption 3.1 hold. Then for any iteration xk produced by Algorithm 2.1,
we have

Θk := φ(xk)− φ(x∗) ≤ Dω(xk). (19)

Proof. Since φ is convex, for all x, y ∈ Rn, we have

φ(y) ≥ φ(x) + g>(y − x),

for all g ∈ ∂φ(x). In view of Lemma 3.1, we have ω(xk) = ‖g0‖ for some g0 ∈ ∂φ(xk). Now,
by setting x = xk, y = x∗, and using the Cauchy–Schwarz inequality, the desired inequality is
resulted.

Now, as it was mentioned before, for counting the total number of iterations, we need to
count only the number of successful iterations. In the continuation, without loss of generality,
we shall assume that the set of successful iterations is not empty. The following theorem shows
that the difference between the function value at any point and optimal function value is of the
order of the inverse of the number of successful iterations.
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Theorem 3.1 Let Assumptions 2.1, 2.2, 2.3, 2.4, and 3.1 hold. Then, by applying Algo-
rithm 2.1, we have

Θ` ≤
1

|S`|η1κ2
, ∀` ≥ 0,

where Θ` is given in (19) and

κ2 =
κdlam
D2

min

{
1

1 + κH
, κ1

}
.

Proof. In view of Lemma 3.2, we have ω(xk) ≥ Θk/D. By applying Lemma 2.4 with κ = Θk/D,
we obtain ∆k ≥ κ1Θk/D. Thus, in view of Assumption 2.4, we have

mk(0)−m(dk) ≥ κdlamω(xk) min

{
ω(xk)

1 + κH
,∆k

}
≥ κdlamΘk

D
min

{
Θk

(1 + κH)D
,
κ1Θk

D

}
≥

κdlamΘ2
k

D2
min

{
1

1 + κH
, κ1

}
.

Now, for any k ∈ S, we have

φ(xk)− φ(xk+1) ≥ η1κ2Θ
2
k, (20)

Hence,
Θk −Θk+1 ≥ η1κ2Θ

2
k, k ∈ S,

which, by dividing both sides by ΘkΘk+1 and considering that Θk+1 ≥ Θk in view of Assump-
tion 2.4, leads to

1

Θk+1
− 1

Θk
≥ η1κ2

Θk

Θk+1
≥ η1κ2, k ∈ S.

By summing up the above inequalities up to ` we have,

1

Θ`
≥ 1

Θ0
+ |S`|η1κ2 ≥ |S`|η1κ2 ` ≥ 0.

Therefore,

Θ` ≤
1

|S`|η1κ2
,

and the proof is completed.

In view of Theorem 2.1 and Theorem 3.1, the following corollary is readily resulted.

Corollary 3.1 Let Assumptions 2.1, 2.2, 2.3, 2.4, and 3.1 hold. Then, for any ε ∈ (0, 1),
Algorithm 2.1 needs at most O(ε−1) iterations for finding a point x̄ ∈ Rn such that φ(x̄)−φ(x∗) =
Θ` ≤ ε.

Now, we obtain an upper bound on the number of successful iterations that Algorithm 2.1
takes for finding an ε–Pareto critical point. The proof has been adapted from [15], which in turn
has been inspired by a technique developed for steepest descent methods in [26].
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Theorem 3.2 Let Assumptions 2.1, 2.2, 2.3, 2.4, and 3.1 hold. Then, for any ε ∈ (0, 1),
Algorithm 2.1 takes at most O(ε−1) successful iterations to find a point x̄ such that ω(x̄) ≤ ε.

Proof. Without loss of generality, we can choose N ≥ 1 such that |SN | ≥ 2. Let 0 ≤ ` < N be
chosen in a way that |S`| ≥ 1, and |SN | ≥ 2|S`|. In view of Theorem 3.1, we have

φ(x`)− φ∗ = Θ` ≤
1

|S`|η1κ2
, ∀` ≥ 0.

Hence, by Assumption 2.4, we have

1

|S`|η1κ2
≥ φ(x`)− φ∗

≥ φ(xN+1)− φ∗ + φ(x`+1)− φ(xN+1)

= φ(xN+1)− φ∗ +
N∑

k=`+1
k∈S

φ(xk)− φ(xk+1)

≥ φ(xN+1)− φ∗ + η1κdlam

N∑
k=`+1
k∈S

ω(xk) min

{
ω(xk)

1 + κH
,∆k

}

≥ η1κdlam|S`| min
0≤k≤N
k∈S

{
ω(xk) min

{
ω(xk)

1 + κH
,∆k

}}
.

Thus, there exists 1 ≤ k0 ≤ N such that

1

|S`|2η21κdlamκ2
≥ ω(xk0) min

{
ω(xk0)

1 + κH
,∆k0

}
. (21)

Now, we consider the two cases of
ω(xk0 )

1+κH
≤ ∆k0 and

ω(xk0 )

1+κH
≥ ∆k0 separately. When

ω(xk0 )

1+κH
≤

∆k0 , in view of (21), we have
1 + κH

|S`|2η21κdlamκ2
≥ ω(xk0)2.

Thus, for having ω(xk0) ≤ ε, for some 0 ≤ k0 ≤ N , Algorithm 2.1 needs at most

|SN | = 2|S`| = 2

⌈ √
1 + κH

κ1η1
√
κdlamκ2

ε−1
⌉

successful iterations.
On the other hand, when

ω(xk0 )

1+κH
≥ ∆k0 , in view of (21), we have

1

|S`|2η21κdlamκ2(1 + κH)
≥ ∆2

k0 .

Thus, in order to obtain ∆k0 ≤ κ1ε, for some 0 ≤ k0 ≤ N , Algorithm 2.1 takes at most

|SN | = 2|S`| = 2

⌈
1

κ1η1
√
κdlamκ2(1 + κH)

ε−1

⌉

11



successful iterations. Now, in view of Lemma 2.4 with κ = ε, if ∆k0 < κ1ε then we have
ω(xk1) < ε for some 0 ≤ k1 ≤ N .

Therefore, in both cases the number of successful iterations for driving ω below ε is of O(ε−1).

Remark 3.1 We should mention that, although the technique for the proof of Theorem 3.2 has
been adapted from [15], the function φ defined at (5) is not continuously differentiable unlike the
objective function considered in [15].

Now, by combining Theorem 2.1 and Theorem 3.2, we will have a bound on the total number
of iterations the TRMP algorithm requires for deriving an ε–Pareto critical point.

Corollary 3.2 Let Assumptions 2.1, 2.2, 2.3, 2.4, and 3.1 hold. Then, for any ε ∈ (0, 1),
Algorithm 2.1 needs at most O(ε−1) iterations for driving ω below ε.

We notice that the bound obtained here matches the one derived for gradient descent multiob-
jective optimization on Riemannian manifolds [19]. In addition, by setting m = 1, we recover the
bound derived in [15] for classical trust-region methods for minimization of convex smooth un-
constrained single-objective optimization problems. Furthermore, as a byproduct of our WCC
analysis, we have derived a WCC bound of O(ε−1) also for trust-region methods for a class
of structured nonsmooth convex single-objective problems (i.e. pointwise maximum of convex
functions).

4 WCC of TRMP algorithm under strong convexity

In this section, we analyze the WCC of TRMP algorithm for minimization of (1) where the
component functions are strongly convex. We start by definition of strongly convex function.

Definition 4.1 [27, Subsection 12.1.2] Function f is called strongly convex with modulus µ > 0
on Rn if there exists a constant µ > 0 such that for any x, y ∈ Rn we have

f(y) ≥ f(x) + (y − x)>gx +
µ

2
‖y − x‖2, (22)

for all gx ∈ ∂f(x).

The proof presented here is an adaptation of the proof of Theorem 2.1.10 given in [11] for
strongly convex smooth functions.

Lemma 4.1 Let f be a strongly convex function then for any x, y ∈ Rn, we have

f(y) ≤ f(x) + (y − x)>gx +
1

2µ
‖gx − gy‖2, (23)

for all gx ∈ ∂f(x), and gy ∈ ∂f(y).

Proof. Let x ∈ Rn. Let h(y) = f(y)− y>gfx , where gfx ∈ ∂f(x). Since 0 ∈ ∂h(y) = ∂f(y)− gfx
and h is strongly convex, in view of (22) for any y ∈ Rn we have

h(x) = min
v∈Rn

h(v) ≥ min
v∈Rn

[
h(y) + (v − y)>ghy +

µ

2
‖v − y‖2

]
= h(y)− 1

2µ
‖ghy‖2,
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where ghy ∈ ∂h(y). Thus, we have h(x) ≥ h(y)− 1
2µ‖g

h
y‖2, which completes the proof.

Assumption 4.1 For each i ∈ I, the component function fi is strongly convex with modulus
µi.

Under this assumption function φ is strongly convex with modulus µ, where 0 < µ < mini∈I µi.
Similarly to the convex case, we establish an upper bound on the distance from the optimal

value of φ.

Theorem 4.1 Let Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1 hold. Let µ < (1 +κH)/2. Then, we
have

φ(x`)− φ∗ ≤ (1− η1κ3)|S`|Θ0 ≤ exp−η1κ3|S`|Θ0, (24)

where

κ3 = 2κdlamµmin

{
1

1 + κH
, κ1

}
.

Proof. Due to strong convexity of φ, by setting x = x∗ and y = xk in Lemma 4.1, we
obtain ‖gxk‖ ≥

√
2µΘk, for all gxk ∈ ∂φ(xk), and where Θk given in (19). In view of Lemma 3.1,

we have ω(xk) = ‖g0xk‖ for some g0xk ∈ ∂φ(xk). Hence, we obtain ω(xk) ≥
√

2µΘk. By applying
Lemma 2.4 with κ =

√
2µΘk, we obtain ∆k ≥ κ1

√
2µΘk. Hence, in view of Assumption 2.4, we

have

mk(0)−m(dk) ≥ κdlamω(xk) min

{
ω(xk)

1 + κH
,∆k

}
≥ κdlam

√
2µΘk min

{√
2µΘk

1 + κH
, κ1
√

2µΘk

}
≥ 2κdlamµΘk min

{
1

1 + κH
, κ1

}
.

Thus, for any k ∈ S, we have

φ(xk)− φ(xk+1) ≥ η1κ3Θk. (25)

Hence,
Θk −Θk+1 ≥ η1κ3Θk, k ∈ S.

Therefore,
φ(x`)− φ∗ ≤ (1− η1κ3)|S`|Θ0 ≤ exp−η1κ3|S`|Θ0.

In view of Theorem 2.1 and Theorem 4.1, the following corollary is readily resulted.

Corollary 4.1 Let Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1 hold. Let µ < (1 + κH)/2. Then,
for any ε ∈ (0, 1), Algorithm 2.1 needs at most O(log ε−1) iterations for finding a point x̄ ∈ Rn
such that φ(x̄)− φ(x∗) = Θ` ≤ ε.

In the next theorem we will derive an upper bound on the number of successful iterations for
finding an ε–Pareto critical point. The proof follows the same machinery as that of Theorem 3.2.
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Theorem 4.2 Let Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1 hold. Let µ < (1 +κH)/2. Then, for
any ε > 0, the total number of successful iterations that Algorithm 2.1 needs to find a point x̄
such that ω(x̄) ≤ ε is at most O(log ε−1).

Proof. Without loss of generality, we can choose N ≥ 1 such that |SN | ≥ 2. Let 0 ≤ ` < N be
chosen in a way that |S`| ≥ 1, and |SN | ≥ 2|S`|. In view of Theorem 4.1, we have

φ(x`)− φ∗ ≤ (1− η1κ3)|S`|Θ0 ≤ exp−η1κ3|S`|Θ0.

Hence, by Assumption 2.4, we have

exp−η1κ3|S`|Θ0 ≥ φ(x`)− φ∗
≥ φ(xN+1)− φ∗ + φ(x`+1)− φ(xN+1)

= φ(xN+1)− φ∗ +

N∑
k=`+1
k∈S

φ(xk)− φ(xk+1)

≥ φ(xN+1)− φ∗ + η1κdlam

N∑
k=`+1
k∈S

ω(xk) min

{
ω(xk)

1 + κH
,∆k

}

≥ η1κdlam|S`| min
0≤k≤N
k∈S

{
ω(xk) min

{
ω(xk)

1 + κH
,∆k

}}
.

Thus, there exists 1 ≤ k0 ≤ N such that

exp−η1κ3|S`|Θ0

η1κdlam|S`|
≥ ω(xk0) min

{
ω(xk0)

1 + κH
,∆k0

}
.

Since, |S`| ≥ 2, we have

exp−η1κ3|S`|Θ0

η1κdlam
≥ ω(xk0) min

{
ω(xk0)

1 + κH
,∆k0

}
. (26)

Now, we consider two cases:

Case 1 : If
ω(xk0 )

1+κH
≤ ∆k0 , then in view of (26) we have

(1 + κH) exp−η1κ3|S`|Θ0

η1κdlam
≥ ω(xk0)2.

Hence, in order to have ω(xk0) ≤ ε, for some 0 ≤ k0 ≤ N , Algorithm 2.1 takes at most

|SN | = 2|S`| =
4

η1κ3

⌈
log

(√
(1 + κH)Θ0

η1κdlam
ε−1

)⌉
successful iterations.

Case 2 : If
ω(xk0 )

1+κH
≥ ∆k0 , then, in view of (26), we have

exp−η1κ3|S`|Θ0

η1κdlam(1 + κH)
≥ ∆2

k0 .
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Thus, in order to obtain ∆k0 ≤ κ1ε, for some 0 ≤ k0 ≤ N , Algorithm 2.1 takes at most

|SN | = 2|S`| =
4

η1κ3

⌈
log

(√
Θ0

η1κdlamκ
2
1(1 + κH)

ε−1

)⌉
successful iterations. On the other hand, Lemma 2.4 with κ = ε implies that if ∆k0 ≤ κ1ε then
ω(xk1) ≤ ε for some 0 ≤ k1 ≤ N .

Therefore, in both cases the number of successful iterations for driving ω below ε is ofO(log ε−1),
and the proof is completed.

The following corollary, which establishes the complexity of the TRMP algorithm for finding
an ε–Pareto critical point, is easily resulted from Theorem 2.1 and Theorem 4.1.

Corollary 4.2 Let Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1 hold. Let µ < (1 + κH)/2. Then,
for any ε > 0, the total number of iterations that Algorithm 2.1 takes to drive ω below ε is at
most O(log ε−1).

By setting m = 1, we recover the bound derived in [17] for classical trust-region methods for the
class of convex smooth unconstrained single-objective optimization problems. Furthermore, as
a byproduct of our WCC analysis, we have derived a WCC bound of O(log ε−1) also for trust-
region methods for a class of structured nonsmooth strongly convex single-objective problems
(i.e. pointwise maximum of strongly convex functions).

5 Conclusions

In this paper, under the presence of (strong) convexity assumption of the component functions,
we analyzed the WCC of a multiobjective trust-region method called TRMP, which has originally
been presented in [9]. We show that, in order to drive some criticality measure below some
predefined positive ε, the required number of iterations is at most ofO(ε−1). This bound matches
the one derived for steepest descent methods for multiobjective optimization methods, and
recovers the complexity bound of trust-region in single-objective convex smooth unconstrained
optimization. In addition, under the strong convexity of the component functions, we show
that the complexity bound is improved to O(log ε−1), which recovers the complexity bound
of trust-region in single-objective strongly convex smooth unconstrained optimization. The
techniques used in this work could be easily adapted to derive WCC results for other versions
of multiobjective trust-region methods such as the ones developed in [6, 7]. Finally, establishing
WCC analysis of the multiobjective version of the NSC framework [23] under the (strong)
convexity assumption will be left as future work.
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