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Abstract

Global optimization is an important scientific domain, not only due to the algorithmic

challenges associated with this area, but also due to its practical application in different

areas of knowledge, from Biology to Aerospace Engineering.

In this work we develop an algorithm based on trust-region methods for solving

global optimization problems with derivatives, using a clever multistart strategy, testing

its efficiency and effectiveness by comparison with other global optimization algorithms.

Based on an idea applied to the resolution of problems in derivative-free optimiza-

tion, this algorithm seeks to reduce the computational effort that the search for a global

optimum requires, by comparing points that are relatively close to each other, using as

comparison radius the one associated with the trust-region method, retaining only the

most promising ones, which will continue to be explored. The proposed method has the

added benefit of not only reporting the global optimum but also a list of local optima that

may be of interest, depending on the context of the problem in question.

Keywords: Global Optimization; Trust-region Methods; Multistart Strategies; Optimiza-

tion with Derivatives.
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Resumo

A otimização global é um importante domínio científico, não só pelos desafios algo-

rítmicos que lhe estão associados, mas pela sua aplicação prática em diferentes áreas do

conhecimento, que vão desde a Biologia à Engenharia Aeroespacial.

Neste trabalho é desenvolvido um algoritmo baseado em métodos de regiões de con-

fiança, para problemas de otimização global com derivadas, usando uma estratégia de

multi-inicializações inteligente, sendo testada a sua eficiência e eficácia por comparação

com outros algoritmos de otimização global.

Baseado numa ideia aplicada à resolução de problemas de otimização sem derivadas,

este algoritmo procura reduzir o esforço computacional que a busca de ótimos globais

requer, comparando pontos que se situam relativamente próximos usando como raio

de comparação o raio associado ao método de região de confiança, e retendo apenas os

mais promissores, que continuarão a ser explorados. O método proposto permite não só

a obtenção do ótimo global mas também de uma lista de ótimos locais que podem ser de

interesse, dependendo do contexto do problema em questão.

Palavras-chave: Otimização Global; Métodos de Regiões de Confiança; Estratégias de

multi-inicializações; Otimização com Derivadas.
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1
Introduction

1.1 Motivation

Optimization is an area of Mathematics that focuses on solving minimization or maximiza-

tion problems within a function’s domain, which can possibly be subject to restrictions to

the values of the variables. While obviously different, we tend to generalize optimization

problems to minimization problems, as a simple transformation of the function to its

symmetric keeps the optimal solution, with a symmetric optimum value, allowing us to

obtain the maximum of a problem.

Optimization problems are relevant not only in Mathematics, but also in many other

scientific areas like Chemistry [13], Engineering or Economics [11], where often the goal

is to identify a global minimum.

There are special cases where solving these global problems can be an easy task, like

is the case of a convex function on a convex domain, where a single local and global

minimum exists. As such, local optimization algorithms are enough to compute the

global solution, even if for some classes of convex problems, challenges remain to develop

efficient local algorithms. However, when in presence of nonconvex functions, as there

can exist multiple local minima within the search domain, the identification of a global

minimum is more difficult, justifying the need for global optimization algorithms.

A simple strategy for global optimization is to explore a local optimization solver,

running it from different starting points. This approach is known as a multistart tech-

nique. The local optimization algorithms are typically iterative processes, starting from

an initial point and following a descent direction in order to find a new point with a better

objective function value. This procedure is repeated until some defined stopping criteria

related to stationarity are met. By considering multiple starting points, in different areas

of the feasible region, it is then expected to obtain a list of all local minima of the objective

1



CHAPTER 1. INTRODUCTION

function (if in finite number), from which the global optimum can be easily recovered.

The additional information respecting to the computation of the different local optima is

also a useful characteristic of these algorithms, as sometimes compromises must be made

and more stable solutions may be preferable, even with worse objective function values.

However, the multistart procedure can be time consuming and often searches considering

different initializations will converge to the same optimum. Also, the chosen local solvers

and multistart strategies may work better for some problems rather than others, as there

is no guaranteed way to ensure a fast and accurate convergence for all the different kinds

of problems one can encounter [24].

In this work we propose an algorithm for the global optimization of problems with

second order differentiable objective functions with continuous variables, constrained to

a bounding box. The motivation for the proposed method was a strategy successfully used

on global derivative-free optimization [3], which is adapted in this work to incorporate

trust-region methods in a global derivative-based optimization approach.

1.2 Related works

This section will be mainly focused on reviewing works related to trust-region methods,

which have been extensively explored in optimization (see [2]). However, within the

scope of global optimization, only few works incorporate this algorithmic class. We

present some recent works related to this topic that provide useful insights on issues

that should be considered when using a trust-region approach in a global optimization

perspective.

The first of these works, [1], describes the use of a trust-region method as a solver for

a specific class of functions presenting the so-called funnel structure. As described by the

authors, functions with this structure are a "perturbation of an underlying function with a

low number of local minima". Due to this reduced number of local minima, the underlying

function is naturally easier to globally optimize. Thus, the focus of the algorithm is to

efficiently generate a smooth approximation function that maintains the same overall

shape of the original function to optimize. For that, Gaussian smoothing techniques are

applied to the local minimization operator, after which a modified version of a trust-

region method is used, incorporating a sampling algorithm, adapting the trust-region

approach to global optimization.

Other applications of a trust-region method to global optimization problems is re-

ported in [15], where a cubic separable term is introduced in the classic second order

Taylor based model. The authors show that the usage of these cubic terms improves the

algorithm’s ability to reach the global minimum, being able to escape from certain local

minima where the base trust-region method would be trapped. Although this modifi-

cation of classical trust-region algorithms showed to be effective in finding the global

optimum, our goal is to compute additional local minima, providing the end user with

additional good quality choices.

2



1.3. OBJECTIVES AND THESIS ORGANIZATION

With this aim, we will make use of a multistart approach which consists in providing

different initializations to a local solver. Decisions about when and where to generate

the new initializations need to be taken. Works like [14] cover these topics and provide

insights on important issues that can influence the efficiency of the search and the quality

of the solution found.

There are also heuristic methods that employ multistart approaches such as the one

described in [22]. Although reaching promising results when tested, convergence has not

yet been established. However, these types of methods are still quite important, as their

combination with other algorithms can lead to good results.

Another work that adresses global optimization problems using derivatives is the

one presented in [12]. This paper mentions an interesting technique where, instead of a

multistart approach, the use of local search algorithms is paired with a Gaussian model

that is added to the objective function to fill in possible attraction basins where the used

solvers may end up in. Through several iterations of finding local optima and filling in

basins, the algorithm eventually explores all possible basins, gathering a list of all local

optima from which the global optimum of the objective function can be easily extracted.

As mentioned before, the present work is inspired by [3], an algorithm that focuses on

a different area of optimization, which is derivative-free optimization. In this case, mul-

tistart is coupled with a merging strategy, giving up on searches that are not promising.

Merging stages could be crucial in a multistart approach, since having several searches

converging to the same local optimum can lead to a loss of efficiency of the algorithm.

To overcome this issue, points that are sufficiently close to each other and expected to

converge to the same local optimum are compared and only one is kept. These strategies

will be detailed in Chapter 3.

1.3 Objectives and thesis organization

The main objective of this work is to develop a method capable of solving global opti-

mization problems with second order differentiable objective functions and continuous

variables. With this purpose, we introduce an algorithm that applies a clever multistart

approach to a base trust-region method, by starting with multiple points and, at each it-

eration, by selecting one as a center to run a single iteration of the trust-region algorithm.

A list of visited points is kept and updated along the optimization process, from which

the center for the trust-region iteration is selected. Besides the initial launch of several

points, the algorithm also incorporates a relaunching strategy, with new starting points

being inserted into the list when certain criteria are met, in an attempt to ensure that the

entire search domain is explored. Since such a strategy can generate too many points and

have groups of points being driven towards the same attraction zones, a merging strategy

is considered.

Given the structure of each iteration of the proposed algorithm, which considers a

step with the solution of a trust-region subproblem, this thesis starts by revising the

3



CHAPTER 1. INTRODUCTION

trust-region class of optimization methods. Its general algorithmic structure and the

corresponding convergence analysis is presented in Chapter 2. Afterwards, in Chapter

3, we detail the structure of the proposed algorithm and how it keeps similar conver-

gence results to the ones of the base trust-region method. Chapter 4 reports extensive

numerical tests, presenting the collection of problems used, the procedure followed in

the definition of the different algorithmic variants, and the results obtained with these

distinct algorithmic strategies that lead to the proposed algorithm. Comparisons based

on different metrics with other global optimization solvers are also provided. The thesis

ends in Chapter 5 with some conclusions and directions for future work.
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2
Trust-region Methods

2.1 Introduction

Trust-region methods are a class of iterative algorithms that use the information provided

by the objective function and its derivatives to build a quadratic model that approximates

the objective function with expected good precision within a certain small distance of a

given point xk . This class of algorithms is widely known and several authors have covered

the topic [2, 9, 20].

At each iteration, a quadratic model is built based on the Taylor expansion of the

objective function f around the selected point xk , and it is used to approximate the value

of f (xk + p):

f (xk + p) ≈ f (xk) +∇f (xk)>p+ 1
2p
>∇2f (xk)p

with the restriction that the chosen step p should be small enough, as the error associated

with this model is O(‖p‖3), which is small as long as p is small. However, this is only

true when the exact derivatives are used. Instead, approximations to the derivatives can

be considered, mainly with the intent of facilitating their computation, but ultimately

making the expected error associated with the model used to increase, being now O(‖p‖2)

(see [20]).

By definingmk(p) = f (xk)+g>k p+ 1
2p
>Bkp, with gk = ∇f (xk) and Bk a symmetric matrix

that approximates the Hessian, we obtain the quadratic models used by the method. It is

now time to minimize mk(p), restricting the search to a small region around the current

iterate, typically a ball of radius ∆k , defined for the current iteration, and centered at

xk . The corresponding optimization problem, from which the direction p is computed,

corresponding to the minimum, is defined as:

5



CHAPTER 2. TRUST-REGION METHODS

minimize mk(p) = f (xk) + g>k p+ 1
2p
>Bkp

subject to ‖p‖ ≤ ∆k
(2.1)

This is called the trust-region subproblem, and while it can bring some added com-

plexity, it is easy to solve in many situations.

Validating the model comes next, resorting to a ratio ρk , that compares the agreement

between the decrease obtained in the model and the variation achieved when considering

the actual function values:

ρk =
f (xk)− f (xk + pk)
mk(0)−mk(pk)

(2.2)

Depending on the value of this ratio, the model is considered to be accurate enough

to continue to be used, or a decision about increasing its quality is taken, which is related

to the update of the radius ∆k . The ratio ρk is additionally used to decide if the solution

of the trust-region subproblem should be accepted as a new iterate.

The update of ∆k depends on many factors, as we can see in Algorithm 2.1. The ratio

ρk is compared with the constants µ1 and µ2, with 0 < µ1 < µ2 < 1, being that if ρk is

inferior to µ1 then the trust-region radius should decrease by a given factor 0 < D < 1, as

the model did not predict accurately enough the decrease in real function values. Notice

that Taylor models are guaranteed to accurately approximate smooth functions for points

sufficiently close to the point where the model is built. Otherwise, if ρk is greater than

µ2 and the step length reaches the boundary of the current trust-region, meaning that

‖pk‖ = ∆k , then this indicates that the current model is adequate but that the current

radius could be limiting the progress of the algorithm. Therefore, we increase the radius

by a given factor I > 1, while keeping it below a certain maximum, ∆̂, that guarantees

that the norm of the step pk , and as such the error associated with the model, will never

increase too much.

Another comparison constant, η ≥ 0, is used to define the acceptance of the new point,

xk + pk , as the new center point for the computation of a new model in the following

iteration, xk+1. To establish the convergence of the algorithm it is simply required that η ≥
0. However, selecting small values for η helps to not discard potentially good new iterates,

and so we often see η portrayed as a value in
[
0, 1

4

)
. Other typical values considered for

the different parameters are µ1 = 1
4 , µ2 = 3

4 , D = 1
4 and I = 2. Notice also that having η > 0

means that sufficient decrease is required for the acceptance of a new point.

6



2.2. THE TRUST-REGION SUBPROBLEM

Algorithm 2.1 A basic trust-region method

Requires: Initial point x0, ∆̂ > 0, ∆0 ∈ (0, ∆̂), 0 < µ1 ≤ 1
2 , µ1 < µ2 < 1,0 < D < 1 < I , and

η ≥ 0
for k=0, 1, 2, . . . do

Solve the trust-region subproblem, (2.1), obtaining the direction pk .
Compute the ratio ρk .
if ρk < µ1 then
∆k+1 =D ∗∆k

else if ρk > µ2 and ‖pk‖ = ∆k then
∆k+1 = min(I ∗∆k , ∆̂)

else
∆k+1 = ∆k

end if
if ρk > η then
xk+1 = xk + pk

else
xk+1 = xk

end if
end for

2.2 The trust-region subproblem

The solution of the trust-region subproblem mentioned in Section 2.1 heavily depends on

the characteristics of the matrix Bk used in the quadratic model. The most common meth-

ods to obtain an approximate solution of the trust-region subproblem include the Dogleg

method, if the matrix Bk is positive definite, and the two-dimensional subspace minimiza-

tion, for indefinite matrices (see [20]). Both strategies try to find solutions that achieve as

much reduction as the Cauchy point, a definition that is crucial to prove convergence of

the algorithm, as we will see in the next section. However, as this subproblem has been

already thoroughly explored, we will not detail the different solution approaches and will

instead resort to code already developed by the nonlinear optimization community (see

[18]), covering all possible characteristics of the matrix Bk .

2.2.1 The Cauchy point

The Cauchy point, usually denoted by pCk , quantifies the sufficient reduction required in

the model to obtain convergence of the trust-region method. This means that convergence

will be guaranteed if the steps obtained from solving the trust-region subproblem, regard-

less of the technique considered, provide reductions similar to the reduction obtained

with the Cauchy point.

The Cauchy point is the minimizer of the model mk along the steepest descent direc-

tion −gk . To compute it, we first consider a linear version of the trust-region subproblem,

returning a direction that we denote by psk . Second, we compute the optimal step length,

τk , when following the direction psk :

7



CHAPTER 2. TRUST-REGION METHODS

psk = argmin
p∈Rn

f (xk) + g>k p s.t. ‖p‖ ≤ ∆k ;

τk = argmin
τ≥0

mk(τp
s
k) s.t. ‖τpsk‖ ≤ ∆k ;

Finally, we define the Cauchy point as

pCk = τkp
s
k . (2.3)

Solving the minimization problem for psk is easy, as it is a linear problem. Its solution is

obtained by taking the symmetric direction of the gradient and resizing it to the maximum

allowed step length:

psk = − ∆k

‖gk‖
gk (2.4)

Likewise, solving the second problem is also easy. We consider the two cases, g>k Bkgk ≤
0 and g>k Bkgk > 0. In the first case, we have the model function mk(τp

s
k) decreasing with

τ , which means the minimum occurs at the limit of the trust-region. Since ‖psk‖ = ∆k , this

would mean that τk = 1 when g>k Bkgk ≤ 0. As for the second case, we know thatmk(τp
s
k) is

a convex quadratic function in τ , for which the minimum can be easily computed. Since

we are still minimizing within the radius ∆k , we must restrain the value of τk to either

be the known minimizer of the quadratic function,
‖gk‖3

∆kg
>
k Bkgk

, or 1 corresponding to the

limit of the trust-region radius.

Concluding, the values that τk may assume are

τk =


1 if g>k Bkgk ≤ 0

min
(
‖gk‖3

∆kg
>
k Bkgk

,1
)

otherwise
(2.5)

As this step is inexpensive to calculate and for convergence purposes it is enough that

the solution pk of the quadratic model lies inside the trust-region and gives a reduction

that can be quantified in terms of the Cauchy point (as we will see in Section 2.3), this

method could be used as one of the strategies for solving the trust-region subproblem.

However, improvement is still possible, as the properties of the approximation Bk to

the Hessian matrix have not been explored. As we mention before, depending on the

characteristics of the matrix Bk , other strategies have been considered in the literature [2,

9, 20].

2.3 Convergence analysis

Since the global convergence of the trust-region method depends on the model decrease

obtained by the solution of the trust-region subproblem being proportional to the one

obtained by the Cauchy point, we start this section by quantifying it. We follow closely

8



2.3. CONVERGENCE ANALYSIS

the line of reasoning of [20] and we will show that any solution pk of the subproblem is

required to provide a decrease in the model function that verifies

mk(0)−mk(pk) ≥ c1‖gk‖min
(
∆k ,
‖gk‖
‖Bk‖

)
, (2.6)

for 0 < c1 ≤ 1. This condition is enough to establish the convergence of the trust-region

method.

In [20], it is also noted that if ∆k is the minimum in that expression, then we have a

similar condition to the first Wolfe condition, that the desired reduction in the model is

proportional to the gradient and the step size that is taken.

Theorem 1. The Cauchy point satisfies (2.6) for c1 =
1
2

.

Proof. For simplicity, we omit the iteration index k during this proof.

Let’s consider these three cases: g>Bg ≤ 0, g>Bg > 0 and
‖g‖3

∆g>Bg
≤ 1, and finally

g>Bg > 0 and
‖g‖3

∆g>Bg
> 1.

For the first case, we have

m(pC)−m(0) = m

(
−
∆g

‖g‖

)
− f = − ∆

‖g‖
‖g‖2 +

1
2

∆2

‖g‖2
g>Bg ≤

≤ −∆‖g‖ ≤ −‖g‖min
(
∆,
‖g‖
‖B‖

)
≤ −1

2
‖g‖min

(
∆,
‖g‖
‖B‖

)
.

For the second case, as stated in Section 2.2.1, with equations (2.3), (2.4) and (2.5),

pC = τps, with pS = − ∆
‖g‖g and τ = ‖g‖3

∆g>Bg , which means that

m(pC)−m(0) = −
‖g‖4

g>Bg
+

1
2
g>Bg

‖g‖4

(g>Bg)2 = −1
2
‖g‖4

g>Bg
≤

≤ −1
2
‖g‖4

‖B‖‖g‖2
= −1

2
‖g‖2

‖B‖
≤ −1

2
‖g‖min

(
∆,
‖g‖
‖B‖

)
.

In the final case, we have
‖g‖3

∆g>Bg
> 1 which is equivalent to g>Bg <

‖g‖3

∆
since g>Bg >

0. By applying it to the difference of the models, we obtain:

m(pC)−m(0) = − ∆

‖g‖
‖g‖2 +

1
2

∆2

‖g‖2
g>Bg ≤ −∆‖g‖+

1
2

∆2

‖g‖2
‖g‖3

∆
=

= −1
2
∆‖g‖ ≤ −1

2
‖g‖min

(
∆,
‖g‖
‖B‖

)
.

which ends the analysis of all possible cases and as such finalizes the proof.

The decrease stated in condition (2.6) can be attained if our step size achieves a de-

crease that is at least a fraction 2 ≥ c2 > 0 of the decrease obtained with the Cauchy

point.
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Theorem 2. Let pk be a step such that ‖pk‖ ≤ ∆k and mk(0) −mk(pk) ≥ c2(mk(0) −mk(pCk )),

for 2 ≥ c2 > 0. Then pk satisfies (2.6) with c1 =
c2

2
.

Proof.

mk(0)−mk(pk) ≥ c2(mk(0)−mk(pCk )) ≥ 1
2
c2‖gk‖min

(
∆k ,
‖gk‖
‖Bk‖

)
.

With this, we can now infer on the behaviour of the gradient throughout the iterations.

Theorem 3. Let η = 0. Assume there is β > 0 such that ‖Bk‖ ≤ β,∀k ∈ N. Let f be lower
bounded on the set S def= {x | f (x) ≤ f (x0)} and Lipschitz continuously differentiable in a neigh-
bourhood of a fixed radius R0 > 0 of S, defined as S(R0)def= {x | ‖x − y‖ < R0, y ∈ S}. Then

liminf
k→∞

‖gk‖ = 0.

Proof. From Taylor’s theorem, we have that

f (xk + pk) = f (xk) + g(xk)>pk +
∫ 1

0
[g(xk + tpk)− g(xk)]

>pk dt

Therefore, from the definition of mk and with some algebraic manipulation, we get

|mk(pk)− f (xk + pk)| =

∣∣∣∣∣∣12p>k Bkpk −
∫ 1

0
[g(xk + tpk)− g(xk)]

>pk dt

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣12p>k Bkpk
∣∣∣∣∣+

∫ 1

0

∣∣∣[g(xk + tpk)− g(xk)]
>pk

∣∣∣dt ≤
≤

∣∣∣∣∣12p>k Bkpk
∣∣∣∣∣+

∫ 1

0
‖g(xk + tpk)− g(xk)‖‖pk‖dt ≤

≤
∣∣∣∣∣12p>k Bkpk

∣∣∣∣∣+
∫ 1

0
L‖xk + tpk − xk‖dt‖pk‖ =

=
∣∣∣∣∣12p>k Bkpk

∣∣∣∣∣+
∫ 1

0
L |t|dt‖pk‖2 =

=
∣∣∣∣∣12p>k Bkpk

∣∣∣∣∣+L‖pk‖2
1
2
≤
β

2
‖pk‖2 +

L‖pk‖2

2

(2.7)

where L is the Lipschitz constant for g on S(R0). We also assume that ‖pk‖ ≤ R0 to ensure

that xk and xk + tpk both belong to the set S(R0).

Let’s suppose for contradiction that no subsequence of {‖gk‖} converges to zero. This

means that there is ε > 0 and a sufficiently large index K ∈ N such that

‖gk‖ ≥ ε, ∀k ≥ K (2.8)

Using (2.6) and (2.8), we have that for indexes k ≥ K ,

mk(0)−mk(pk) ≥ c1‖gk‖min
(
∆k ,
‖gk‖
‖Bk‖

)
≥ c1εmin

(
∆k ,

ε
β

)
(2.9)

10
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We now build upon the ratio ρk with the following manipulation, using the previous

equations (2.7) and (2.9) and the fact that mk(0) = f (xk):

|ρk − 1| =
∣∣∣∣∣ (f (xk)− f (xk + pk))− (mk(0)−mk(pk))

mk(0)−mk(pk)

∣∣∣∣∣ =

=
∣∣∣∣∣mk(pk)− f (xk + pk)
mk(0)−mk(pk)

∣∣∣∣∣ ≤ ‖pk‖2
(
β
2 + L

2

)
c1εmin

(
∆k ,

ε
β

) ≤ ∆2
k

(
β
2 + L

2

)
c1εmin

(
∆k ,

ε
β

) (2.10)

With the structure of the trust-region method in mind, we now bound the right side

of (2.10) by limiting the values of ∆k with a maximum ∆̄, defined as follows:

∆̄ = min
(
c1ε
β +L

,R0

)
. (2.11)

Notice that the term R0 guarantees ‖pk‖ ≤ ∆k ≤ ∆̄ ≤ R0. It can also be proved that,

since c1 ≤ 1, we have ∆̄ ≤ ε
β

. This means that ∀∆k ∈ (0, ∆̄], min
(
∆k ,

ε
β

)
= ∆k , allowing the

previous manipulation (2.10) to be expanded further:

|ρk − 1| ≤
∆2
k(β2 + L

2 )

c1εmin
(
∆k ,

ε
β

) =
∆2
k(β2 + L

2 )

c1ε∆k
=
∆k(

β
2 + L

2 )
c1ε

≤
∆̄(β2 + L

2 )
c1ε

≤ 1
2
, (2.12)

since ∆̄ ≤ c1ε
β +L

.

This, however, would make ρk ≥
1
2
≥ µ1. We then have ∆k+1 ≥ ∆k whenever ∆k ≤ ∆̄,

which means that the reduction in ∆k comes when ∆k > ∆̄. From this we conclude that

∆k ≥min(∆K , ∆̄D), ∀k ≥ K (2.13)

We now suppose that there is an infinite subsequence K in which ∀k ∈ K, ρk ≥ µ1.

Then, for k ∈Kand k ≥ K we have

f (xk)− f (xk+1) = f (xk)− f (xk + pk) ≥ µ1[mk(0)−mk(pk)] ≥ µ1c1εmin
(
∆k ,

ε
β

)
.

Since we know that f is bounded below and that at each iteration the function values

either are kept constant or are decreased, the left-hand side converges to zero. This means

that the right-hand side will also have to converge to zero and as such we can write

lim
k∈K, k→∞

∆k = 0.

This contradicts the previous statement in (2.13). Therefore, the subsequence K

cannot exist and so, for every subsequence K there must exist k ∈ K such that ρk < µ1.

This implies that ρk < µ1 for all k ∈K sufficiently large. Otherwise, it would be possible

to consider a subsequence of K with the property ρk ≥ µ1, which would lead to the

previously established contradiction. So, since ρk < µ1 for all sufficiently large k ∈K, the

11
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algorithm will reduce ∆k by a constant factor of D, reaching the result lim
k→∞

∆k = 0, again

contradicting the same statement. This means that the initial assumption ‖gk‖ ≥ ε, ∀k ≥ K
is false, giving us the desired result.

We can now prove a stronger version of this result, by imposing η > 0.

Theorem 4. Suppose that η > 0 and that all the hypothesis of Theorem 3 are satisfied. Then

lim
k→∞

gk = 0

Proof. First, let’s consider a positive index m with gm = g(xm) , 0. Using L again to denote

the Lipschitz constant for g on S(R0), we have the following:

‖g(x)− gm‖ ≤ L‖x − xm‖, ∀x ∈ S(R0).

Defining the constants ε and R as

ε =
1
2
‖gm‖ > 0, R = min

(ε
L
,R0

)
,

we can consider the ball B(xm,R) defined as

B(xm,R) = {x | ‖x − xm‖ ≤ R},

which is contained in S(R0) and so Lipschitz continuity of the gradient within this ball is

guaranteed. Hence,

x ∈B(xm,R) =⇒ ‖g(x)‖ ≥ ‖gm‖ − ‖g(x)− gm‖ ≥
1
2
‖gm‖ = ε. (2.14)

We can now infer on the sequence {xk}k≥m. If it stays contained within the ball B(xm,R),

then we would have ‖gk‖ ≥ ε > 0, ∀k ≥ m. This can be proven false using a reasoning

similar to the one of the previous proof and so we can conclude that the sequence {xk}k≥m
will eventually leave the ball B(xm,R).

Let l + 1, with l ≥ m, denote the index of the first iterate after xm to leave the ball

B(xm,R). Then ‖gk‖ ≥ ε, ∀k ∈ [m,l], k ∈ N and we can use assertion (2.9) to write

f (xm)− f (xl+1) =
l∑

k=m

f (xk)− f (xk+1) ≥

≥
l∑

k=m,xk,xk+1

η[mk(0)−mk(pk)] ≥

≥
l∑

k=m,xk,xk+1

ηc1εmin
(
∆k ,

ε
β

) (2.15)

where xk , xk+1 limits the sum to iterations where a non null step has been taken. Let’s

now explore the cases where ∆k ≤ ε
β , ∀k ∈ [m,l], k ∈ N, and where ∆k >

ε
β for some k in the

same conditions. In the first case, we have

12
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f (xm)− f (xl+1) ≥ ηc1ε
l∑

k=m,xk,xk+1

∆k ≥ ηc1εR = ηc1εmin
(ε
L
,R0

)
, (2.16)

while in the second case, we have

f (xm)− f (xl+1) ≥ ηc1ε
ε
β
. (2.17)

Joining the two, we can safely say that

f (xm)− f (xl+1) ≥ ηc1εmin
(
ε
β
,
ε
L
,R0

)
. (2.18)

Let’s now denote the lower bound of the function by a finite value f ? . We know that

f (xm)−f ? ↓ 0, since the sequence {f (xk)}∞k=0 is decreasing and bounded below. Expanding

on this difference, we also get

f (xm)− f ? ≥ f (xm)− f (xl+1) ≥ ηc1εmin
(
ε
β
,
ε
L
,R0

)
= ηc1

1
2
‖gm‖min

(
‖gm‖
2β

,
‖gm‖
2L

,R0

)
> 0,

(2.19)

from which we can retrieve that gm→ 0, concluding the proof.

The previous result states that the gradient converges to zero, proving that we have

reached a stationary point. Note that this does not guarantee convergence to a minimum.

For that we need to introduce second-order information. If we guarantee that Bk = ∇2f (xk)

at every iteration, then second-order sufficient conditions are met and the stationary point

reached is in fact at least a local minimum of the function (see [18]).
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3
Global Optimization based on Trust-region

Methods and Clever Multistart

3.1 General structure

As mentioned before, our goal is to address global minimization problems, with con-

tinuous variables and second order differentiable objective functions, subject to bound

constraints, which will guarantee the existence of a global minimum. We will resource to

an iterative trust-region method, coupled with a clever multistart strategy, that includes

merging steps for a better performance.

The main structure of the algorithm is organized in three steps: initialization/re-

launching step, trust-region step, and stopping criteria step. The algorithm keeps a list of

points, classified as active or inactive, and generated at any of the first two steps. Active

points can be selected as centers for the trust-region step and will be the candidates to lo-

cal minimizers. Inactive points flag subdomains of the feasible region where the objective

function presents bad values.

After generating a set of initializations, the corresponding points are compared and

classified as active or inactive (this classification will be detailed in Section 3.2). An active

point is then selected for a trust-region step. Different criteria can be considered for

this selection and will be detailed in the following sections. A quadratic Taylor-model is

built for the point selected, locally representing the objective function, and minimized

in a trust-region around the current iterate, considering the bounds defining the feasible

region (see Chapter 2).

If the point resulting from the model minimization is accepted, according to the

trust-region ratio (see Chapter 2), the list of points is updated by comparing it to the

points already in the list. If the new point is close to some point already in the list,

the corresponding function values are compared and only the best point is retained.
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Although, if the new point is far from every point in the list, it will be accepted. Different

measures of closeness can be adopted that use the trust-region radius associated to each

point. If accepted, the new point will be added to the list, after being classified as active or

inactive (see Section 3.2). After, stopping criteria are checked and, if not met, a decision

about the need of performing new initializations is taken, possibly relaunching new

points. Figure 3.1 summarizes the main steps of the algorithm.

Figure 3.1: Flowchart illustrating the algorithmic steps.

In the following sections, detailed descriptions will be provided for the different

procedures.

3.2 Adding points to the list

Anytime that a point is generated by the algorithm, it should be classified as active or

inactive, possibly being added to the list. Points are saved in the list as tuples of form

(x;fx;rx;ax;mx), with x ∈ Rn representing the coordinates of the point, fx the correspond-

ing function value, rx the associated trust-region radius, ax a binary status classifying the
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point as active or inactive, and mx representing a binary status that indicates if the point

has already been identified as a local minimizer.

It is important to define which points are worth keeping memory of and of those,

which ones are also worth being used as centers for the trust-region step. There is no

value in exploring points that are already identified as local minimizers. So, if a second-

order stationarity condition is satisfied, mx will be set equal to 1. These points will not

be selected as model centers in the trust-region step.

Points that are isolated from every point in the list are added to it as active points,

representing a part of the feasible region not yet explored. In this case, an initial trust-

region radius is defined for the point. This can only occur at the initialization/relaunching

step, since a point generated at the trust-region step always receives the trust-region

radius resulting from the trust-region iteration.

When a point is comparable with another point in the list, the point with the worst

function value will change its status to inactive. If a new point presents a better function

value than at least one active point in the list, then this new point will be added to the

list and the point already in the list will change its status to inactive. The status of the

new point will be active, if no other point in the list comparable with it presents a better

objective function value, or inactive, if there is another point in the list comparable with

it that presents a better function value than the new point. In this last case, a merge has

occurred. This merging procedure distinguishes the proposed algorithm from a local

trust-region method coupled with a multistart strategy, since not all the trust-region

searches will be conducted until the end.

Different comparison measures can be adopted to represent the proximity between

two points. Natural choices would be to choose the minimum or the maximum between

the trust-region radius of the points x, y under comparison, but other approaches could

be taken. This would be translated into the use of function m(rx, ry) in Algorithm 3.1,

where ri represents the trust-region radius of point i.

When a new point is compared to the list, an initial trust-region radius should be

defined for it. If the new point was generated at an initialization/relaunching step, then

it receives the initial trust-region radius. If the new point was generated at a trust-region

step, then the trust-region center changes its status to inactive and the new point receives

the trust-region radius, after being updated according to the rules described in Chapter

2.

This initial trust-region radius is used in function m(·, ·) to decide to which list points

the new point should be compared to. It is also used in the definition of the final trust-

region radius that will be the one of the new point when added to the list. The proposed

formula avoids very large radius, resulting from the initialization/relaunching step, when

the point that will be added to the list is going to replace a point which has already been

explored and has a reasonably small trust-region radius.
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Therefore, the final trust-region radius of the point being added to the list tries to

maintain some of the spatial exploration provided by the points being inactivated. With

this purpose, an auxiliary radius, raux, is defined, by adding the distance between the

two points to the radius associated with the point that is going to be inactive. In this

way, some information of the inactivated point is kept, allowing the computation of a

more precise model when the list points already have small radius. However, in order to

keep the convergence results of the base trust-region method, the minimum between this

value and the radius obtained from the trust-region step should always be considered

(see Section 3.6).

Figure 3.2 illustrates some possible cases for the updated radius, when the resulting

radius raux is either larger or smaller than the radius provided by the trust-region step.

Algorithm 3.1 formalizes the procedures described.

x y yx

Figure 3.2: Resulting raux (dotted blue circle) from the comparison between the new point
x (in black) and the list point y (in red). The resulting radius cannot be accepted on the
left example, as it exceeds the original radius provided by the trust-region step, but it is
accepted on the right.
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Algorithm 3.1 Adding points to the list

Requires: list L of saved tuples, list Lini of new tuples
for all (x,fx, rx, ax,mx) ∈ Lini do

if min
y∈L

(‖x − y‖ −m(ry , rx)) > 0 then

if x is a local minimizer then
L = L∪ (x,fx, rx,1,1)

else
L = L∪ (x,fx, rx,1,0)

end if
else
addx = 0; raux = 0; ax = 1
for all y ∈ L do

if ‖x − y‖ ≤m(rx, ry) then
if fx < fy then

raux = max
(
raux,‖y − x‖+ ry

)
if ay = 1 then
addx = 1

end if
ay = 0

else
ax = 0

end if
end if

end for
if addx = 1 then
rx = min(rx, raux)
if x is a local minimizer then
L = L∪ (x,fx, rx, ax,1)

else
L = L∪ (x,fx, rx, ax,0)

end if
end if

end if
end for

3.3 Initialization/relaunching step

At the beginning of the optimization process, a point or a list of feasible points should

be provided to the algorithm. A simple way of doing it is by considering the centroid of

the feasible region, when a single initialization is intended, or to use a linestart approach,

if more than one point is required. Linestart considers a line connecting the problem

bounds and generates a given number of equally spaced points within this line, diagonally

exploring the feasible region.

Additionally, at the end of each iteration, a decision is made about the need of new

initializations. This could be related to the frequency of unsuccessful iterations or to
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the number of active points, not yet identified as local minimizers, remaining in the list.

Different strategies can be used for generating new points. Random uniform sampling or

Latin hypercube sampling [17] are possible choices but would confer a random behavior

to the algorithm.

Alternatively, low-discrepancy sequences, like Sobol sequences [21] or Halton se-

quences [10] can be used, allowing the algorithm to remain deterministic, while pro-

viding an efficient and thorough exploration of the feasible region. For reasonably small

numbers of points, these low-discrepancy sequences provide a dense coverage of the en-

tire region, unlike pure uniform random generation that may leave some areas poorly

represented and others overly characterized (see Figure 3.3). Works detailing these se-

quences usually refer good results when applying them to numerical integration using

quasi-Monte Carlo rules, which requires a dense coverage of the domain (see [5, 7, 19]).

Figure 3.3: Spread of 500 generated points through the Halton sequence (top left), the
Sobol sequence (top right) and uniform random generation (bottom).

In [3] the authors proposed the 2n-centers method, which consecutively divides the

box representing the feasible region into smaller boxes, using the centroid of each of the

new boxes as initialization. This method scales poorly with the problem dimension, so it

can be only valuable for problems with a very low number of variables.
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3.4 Trust-region step

The first decision to be taken at this step is to select the point where to build the Taylor

model and where to perform the trust-region iteration. Only active points not yet identi-

fied as local minimizers are worthy of being selected. Since the main goal is to identify

the global minimum, a greedy approach will dictate the selection of the point presenting

the lowest objective function value. Algorithm 3.2 details the procedure.

Algorithm 3.2 Selecting the model center
Requires: list L of saved tuples, rtol minimum tolerance for trust-region radius
Select xcenters, subset of L where ∀(x,fx, rx, ax,mx) ∈ xcenters, rx > rtol ∧ ax = 1∧mx = 0
xcenters = arg min

x∈xcenters
(fx)

if |xcenters| > 1 then
xcenters = arg max

x∈xcenters
(rx)

end if
if |xcenters| > 1 then
xcenters = xcenters(1)

end if

As we can see, ties are broken by selecting the point with the largest trust-region

radius, meaning that the corresponding line of search has not yet been fully explored

or is being successful in generating new points with a good agreement between the true

function and the Taylor’s model. If ties prevail, we simply choose the first point stored,

as eventually all points in these conditions will be explored.

After choosing the model center, it is used in a single iteration of a trust-region method

(see Algorithm 2.1). Changes in the basic trust-region step are not required. If the solution

of the trust-region subproblem is accepted, then an attempt of adding the point to the

list is performed, following the procedure detailed in Section 3.2.

If the point fails in being added as active to the list, the iteration is declared as unsuc-

cessful, which is relevant when the criterion for initializing new searches is based on the

number of consecutive unsuccessful iterations.

3.5 Stopping criteria step

When analyzing the limit behavior of an algorithm, stopping criteria should not be con-

sidered. However, in practical settings, some strategies should be defined, allowing to

improve the numerical efficiency of the corresponding implementation.

Besides only allowing a maximum number of iterations for the algorithm, the iterative

procedure will stop if all active points have been identified as being local minimizers,

meaning that the norm of the corresponding gradient is below a given small positive

threshold and the eigenvalues of the Hessian matrix are strictly positive, or if all points
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have already been extensively explored, which traduces in a small value for the corre-

sponding trust-region radius. This last stopping criteria is justified by the bounded

feasible region. A local minimum may occur at the border of the feasible domain, where

optimality conditions may fail to identify stationarity.

3.6 Convergence results

When proposing a new algorithm, more than exhibiting compelling numerical results

reporting the corresponding numerical performance, the algorithmic structure should be

analyzed, ensuring that the good numerical behavior was not obtained by chance.

The proposed algorithm relies heavily on the trust-region step. Trust-region methods

have shown to be locally convergent in Section 2.3, regardless of the initialization pro-

vided. Thus, if a trust-region method is coupled with a simple multistart strategy, local

convergence will still hold, for every sequence initialized at a different point. However,

the proposed algorithm does not use a simple multistart strategy due to the procedure

considered for adding new points to the list (see Section 3.2).

What makes the adding procedure problematic is the update of the trust-region radius.

Under the conditions of Section 2.3, for ensuring convergence, any solution of the trust-

region subproblem is required to provide a decrease in the model that satisfies equation:

mk(0)−mk(pk) ≥ c1‖gk‖min
(
∆k ,
‖gk‖
‖Bk‖

)
, (3.1)

where ∆k represents the trust-region radius.

The dependence on the trust-region radius is clear. When an iteration of a trust-region

method is performed, the approaches considered for solving the trust-region subproblem

will ensure this decrease. Since in the procedure for adding a new point to the list, the

new trust-region radius never exceeds the one resulting from the trust-region step, the

previous inequality will still hold for the new radius. Local convergence is guaranteed,

in similar conditions to the ones of Section 2.3, for every linked subsequence, where each

point was computed from the previous one at a trust-region step or, when being added

to the list, it inactivates the previous point in the linked sequence.
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4
Numerical Experiments

4.1 Performance assessment

This chapter reports the numerical experiments that were conducted during the algorith-

mic development, allowing to assess the performance of the code and to propose new

algorithmic variants.

All the implementations were developed in MATLAB [16]. At the beginning, the

algorithm was initialized with linestart, evenly spacing in the line joining the problem

bounds as many points as the problem dimension. Additionally, the centroid of the

feasible region was always considered as initialization. For the trust-region step, the

base version of the algorithm considered typical parameters from the literature (see [20]),

namely µ1 = 1/4, µ2 = 3/4, and η = 1/10 (see Algorithm 2.1). The initial value and the

maximum size allowed for the trust-region radius were considered problem dependent,

being defined as ∆0 = ‖ub − lb‖/10, and ∆̂ = ‖ub − lb‖/3, where lb and ub denote the

lower and upper bounds of the problem. For updating the trust-region radius, the factors

I = 6/5 and D = 1/4 were used. These values result from a light calibration that was

performed over the base version.

In the trust-region step, the solution of the trust-region subproblem, corresponding

to the minimum of the quadratic Taylor-model inside the considered trust-region, was ob-

tained with function trust from MATLAB. This function requires the gradient vector and

the Hessian matrix as input, which define the current quadratic model. Since information

about derivatives was not available for the problem collection and considering that the

codification of this information was time-consuming and prone to error, the Matlab suite

DERIVESTsuite (see [4]) was used, which considers finite-differences to estimate deriva-

tives, through the function derivest. This function is used jointly with functions gradest
and hessian, to produce the approximations to the first and second order derivatives of a
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given function. Function gradest simply performs repeated calls to derivest, while func-

tion hessian, as the author explains, applies an "efficient computation of the off-diagonal

elements of the Hessian matrix", improved by applying Romberg extrapolation. It is not

possible to pass bounds to function trust, when solving the trust-region subproblem. To

address the bound constraints, the resulting point was projected on the hyperrectangle

that defines the feasible region.

When comparing two points, the largest ratio between the two points is used for

comparison, by setting m(rx, ry) = max(rx, ry), promoting merging.

The algorithm would stop once that all active points have been identified as local

minimizers, meaning that the norm of the corresponding gradient vector was below 10−5

and all eigenvalues of the Hessian matrix were larger than 10−8, or when all active points

presented a trust-region radius below 10−4. A maximum number of 5000 iterations was

allowed.

To select the best algorithmic variant, from the ones tested, and to assess the numerical

performance of the algorithm by comparison with other solvers, performance profiles (see

[6]) have been used , which will be described in the next section.

4.1.1 Profiles and metrics

Performance profiling is a technique that facilitates the assessment to the performance

of solvers on a certain metric through a plot of a cumulative distribution function ρs(θ),

related to performance ratios of solver s. It is particularly useful in large test sets, when

analyzing large tables of results would be unpractical. However, it can also prove to be

useful in test sets of small sizes, due to the benefits of the visual representation, that

allows an easy assessment of data. Performance profiles also facilitate the comparison of

a large number of solvers.

Let ts(p) denote the measured performance of solver s ∈ S on problem p ∈ P for a

specific metric, assuming that ts(p) > 0 and that lower values of ts(p) indicate a better

performance. The performance ratio is defined by

τp,s :=
ts(p)

min{tσ (p) : σ ∈ S}
≥ 1. (4.1)

The cumulative distribution function for a solver s ∈ S is therefore defined by

ρs(θ) =
1
|P|
×
∣∣∣∣{p ∈P : τp,s ≤ θ

}∣∣∣∣ , (4.2)

with ρs(θ) being the probability that solver s is within a factor θ of the best performance

over all solvers on the set P. Thus, the value of ρs(1) represents the probability of the

solver s winning over the remaining ones. On the other hand, solvers with the largest

probabilities ρs(θ) for large values of θ are the most robust (the ones that solve the largest

number of problems in P).
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Different metrics can be considered to build performance profiles, like is the case of

the amount of time spent by a solver to attain the stopping criterion. Despite the popu-

larity of this metric, it is not enough to address the performance of a global optimization

algorithm. Additionally to computational time, we will consider the minimum objective

function value computed, the number of local minima found and the iteration where the

global minimum is attained, as metrics to compare the different strategies and solvers.

From these, priority will be given to the best objective function value found and to the

number of points identified as local minimizers.

For the latter, larger values indicate better performance. Thus, when computing

performance profiles for this metric, we set ts(p) = 1/ ts(p). Modifications are also required

when analyzing functions that allow nonpositive values, where the ratio (4.1) could even

not be defined. We will follow the procedure proposed in [23], where a translocation of all

the function values is considered to guarantee strictly positive values, while maintaining

the same relative distance among points, which allows the results to remain comparable.

It is important to notice that the hierarchical comparison of solvers based on perfor-

mance profiles can not be done, unless only two solvers are plot (see [8]). Instead, one

should only classify the best scenario, leaving the remaining cases unclassified.

4.1.2 Problem collection

As test set, we used the collection of problems reported in [3], selecting only second

order differentiable functions. Table 4.1 details the problems, which in majority present

identical bounds for all variables. The notation “-” stands for an unknown number of

local or global minima.

Table 4.1: Problem set

Problem Dimension
Lower Upper Number of known
Bound Bound Local minima Global minima

aluffi_pentini 2 -10 10 2 1
bohachevsky 2 -50 50 - 1
branin_hoo 2 [-5 0]> [10 15]> 3 3

cosine_mixture 2 -1 1 - -
cosine_mixture 4 -1 1 - -
dekkers_aarts 2 -20 20 3 2
exponencial 2 -1 1 - 1
exponencial 4 -1 1 - 1

fifteenn_local_minima 2 -10 10 152 1
fifteenn_local_minima 4 -10 10 154 1
fifteenn_local_minima 6 -10 10 156 1
fifteenn_local_minima 8 -10 10 158 1
fifteenn_local_minima 10 -10 10 1510 1

goldsteen_price 2 -2 2 4 1
griewank 5 -600 600 - 1
griewank 10 -400 400 - 1

hosaki 2 [0 0]> [5 6]> 2 1
kowalik 4 0 0.42 - 1

mccormick 2 [-1.5 -3]> [4 3]> 2 1
multi_gaussian 2 -2 2 5 1

neumaier2 4 0 4 - 1
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Problem Dimension
Lower Upper Number of known
Bound Bound Local minima Global minima

neumaier3 10 -100 100 - 1
periodic 2 -10 10 50 1

poissonian 2 [1 1]> [21 8]> - -
powell 4 -10 10 1 1

rastrigin 10 -5.12 5.12 - 1
rosenbrock 2 -5.12 5.12 1 1
shekel_45 4 0 10 5 1
shekel_47 4 0 10 7 1

shekel_410 4 0 10 10 1
shekel_foxholes 5 0 10 - 1
shekel_foxholes 10 0 10 - 1

shubert 2 -10 10 760 18
sinusoidal 10 0 180 - 1

sixhumpcamel 2 [-3 -2]> [3 2]> 6 2
sphere 3 -5.12 5.12 1 1

tenn_local_minima 2 -10 10 102 1
tenn_local_minima 4 -10 10 104 1
tenn_local_minima 6 -10 10 106 1
tenn_local_minima 8 -10 10 108 1

threehumpcamel 2 -5 5 3 1
transistor 9 -10 10 1 1

wood 4 -10 10 1 1

4.1.3 Solvers for comparison

Efficiency and efficacy of an algorithm can be stated when it is compared to state-of-

art solvers for the same class of problems. Unfortunately, finding solvers for global

optimization problems with second order differentiable functions was not an easy task.

The algorithm introduced in [12] could be a promising resource for comparison. However,

it is implemented in fortran90 and it is not easily convertible to MATLAB. Running the

code in fortran is a challenging task for an inexperienced user, as mentioned by the

authors when contacted about the availability of the computational implementation. For

this reason we were forced to give up on the use of the aforementioned code.

The Global Optimization toolbox of MATLAB has two functions dedicated to global

optimization, that ended up being our comparison solvers: Globalsearch and Multistart
[22]. It is important to notice that the base license of MATLAB does not include these

functions, requiring the purchase of the Global Optimization toolbox additionally to

the Optimization toolbox, which is a disadvantage when compared with the proposed

algorithm.

Globalsearch and Multistart use fmincon as the base local optimization solver. This last

function is suited to find the minimum of a constrained nonlinear multivariable function

using a gradient-based method. Nonlinearity can be presented in both the objective

function and constraints. The default settings consider an interior-point method, but

the user is allowed to switch to trust-region-reflective, sequential quadratic or active-set

methods, according to the features of the problem to be solved.

Globalsearch function runs fmincon from a required starting point x0. If this run

converges, Globalsearch records the start point and the end point for an initial estimate
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on the radius of a basin of attraction for x0. The Globalsearch heuristic assumption is that

basins of attraction are spherical.

The function uses the scatter search [22] algorithm to generate a set of potential start-

ing points (1000 by default) within the problem bounds. If the problem is unbounded,

artificial bounds are imposed. The objective function is then evaluated at a subset of

these trial points, selected using a score function that sums the point’s objective function

value to a multiple of the sum of the constraints violations, meaning that for feasible

points the algorithm just takes the objective function value as the score. By default, 200

out of the initial 1000 sampled points go through this process, with the remaining points

being removed from the list of trial points. The point of this subset with the best score is

selected to run fmincon.

The solutions to both runs of fmincon are then compared, and the smallest of these

values is used as a threshold value, called localSolverThreshold within the code. The

solutions obtained from fmincon in the first two runs, from x0 and the best scored point

out of the initial sample, are then used as centers for spheres that estimate basins of

attraction, with radius corresponding to the distance to the initial points of each run. The

steps of the algorithm are repeated for the remaining points of the subset of trial points

until all points satisfying the following conditions have been explored, through running

fmincon, or the maximum allowed time is attained:

• If point p is not in an existing basin, defined by the estimated spheres;

• If score(p)<localSolverThreshold;

• If point p is within bounds.

Within this last step, updates to internal variables are also performed to improve the

estimation of existing attraction basins and include new attraction basins defined from

convergence of trial points. The lowest value recorded for an explored basin within the

allotted time is taken as the minimum value and is returned.

Multistart is a much simpler and straightforward method that focuses on running

fmincon on any feasible point initially available. The user can provide a list of initial

points to run the algorithm or the cardinality of a set of points to be randomly generated

within the problem bounds. The local solver fmincon is run on each of these starting

points, until stopping criteria are met, without any merging stages, saving each local run’s

result and continuing to the next point. Similarly to Globalsearch, Multistart continuously

keeps track of the elapsed time, being the maximum run time and the exploitation of all

starting points provided the two allowed criteria to stop the algorithm.
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4.2 Initialization/relaunching step

As mentioned in Section 3.3, different strategies can be used for initialization and have

been tested. Deterministic methods provided the best results, with the additional ad-

vantage of a deterministic behaviour. We only present the results obtained with the

initialization through Halton and Sobol sequences, whenever consecutive unsuccessful

iterations occur. In our experiments, we tested performing the initialization/relaunching

step after a fixed number of consecutive unsuccessful iterations was obtained, ranging

from two to five. In any case, the number of points considered as new initializations

equaled the problem dimension.

The four metrics introduced in Section 4.1.1 were used to assess performance, priori-

tizing the minimum value obtained for the objective function, followed by the number of

local minima identified.

We started the calibration of the algorithm by defining the number of consecutive

unsuccessful iterations required to perform the initialization/relaunching step, when a

deterministic method is used to generate new points. Despite the deterministic behavior

of the algorithm, small variations can occur on the elapsed time. Thus, we ran our

algorithm twenty times and considered the average time of these runs to report on the

tables as well as to build the performance profiles.

When analyzing the two main metrics for the case where new points are generated

with the Halton sequence, we realized that all the four variants reached the same mini-

mum value for the objective function, reducing the corresponding performance profile

to a straight line. For this reason, only the profile regarding the number of identified

minima is presented in Figure 4.1.

Figure 4.1: Performance profile for the number of identified minima when initializing
new points through the Halton sequence, after a fixed number of consecutive unsuccessful
iterations.

Analyzing this profile, we can conclude that performing the initialization/relaunching

step after two consecutive unsuccessful iterations consistently returns the best results. In

fact, this variant reaches ρ(θ) = 1 for small values of θ, and therefore can be considered
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the best strategy.

For the case of initialization through the Sobol sequence, Figure 4.2 reports the profiles

for the two main metrics.

Figure 4.2: Performance profiles for the minimum objective function value (left) and
the number of minima identified (right), when initializing new points through the Sobol
sequence after a fixed number of consecutive unsuccessful iterations.

As we can observe from these profiles, the results for the four strategies tested are

quite similar to the ones obtained using Halton sequence initializations, with a slight

disadvantage of the variant that performs the initialization/relaunching step after five

consecutive unsuccessful iterations, when the metric considered is the best objective

function value. When comparing the number of minima, the best variant is again the

strategy that considers two consecutive unsuccessful iterations before initializing new

points.

Finally, we compared the best strategy for each initialization method, to decide which

one to incorporate in our algorithm. The results on the two main metrics are reported in

Figure 4.3.

Figure 4.3: Performance profiles for the minimum objective function value (left) and the
number of minima identified (right), when initializing through either Halton or Sobol
sequences, after two consecutive unsuccessful iterations.
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The results are extremely close. For the minimum value of the objective function,

initializing through the Sobol sequence has an advantage, regardless a small one. On the

other hand, when analyzing the profile for the number of local minima identified, the

variant that uses the Sobol sequence is less efficient and improves slower with the increase

of θ than the one that uses the Halton sequence strategy, that easily reaches the factor

θ of the best solver, where it solves the problems with 100% probability. Considering

the relevance of the objective function value found for global optimization, initialization

through the Sobol sequence is the selected method.

Comparisons with Globalsearch and Multistart were performed to rank our method

against these solvers. Results are reported in Table I.1 in the Annex. Globalsearch was

initialized with the centroid of the feasible region, whereas Multistart initialized with a

linestart and the centroid of the feasible region, similarly to our algorithm. Both solvers

run with the default settings. For stopping, the elapsed time of our algorithm was sup-

plied to the solvers, so that the search stops if this time is attained or when other internal

stopping criterion is activated. Due to the randomness of Globalsearch and Multistart, we

ran these two solvers twenty times and considered average values for all metrics to build

the tables and the performance profiles. These settings will prevail along this chapter.

4.3 Improvements to the initialization/relaunching step

4.3.1 Based on active points

From the previous results, we notice that the algorithm appears to get stuck in local

minima quite often, possibly meaning that the feasible region is not being completely

explored. An illustrative example of this situation is problem tenn_local_minima, which

corresponding results are presented in Table I.1, in the Annex. This problem has an

incredible amount of local minima, varying with the problem dimension, as we can see

in Figure 4.4 for the case of dimension two. Despite this, our algorithm rarely registers

more minima than the dimension of the problem, as is the case for dimensions two and

four, meaning that all starting points converged to nearby local minima without failure,

satisfying second order optimality conditions and verifying the stopping criteria with a

small number of new initializations. This means that there is an unexplored part of the

feasible region that needs to be reached and analysed.

To overcome this issue, a possibility is to force the algorithm to initialize with a

different criterion. The second order optimality conditions give us information about the

active points on the list that have already converged to a local minimum. The selection

of the center point for the trust-region step incorporates this information, discarding

points that have already converged to a local minimum, to not waste time in needless

calculations. However, when the list contains only a single active point not yet identified

as a local minimizer, we can force the algorithm to initialize new points.

Besides the benefits of this new strategy in finding extra minima, when all starting
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Figure 4.4: Plot of function tenn_local_minima for dimension two.

points tend to quickly converge to local minima, it also avoids relying only on the conver-

gence to a single point, allowing the choice of potentially better new points in the feasible

region. Therefore a new strategy is defined that considers to perform the initialization/re-

launching step through the Sobol sequence when two consecutive unsuccessful iterations

were performed or when the list of active points, not yet identified as local minimizers, is

a singular set.

A comparison to the previous strategy was made in order to verify whether or not

there was an improvement. The results are reported in Figure 4.5, for the two main

metrics.

Figure 4.5: Performance profiles for the minimum objective function value (left) and the
number of minima identified (right), when initializing through the Sobol sequence, after
performing two consecutive unsuccessful iterations or combining this criterion with the
existence of a single active point in the list, not yet identified as a local minimizer.

As stated in the above figures, the new strategy shows an improvement in the two

metrics of higher importance, being better than the old variant in terms of the approxi-

mation obtained to the global minimum and achieving a remarkable improvement on the

number of local minima identified. Detailed results for this strategy and a comparison to

Globalsearch and Multistart can be found in Table I.2 of Annex I.

31



CHAPTER 4. NUMERICAL EXPERIMENTS

4.3.2 Balancing objective function value and spread

In global optimization there is always a compromise between evolving good quality so-

lutions, already found, and exploring new parts of the feasible region. In the current

version of the algorithm, the criterion for selecting the model center at a trust-region step

is solely based on the minimum value for the objective function, in a greedy approach.

To include some exploration of the feasible region, we decided to modify the criteria

for selecting the model center at a trust-region iteration, considering points far from the

model center selected at the previous iteration, but that additionally present reasonable

low objective function values.

With this goal, at the beginning of each trust-region step, we introduce the computa-

tion of a ratio, for every active point y in the list Lk , not yet identified as a local minimizer:

ratio(y) =
max
x∈X

(fx)− fy

max
x∈X

(fx)−min
x∈Lk

(fx)
+
‖y − xk‖
‖ub − lb‖

,

where X represents the set of all evaluated points, Lk states for the list at the previous

iteration, xk represents the model center at the previous iteration, and ub and lb represent

respectively, the upper and lower bounds of the problem. This ratio gives higher values

to distant points from the previous model center with good objective function values.

However, selecting as model center the point with the highest of these ratios did not

improve the results, as can be seen in Figure 4.6.

Figure 4.6: Performance profiles for the minimum objective function value (left) and the
number of minima identified (right), when initializing through the Sobol sequence, with
or without the new exploration method using ratios (two terms).

A second variant considers only the second term of the ratios, focusing on exploring

distant points with no regard for function values. This proved to be a better strategy

than the original version of the ratios, despite not being better than the variant defined in

Section 4.3.1, with slightly worst results in terms of best objective function value found

(see Figure 4.7 and Table I.3 in the Annex).
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Figure 4.7: Performance profiles for the minimum objective function value (left) and the
number of minima identified (right), when initializing through the Sobol sequence, with
or without the new exploration method using ratios (one term).

From these two profiles, we can observe very close results, with the previous variant

having an advantage in the obtained minimum objective function value. Despite this,

the profile for the number of local minima identified has a more prominent advantage

for low factors. In this case, the choice for the best variant was very influenced by the

preference for the approximation to the global minimum, in opposition to the number

of local minima found. Therefore, the strategy presented in Section 4.3.1, without the

exploration through ratios, continues to be the best so far.

4.4 Conservative approach to merging

For the current best version, the algorithm seems to excessively perform merging itera-

tions. This is the case of problems transistor and fifteenn_local_minima. The reason for this

could be directly related to the radius defined for comparison of a point x to another point

y in the list, denoted by the function m(rx, ry) in Algorithm 3.1. In fact, all of the previous

experiments considered this radius as the maximum of the two radius for points x and

y. However, a more conservative method for merging can be applied, by considering the

smallest radius of the two points when comparison is done, i.e., m(rx, ry) = min(rx, ry), for

each y ∈ L.

In Figure 4.8, we compare the conservative merging method with the previous best

algorithmic variant by plotting the profiles for the obtained minimum value and the

number of local minima found.
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Figure 4.8: Performance profiles for the minimum objective function value (left) and the
number of minima identified (right), considering the maximum and the minimum radius
for point comparison.

We can conclude that this strategy clearly improves the performance of the algorithm

in both metrics, despite suffering a slight loss of quality for high values of θ for the

number of local minima identified.

After all the algorithmic variants tested, we are now at a point where we can define

that the best variant of our iterative trust-region algorithm coupled with a smart multi-
start strategy is the one that employs initializations through the Sobol sequence, upon

two consecutive unsuccessful iterations of the trust-region method or if a single active

point (that has not yet converged to a local minimum) remains in the list, considering a

conservative strategy when comparing points on the merging stage.

4.5 Comparison with Globalsearch and Multistart

With the best variant of our algorithm defined, we compared its performance with the

Globalsearch and Multistart algorithms. As mentioned before, the quality hierarchy of the

solvers cannot be established when comparing more than two solvers on a profile. For

this reason, we compared our algorithm with the MATLAB solvers one at each time.
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Figure 4.9: Performance profiles for the minimum objective function value (left) and
the number of minima identified (right), when comparing our algorithm to Multistart
function, with default settings and linestart initialization plus the centroid.

Figure 4.10: Performance profiles for the minimum objective function value (left) and
the number of minima identified (right), when comparing our algorithm to Globalsearch,
with default settings and initialization with the centroid of the feasible region.

The complete results can be found on Annex I, Table I.4. Figure 4.9 shows that our

algorithm is slightly better in the estimation of the global minimum in comparison to the

Multistart function and outperforms Multistart in the number of local minima found.

The comparison results to Globalsearch function are similar, allowing to conclude that

this function is as efficient as our algorithm to reach the global minimum, but loses on the

number of local minima detected. This can be justified due to our algorithm being able to

identify and return local minima in the borders of the feasible region, where optimality

conditions may not be met. This is evident, for example, in hosaki and mccormick problems

(see Figure 4.11), where local minima corresponding to points (0,0)> and (−1.5,−3)>,

respectively, are correctly returned.
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Figure 4.11: Plots of functions hosaki (left) and mccormick (right).

There is also the case of the problem branin_hoo in which the literature does not

report all local minima correctly. Our algorithm returns one more local minimum that is

not a border point and also verifies second order optimality conditions. This guarantees

that the new reported minimum is indeed a local minimum that has not been previously

accounted for in the literature.

Finally, there is the case of problem powell in which two local minima are returned by

our algorithm, while the literature only reports one (which is correct since the function

is convex). The second point returned is the result of convergence to the same minimum,

stopped due to reaching a stage where the gradient is small enough and its Hessian

recognized as positive definite. If smaller tolerances were considered for the classification

of points as local minimizers, the point would evolve to the true minimum.

4.5.1 Remarks on previous comparisons

Comparing Globalsearch and Multistart with our algorithm, using their default settings

is not completely fair due to the different methods of optimization considered. There-

fore, new tests were performed with Globalsearch function, using the trust-region-reflective
solver when fmincon is called. As the gradient of the objective function should be sup-

plied by the user when trust-region-reflective method is considered, we resource to DE-

RIVESTsuite [4] to estimate the gradient of each point, similarly to its use in the Taylor’s

expansion of our algorithm. The results of this experience can be seen in Table I.5 in the

Annex. In fact, when we stop Globalsearch based on the computational times spent by our

algorithm and force it to employ a trust-region-reflective method, having to estimate the

gradient, the performance of this function decreases a lot.

Due to these results, we investigated the profile of MATLAB internal functions of

our algorithm, in terms of percentage of time spent to run each function, during the

optimization process. As expected, calls to the estimation of the derivatives, gradient

and Hessian are time consuming, along with the trust-region step and the function that

compares each new point to the list of points, denoted by Classification in Figure 4.12.
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Figure 4.12: Barplot of the average percentage of total time spent on the five functions
that consume the higher percentage of total time during the optimization process.

In a real application problem, the time spent in derivatives estimation can be dramat-

ically reduced if functions for computing the true derivatives are provided (or by using a

more efficient procedure for their numerical estimation).

Along with these results, we also ran Multistart providing as initializations all the

points generated by our algorithm at the initialization/relaunching step. These points are

generated according to our initialization criteria and provide a very good baseline that

improves the results obtained with Multistart, but also make the run times very similar.

This is indicative of the tradeoff between thorough exploration of the feasible domain and

fast approximation to the global optimum. These results can be seen in Table I.6, in the

Annex.
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5
Conclusions and Open Questions

In this thesis we proposed an algorithm for global optimization problems with continuous

variables and second order differentiable objective functions, when subject to bound

constraints. The algorithm is based on an iterative trust-region method coupled with a

clever multistart strategy that prevents to explore all the generated initializations until

the end. Points that are sufficiently close to each other are compared and only the best

ones are retained.

It is well-known that trust-region methods locally converge. Since during the merging

of points the trust-region radius of the kept point never exceeds the one resulting from

the trust-region step, similar convergence results hold for the proposed method.

A similar approach has already been successful in the global solution of problems

where derivatives of the function defining the problem are not available [3]. Numerical

results, considering the comparison to Globalsearch and Multistart MATLAB functions,

proved that the proposed algorithm is also competitive for derivative-based optimization,

taking a small advantage in the detection of the global minimum and outperforming both

solvers in the number of local minima found.

Although for the run time this algorithm is worse than the Matlab methods, mainly

due to the time spent to estimate derivatives to build the trust-region quadratic model, it

is important to notice that its implementation does not require the Global Optimization

Toolbox, to which Globalsearch and Multistart belong. Additionally, the proposed algo-

rithm is deterministic, always guaranteeing the same quality for the computed solution.

A research work is never finished and there are always new questions that deserve

to be addressed. A possible avenue to improve the performance of the algorithm is the

use of more efficient routines for the estimation of derivatives. The use of the solver to

address derivative-based optimization problems related to the minimization of radial

basis functions that appear in derivative-free optimization codes is also planned.
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Annex 1 Tables

In this Annex we present the detailed results obtained from the run tests performed on

our algorithm, as detailed in Chapter 4, with the corresponding results obtained from

Globalsearch and Multistart algorithms. The results presented are averages of twenty runs.

Globalsearch and Multistart were run in each case with a maximum computational time

equal to the average run times from the accompanying version of our algorithm. Default

settings are considered, when comparing other solvers against the final variant of our

algorithm. Exceptions occur in the last two tables, where a trust-region-reflective solver

is used in conjunction with Globalsearch (Table I.5), and Multistart is ran with all the

points considered as initializations by our algorithm (Table I.6) (and not only the ones

from the first iteration).

In these tables, we use the following header notations: Dim referring to Dimension,

Min referring to the obtained minimum objective function value, Min_count referring

to the number of local minima identified, It_min referring to the iteration where the

algorithm reached the minimum objective value, and Time referring to the run times

reported in seconds.

All the runs were executed in a PC with Intel® CoreTM i7-8550U CPU @ 1.80GHz

1.99GHz processor and 8GB of RAM.
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