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ABSTRACT

This dissertation is framed on the ongoing research project BoostDFO - Improving
the performance and moving to newer dimensions in Derivative-Free Optimization. The fi-
nal goal of this project is to develop efficient and robust algorithms for Global and/or
Multiobjective Derivative-free Optimization. This type of optimization is typically re-
quired in complex scientific/industrial applications, where the function evaluation is
time-consuming and derivatives are not available for use, neither can be numerically
approximated. Often problems present several conflicting objectives or users aspire to
obtain global solutions.

Inspired by successful approaches used in single objective local Derivative-free Op-
timization, we intend to address the inherent problem of the huge execution times by
resorting to parallel/cloud computing and carrying a detailed performance analysis. As
result, an integrated toolbox for solving single/multi objective, local/global Derivative-
free Optimization problems is made available, with recommendations for taking advan-
tage of parallelization and cloud computing, providing easy access to several efficient and

robust algorithms and allowing to tackle harder Derivative-free Optimization problems.

Keywords: Derivative-free Optimization, multi/single objective, global/local optimiza-

tion, numerical algorithms, parallelization, cloud computing, integrated toolbox
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REsumMmo

Esta dissertacao insere-se no projecto cientifico BoostDFO - Improving the performance
and moving to newer dimensions in Derivative-Free Optimization. O objectivo final desta
investigacao é desenvolver algoritmos robustos e eficientes para problemas de Optimiza-
¢ao Sem Derivadas Globais e/ou Multiobjectivo. Este tipo de optimizagao ¢ tipicamente
requerido em aplicacoes cientificas/industriais complexas, onde a avaliacao da funcao é
bastante demorada e as derivadas nao se encontram disponiveis, nem podem ser apro-
ximadas numericamente. Os problemas apresentam frequentemente varios objectivos
divergentes ou os utilizadores procuram obter solu¢oes globais.

Tendo por base abordagens prévias bem-sucedidas utilizadas em Optimizag¢ao Sem
Derivadas local e uniobjectivo, pretende-se abordar o problema inerente aos grandes tem-
pos de execucao, recorrendo ao paralelismo/computacao em cloud e efectuando uma
detalhada analise de desempenho. Como resultado, é disponibilizada uma ferramenta
integrada destinada a problemas de Optimizacao Sem Derivadas uni/multiobjectivo, com
optimizacao local/global, incluindo recomendacdes que permitam tirar partido do parale-
lismo e computacao em cloud, facilitando o acesso a varios algoritmos robustos e eficientes

e permitindo abordar problemas mais dificeis nesta classe.

Palavras-chave: Optimiza¢ao Sem Derivadas, uni/multiobjectivo, optimizacao local/glo-

bal, algoritmos numeéricos, paralelismo, computagao em cloud, ferramenta integrada
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CHAPTER

INTRODUCTION

The present work is framed within the research project BoostDFO: Improving the perfor-
mance and moving to newer dimensions in Derivative-Free Optimization, supported by FCT
— Fundagio para a Ciéncia e a Tecnologia [PTDC/MAT-APL/28400/2017]. The main goal
is to improve the efficiency and the robustness of existent algorithms designed to solve

derivative-free optimization problems.

Derivative-free optimization (DFO) is a specific field of nonlinear optimization char-
acterized by the absence of information about derivatives. In this scientific domain,
the function to optimize can be nonsmooth, or, even when smooth, derivatives may be
unavailable for use or impossible to numerically approximate (given, for instance, the
presence of noise). The objective function can even work as a black-box model, only
providing the result of point evaluations [15]. As we can deduce, typical methods used
in nonlinear optimization (like steepest descent or Newton method) cannot be applied
given the absence of derivatives and the impossibility of its efficient approximation. Thus,

different algorithmic approaches are required to address this class of problems.

Applications include solving complex technical problems of industrial or scientific
nature whose goal is ideally to find a global minimum, fitting one or several objectives.
Constraints can also be present [15]. The main challenge with this sort of problems
comes from function evaluations, which are usually very expensive — computationally
and time-consuming. Each evaluation could take from a few seconds or minutes, to hours
or more. For this reason, the state-of-the-art includes problems with only a few hundred
variables at best, which is several orders of magnitude below nonlinear optimization with

derivatives [15].

Currently, several implementations of DFO solvers are available to the community. In
this work we consider SID-PSM [19, 23], DMS/boostDMS [10, 22], GLODS [20] and
MultiGLODS [21], all property of the research team, implemented in MATLAB [39].

1



CHAPTER 1. INTRODUCTION

These are all Directional Direct Search methods, differing on being suited for local or
global optimization and on the number of objective functions considered (one or several).
This work and the related research project are intended to increase DFO approaches’

competitiveness and corresponding use in practical applications.

1.1 Problem Statement

Directional Direct Search is a DFO class of algorithms. In a simplified way, these algo-
rithms proceed by evaluating points in a discrete neighborhood of the current best point.
Coordinate directions are an example of such discrete neighborhoods. If a better point is
found in the evaluation procedure, meaning that it decreases the value of the objective
function, then the point is accepted and a new discrete neighborhood is defined around
it, repeating the evaluation procedure. Otherwise, all the points in the discrete neigh-
borhood have been evaluated (with no decrease found), the current point is maintained
and the size of the neighborhood is decreased. The procedure continues until a given
threshold is reached, related to the neighborhood size.

As can be inferred, all the (possibly) computationally expensive function evaluations
can be processed at the same time in each iteration. More than that, they are independent
from each other, which calls for embarrassingly parallel approaches.

Nowadays, the access to cloud computing is getting easier and closer to the general
public. The opportunity for on-demand customization based on the user needs and
resources configures a promising cost-efficient solution, while eliminating the need to
possess and maintain a physical infrastructure [38, 42].

As researchers and other intended users of our optimization solvers don’t necessar-
ily have access to powerful machines or could be interested in a low-cost approach for
experimentation, designing and testing a cloud solution would be of great interest.

At the present time, all the algorithms have MATLAB code implementations available
that allow the customization of several parameters. The available solution requires the
user to have at least basic programming skills, MATLAB knowledge and to be familiar
with the different algorithmic frameworks. Although these are reasonable expectations
for our intended users, it would be beneficial to offer a more interactive and direct way of
running the codes while aggregating them in a toolbox, under a Graphical User Interface

with a recommendation system.

1.2 Objectives

In order to make the current algorithms more efficient and able to address problems of
higher dimensions, which means a higher number of problem variables, parallel versions
were considered. As a first step, the developed solutions were tested experimentally on

a physical machine (local), and afterwards on the cloud. The goal was to distinguish the
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1.3. EXPECTED CONTRIBUTIONS

conditions for which the parallelism is useful and measure the expected improvements,
as well as to recommend an adequate number of processors to tackle a given problem.

Regarding the cloud solution, it would be interesting to consider the number of pro-
cessors as a function of the cost of each machine. However, this is not possible to address
since the number of evaluations/iterations required for solving a problem is not known
in advance and cannot be estimated.

The graphical interface is expected to advise the user on the best alternatives for
solving the problem: serial or parallel run (when available) and parameters customization.
One feature of particular relevance is providing a proper estimate on the number of
processors that are required for a good performance, according to the specified data for
the problem. The user should provide the function to optimize, as well as any available
information about its level of smoothness (smooth, nonsmooth or unknown).

As a result of this work, we expect to be able to move to newer dimensions and tackle

harder problems.

1.3 Expected Contributions
* Code optimization of the serial version of the SID-PSM algorithm.

* Experimental analysis of several options and parameter choices regarding SID-

PSM'’s performance.

* Parallel versions of SID-PSM, including a detailed analysis of expected gains and

cloud testing.

* Implementation of a parallel version with a complete variant, where the discrete

neighborhood is always fully explored.

* Design of a code-integrative toolbox featuring a Graphical User Interface with a
recommendation system. This part should include all four algorithms (SID-PSM,
DMS/BoostDMS, GLODS and MultiGLODS).

1.4 Document Structure

In this first chapter, we provided all context, and clarified challenges and objectives on
the problem considered.

Chapter 2 includes all theoretical background and related work necessary for a com-
plete understanding of this work.

Chapter 3 details the analysis of the SID-PSM algorithm, describing the code optimiza-
tion performed, results from parameter comparison, details on the benchmark process

and the identified opportunities for parallelization.

3



CHAPTER 1. INTRODUCTION

Chapter 4 comprises all the parallelization work accomplished, detailing the algo-
rithm’s original structure, the parallel versions implemented, the study on the recommen-
dation system and finally the evaluation performed of the parallel gains.

Chapter 5 is related to the implementation of the code-integrative toolbox. Includes
details on the design approach followed, a description of the final product obtained and
the results and conclusions derived from the evaluation process.

The last Chapter (Chapter 6) is a summary of all the contributions that derive from
this work, including the most important results, concluded by a short section on future
work.

Appendixes include all elements required for the user testing performed on our tool-
box. Appendix A contains the test script. Appendix B is the questionaire applied after-
wards (System Usability Scale), taken from the original publication [12].

Annex I includes the complete user guide for the toolbox developed.



CHAPTER

RELATED WORK

This chapter provides the theoretical background and references the related work re-
quired for a better understanding of the present thesis. In Section 2.1, we introduce sev-
eral subjects related to Derivative-Free Optimization, such as different problem classes
and methods for addressing them. In Section 2.2, basic concepts of parallelism and
parallel architectures are revised. A brief overview on cloud computing is included in
Section 2.3 and, in Section 2.4, MATLAB’s available parallel commands and respective
underlying functionality are addressed, as well as other related tools required.

2.1 Derivative-Free Optimization

DFO problems are characterized by two main features: unreliability or inexistence of
derivatives, and an expensive cost of function evaluations. Typically, a black-box model
is assumed: information about the objective function is only available at the evaluated
points.

It is currently an area of great demand for robust and efficient algorithms given the
increasing complexity in mathematical modeling, higher sophistication of scientific com-
puting and an abundance of legacy and proprietary codes where information is limited.
The diversity of applications includes problems in engineering, mathematics and oper-
ations research, physics, chemistry, economics, medicine, cognitive science, computer
science and several other fields [8, 11, 27, 29, 34, 57].

Assuming derivative information was available, derivative-based algorithms would
clearly be more efficient than DFO methods. However, given that today’s practical prob-
lems are often complex, nonlinear, not providing an analytical expression for the deriva-
tives of the function to be minimized, neither allowing their reliable numerical estimation

(using, for instance, finite-difference methods), there is an ever-growing need for efficient
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CHAPTER 2. RELATED WORK

and robust DFO implementations.

2.1.1 Classes of Problems

Problems can be classified based on their level of smoothness, a property related to the
corresponding differentiability. A smooth function is defined as being continuously dif-
ferentiable up to some needed order in its domain (could be of second order or infinity,
depending on the problem) [62]. This is an interesting property in the sense that smooth
functions, even when derivatives are not available for use, allow the local adjustment of
functions based on the available data, which can be easily minimized and constitute the
core of trust-region methods [45]. In this way it is possible to exploit the characteristics of
the function and accelerate the convergence process of an optimization algorithm. Nons-
mooth functions are generally more difficult to optimize. They can even be contaminated
with noise, meaning that the previous fitting approach would fail. In this work, both

classes of functions were considered for testing.

2.1.2 Derivative-Free Optimization Methods

In order to solve DFO problems, several classes of methods are available, whose effective-
ness typically depends on the characteristics of the objective function and constraints.
Different approaches include deterministic methods, like Directional Direct Search and
Trust-region Methods based on polynomial interpolation or regression. Randomized or
stochastic methods, such as Evolutionary Strategies or Particle Swarm Optimization, can
also be considered [36].

In the present work, we focus only on those that have a well established convergence
analysis, particularly Directional Direct Search and Trust-region Methods based on poly-

nomial interpolation or regression.

2.1.2.1 Directional Direct Search

Direct Search methods only use function values to define the next step of the optimization
procedure and don’t attempt to approximate derivatives, neither to model the objective
function in any explicit or implicit way. In the case of Directional Direct Search, the
points to be evaluated correspond to directions [63].

In each iteration, a precomputed set of directions (with good geometrical properties)
is explored around the best available point x; (also known as poll center). A new set of
points is evaluated, each of them at distance ay||d|| of the poll center, x; + ay||d||, where
ay represents a step size parameter. When and if a better point is found, one whose
evaluation represents a decrease (or sufficient decrease, depending on the globalization
strategy considered) on the value of the objective function f, the iteration stops, and
a new poll center x;,; is thus defined. If no point was found better than the current

poll center, the step size is decreased and xj, is set to x¢. In this case, an opportunistic

6



2.1. DERIVATIVE-FREE OPTIMIZATION

polling strategy was applied, meaning that the first successful point is accepted and the
evaluation procedure is stopped. If all the points considered were evaluated and the best
one was chosen, a complete polling strategy would be in place. This process continues
through several iterations until a stopping criterion is satisfied. To ensure the quality of
the computed point as solution to the problem, this criterion should be related with the
step size getting lower than a given small threshold [15, 36].

In Figure 2.1 we present a general framework, where test_descent can either encompass
a strategy based on simple or sufficient decrease to accept new points. A search step can
also be included. This is an optional step, not required for establishing the convergence of
the algorithmic class but can be used to increase the numerical efficiency of the algorithms.
If the search step succeeds in finding a better point than the current poll center, then the
poll step is not performed. The minimization of quadratic polynomial models, like it is
the case in Trust-region Methods based in polynomial interpolation or regression, has
been used as strategy for its definition [19].

The SID-PSM algorithm, makes use of a structure similar to the one presented in
Figure 2.1. Further analysis will be provided in the chapter 3.

1 Set parameters 0 < Yaee < 1 < Yine

2 Choose initial point xg and step size ag > 0

a for k=0,1,2,... do

4 Choose and order a finite set ¥, C R™ // (search step)
5 x « test_descent(f, xx,Y})

o if 7 = x), then

7 Choose and order poll directions Dy C R™ // (poll step)
8 L m¥ + test_descent(f, x;, {zy + apd; : d; € Di})

° if LI‘: = x; then

10 ‘ Qp+1 < YdecCtk
1 else

12 L Ok+1 = Vinc Xk
13 T+l + JZIT

Figure 2.1: A typical Directional Direct Search framework, taken from [36].

2.1.2.2 Trust-region Methods

Trust-region Methods constitute a particular framework of model-based methods. These
methods resort to predictions based on models, which work as a replacement of the
objective function [36]. In Trust-region Methods for DFO, models are often built from
sampling and some type of interpolation or regression techniques, depending on the
number of points available for use (those where the objective function has already been
evaluated). Thus, the model configures a local approximation of the function and tries to
capture its curvature [17].

Each iteration of a Trust-region Method builds a model around the current iterate, xy,
which is minimized in a trust region. This region is frequently defined as a ball, with

center in x; and a given radius [17].



CHAPTER 2. RELATED WORK

2.1.3 Existing Solvers

Several DFO solvers are available, corresponding to implementations of different meth-
ods. Some well-known solvers related to Directional Direct Search and Trust-region Meth-
ods are outlined here, with no intent of being exhaustive: "DFO", NEWUOA/BOBYQA/-
COBYLA, HOPSPACK, NOMAD, PSWARM [17, 50]. The last three also include parallel
implementations.

"DFQ"[14] is a Fortran software for local optimization that builds quadratic mod-
els by interpolating selected subsets of points and optimizing the resulting trust region
model. NEWUOA [47], BOBYQA [49] and COBYLA [48] are all Fortran implementations
of Powell’s model-based algorithms, with different characteristics. NEWUOA is particu-
larly interesting for unconstrained optimization since it can solve problems with several
hundreds of variables.

HOPSPACK [30] is built upon a C++ software framework. The framework allows
parallel operations, using MPI for distributed parallelism or multithreading on multicore
machines. Multiple algorithms can run simultaneously and share information for per-
formance improvement. HOPSPACK comes with an asynchronous pattern search solver
that handles general optimization problems with linear and nonlinear constraints, and
continuous and integer-valued variables. The parallel approach is based on distributing
the function evaluations to different workers.

NOMAD [37] is a C++ implementation of the Mesh Adaptive Direct Search algorithm
(MADS [6]), that incorporates several strategies and solves nonlinear, nonsmooth and
noisy optimization problems. Parallelism resorts to MPI.

PSWARM [60] is a pattern search method implemented in MATLAB and C. The search
step corresponds to Particle Swarm, an heuristic algorithm, aiming at global search. The
poll step relies on coordinate search. The C implementation includes a parallel version
that uses MPI.

2.2 Parallelism

A parallel computer can be regarded as a set of processors that are able to work coop-
eratively to solve a computational problem. This definition can include different kind
of multicore system, from portable devices to parallel supercomputers with hundreds
or thousands of processors, networks of workstations, multi-core CPUs, and embedded
systems [28]. Nowadays, due to the ubiquity of parallel processors and the stagnating
single-threaded performance of modern CPUs, parallel programming has become in-
creasingly important and computer scientists and engineers are required to write highly
parallelized code in order to fully utilize the computational capabilities of current hard-
ware architectures [54].

Instead of writing programs that execute all instructions sequentially, parallelism al-

lows the execution of multiple instructions at the same time. In this way, we can make our
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2.2. PARALLELISM

programs run faster while exploiting the available resources of nowadays multicore ma-
chines, leading to a better use of all computational power available. Or, given a different
point of view, scale up to higher dimensions and increase the difficulty of the problems
we can solve. Parallelism can be required to speed up the program runtime, to provide
scalability or due to memory restrictions, in case a single worker cannot accommodate
in memory all data related to the problem and data partitioning is required. This is why,
more than an interesting and exotic subarea of computing, parallelism is becoming a

universal need to the programming enterprise [28].

2.2.1 Basic Concepts
2.2.1.1 Speedup

Speedup is a standard metric regarding parallel programming. It measures the time gain
obtained by running the code in parallel, by comparison to the initial sequential run.
Thus, it can be defined as the quotient of the time using a single processor (T;) over the

time measured for p processors (T},):

Ty

S_T_p'

2.2.1.2 Efficiency and Cost

Cost and efficiency are two closely related metrics. Cost expresses the total time spent on
computations by all cores, C = T, x p. Efficiency relates sequential time to cost, using the
equation E = % =L An efficiency of 100% means that a linear speedup was obtained. This
is usually the upper bound we can expect (even though some exceptions can be verified,

that are referred as super-linear speedups).

2.2.1.3 Scalability

There are two kinds of scalability analysis that can be performed, depending on the aim of
the parallelization. Both approaches are intended to provide an upper bound for possible
speedup and efficiency, by studying the behavior of these variables when varying the
number of processors or the input data.

Strong scalability concerns a fixed data input and a varying number of processors.
It can be evaluated by Amdahl’s Law [3]. On the other hand, weak scalability focus on
increasing the problem size along with the number of processors. Gustafson’s law is the
starting point for the analysis, on this case [31].

Regarding this dissertation, both approaches are considered of interest, being weak
scalability the most directly applicable, since we aim to reduce execution times. Our
approach was to uncover a good number of processors based on a problem’s dimension

(weak scalability) and test the performance of these values for strong scalability. This is
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based on the characteristics of this kind of problems (computationally expensive function
evaluations).
However, first of all, our aim was to analyze if and under what conditions (related to

the computational time of function evaluations) the parallel effort is worthwhile.

2.2.2 Parallel Architectures
2.2.2.1 Distributed Memory Systems

In Distributed Memory Systems all nodes are connected through an interconnection
network and remote data accesses need to be explicitly implemented through message
passing over this network. Each process can only operate on its own local memory. How-
ever, in collective communication, like data broadcasting or reduction operations (where
the same data is shared between nodes), all nodes can participate. Computer clusters
and cloud implementations featuring several machines are good examples of this model.
In the case of cloud implementations, latency overheads should also be considered. As
main advantage, it can be pointed out the potential of scalability and customization of
the hardware solution. However, the ratio between the total time spent on computa-
tions and the time spent on message transmission (computation-to-comunication ratio)
is usually low, because the message passing system over the network results in additional

communication overheads [54].

2.2.2.2 Shared Memory Systems

All CPUs can access a common memory space through a shared bus or crossbar switch.
Modern multicore machines configure a well-known example of shared memory systems.
All processors feature also a smaller local memory for faster access, known as cache. In

this way, expensive accesses to the shared memory can be avoided. [54].

2.2.2.3 Data Partitioning

When designing parallel algorithms, it is also essential to choose the most suited parti-
tioning strategy. Data parallelism distributes data across different processors or cores
which can then operate on their assigned data. Embarrassingly parallel algorithms config-
ure a particular case where all computations are data-independent and can be naturally
partitioned into blocks. It is the simplest parallel scheme and requires very little commu-
nication: we can use a master-worker approach where the master delivers the data to the
corresponding workers and assembles the results in the end. The only communication
present is between the master and the workers, making this scheme very easy to imple-
ment on practice [55]. Task parallelism, on the other hand, assigns different operations
to processors which are then performed on the same data. For example, when wanting to
apply several tasks to a dataset, it is possible to split it into blocks, each processor execut-

ing all tasks in a given block (data parallelism), or to let each processor execute a different
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task in the whole dataset (task parallelism). To make the best use of parallel resources, a
Job Scheduler following a specific load balancing strategy is often needed. It is responsible
for distributing equal amounts of work to each processor (possibly dynamically) and can
adopt mixed partitioning strategies [54].

2.3 Cloud Computing

According to the United States’ National Institute of Standards and Technology (NIST)
definition of cloud computing, "this is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction"[41].

The cloud is therefore not a physical entity, but a global network of remote servers
meant to operate as a single, seemingly unlimited environment. To the user it works as an
abstraction of the underlying infrastructure, that can be available anywhere, at all times.
Its use can be in all similar to regular on-site servers, but everything is accessed remotely
with all guarantees of availability and security [38].

All the infrastructure is yield by the provider, allowing customization and easy and
secure access. The users have therefore no need to maintain their own infrastructure and
all the related costs, such as hardware, maintenance, physical space, energy consumption,
etc, can be cut off. The users are only responsible for the services they actually use, leading
to lower costs and increasing productivity. Given the actual dimension of cloud providers,
the convenience and cost-control delivered are very difficult to achieve with a common
on-site infrastructure [38]. Google Cloud Platform, Amazon Web Services (AWS) and
Microsoft Azure are nowadays among the biggest providers of cloud services worldwide.

There are three possible models associated with cloud services: Software as a Service
(SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) [41].

IaaS represents the lowest-level construct. The user has full control over the provided
computer resources and is able to customize the desired infrastructure at will (the pro-
vided abstraction, not the underlying cloud implementation). The required systems and
software are built upon this infrastructure.

PaaS model offers a specific cloud infrastructure, including network, servers, oper-
ating systems and storage, where the user can control the deployed applications and
configuration settings for the application-hosting environment.

The SaaS model provides to the user the capability to run the provider’s applica-
tions on some cloud infrastructure, granting external access to the application via a web
browser or a program interface. The level of control allowed is limited to user-specific
application configuration settings.

In this research project, tests were also be performed on the Azure Cloud Platform,
using the IaaS resources provided. Several infrastructures were considered, with different

numbers of cpus, with the intention of distributing the solution and allowing an easy
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access with some experimental guarantees. Each one includes a single virtual machine,
with Windows or Linux operating system and a MATLAB installation. If some specific
challenges on using clusters with the current technology (particularly MATLAB Parallel
Server) could be overcome, it would be of interest to test additional cloud infrastructures

comprising several machines.

2.4 MATLAB and Related Tools

MATLAB is a natural choice for this thesis, since all codes are implemented in this pro-
gramming language. The syntax is succinct and straightforward, with support for several
functionalities, mostly related to mathematical computations and data visualization and
analysis. Simple and intuitive graphical user interfaces can be built and several types of
parallelism are supported, so it is well suited for our needs.

MATLAB includes an editor and a profiler, ideal for code optimization. It is possible
to detect several code problems, from unused variables to memory allocation problems.
As there are no explicit memory references in MATLAB, proper allocation is essential
to guarantee the efficiency of programs. Also, a specific tool for the development of
applications is included, Appdesigner. The interface design is made simply by component
drag-and-drop and further integration and development is facilitated.

MATLAB can be extended by several domain specific Toolboxes, each one expand-
ing the available features. In this work we required the Parallel Computing Toolbox,
that includes all the necessary mechanisms to add parallelism to programs: high-level
constructs, like parallel for-loops, special array types, and the possibility of launching
several workers either locally or in a cluster. Nevertheless, for configuring and using
a cluster, an extra tool is required, namely the MATLAB Parallel Server, which results
in additional costs. For this reason, we focused on studying the improvement over one
multicore machine, with plenty of available cores.

As we have seen, the characteristics of SID-PSM algorithm seem to involve mostly the
use of parallel for-loops, possibly making use of asynchronous executions, depending on
the poll strategy. In order to make use of this kind of parallel executions, the Parallel

Computing Toolbox provides three essential keywords: spmd, parfor and parfeval [40].

241 spmd

Spmd stands for single program multiple data, meaning that each worker can process dif-
ferent inputs in order to get an improved performance. It is the most common style of
parallel programming, allowing seamless interleaving of serial and parallel programming.
It is also the paradigm that gives the programmer greater control over the program flow,
making it possible to address each worker individually.

Typical applications that can benefit from spmd are those that require running simulta-

neous tasks of a program on multiple data sets, when communication or synchronization
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is required between the workers [40].
In the present work, we focused on the simpler commands parfor and parfeval, since

they are adequate to attain our goals.

2.4.2 parfor

A parfor-loop in MATLAB executes a series of statements in the loop body in parallel.
A Job Scheduler is responsible for managing the available workers while executing the
loop in parallel. Each one of them runs a MATLAB instance in a different core, so the
maximum possible number of workers corresponds to the machines’ available cores. The
number of available workers is defined at the start of the program by calling a static
parallel pool, which cannot be modified later. If more workers are needed at a later stage,
a new parallel pool should be created [40]. In the case of continuously adjusting the
number of processors to best fit our current needs, this wouldn’t be an adaptive solution.

Each execution of the body of a parfor-loop is an iteration. MATLAB workers evaluate
iterations in no particular order and independently of each other. All iterations are
always processed, blocking the program until the results are gathered — synchronous
approach. Parfor command is then more useful on cases of natural parallelism, when a
computationally intensive task must be repeated several times, and completed until the
end.

To transform a serial program in a parallel one, by means of parallel-loops, all vari-
ables inside the loop must be accounted for, in order to prevent concurrency/data-race
issues and to minimize communication overheads. The Table 2.1 shows the different vari-
ables accepted in the scope of parfor loops as well as their description. A code example is

provided in Figure 2.2.

Variable Classification Description

Loop Loop index.

Sliced Different segments of an array that are accessed in different
iterations of the loop.

Broadcast Variables defined before the loop, whose values are required
but never assigned.

Reduction Variables that accumulate a value across all iterations, e.g.
counters.

Temporary Variables created inside the loop and not accessed outside it.

Table 2.1: Variables accepted by parfor command, as described in [40].
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= 0;
pi:
= 0:
= randil,10);
parfor i1 = 1:10

a = i; «————loop variable

H nm a @
]

temporary variable

£ = 2”-"/— sliced input variable
hii) = r(1i):;

if i <= p<——— broadcast variable
d = 2%a;

reduction variable

sliced output variable

end

Figure 2.2: Example of variables supported by the parfor command.

2.4.3 parfeval

Parfeval execution model is similar to parfor, but with an asynchronous approach based
on futures/promises. Each task is sent to an available worker, not blocking the flow of the
program, and results can be retrieved later, when the computation is finished, accessing
the future objects. Remaining iterations can be canceled at any time.

There are two ways available to approach this scheme, using parfeval or parfevalOnAll.
In both cases all the iterations are divided by the available workers. The difference is
related to the way of accessing results. The latter executes all tasks and returns only
the complete results. Instead, with parfeval we can retrieve the results one by one (after
each worker has finished it) which can be convenient to break out of a for loop early. For
example, in our optimization procedures, when an opportunistic variant is considered
for polling, we can stop the loop early, indicating that a better point was found. Therefore
there is no need to wait for all computations to finish, which may be canceled. As the
function evaluations are generally computationally expensive, this solution can present a

great advantage.
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CHAPTER

ANALYSIS OF THE SID-PSM ALGORITHM

This chapter covers the complete analysis of the SID-PSM algorithm. Sections 3.1 and 3.2
detail the algorithm procedure and the algorithmic options available. Section 3.3 focus
on the adopted benchmark strategies. The optimization performed in the code before

advancing to its parallelization is described in Section 3.4.

3.1 General Framework

SID-PSM is a directional direct-search method where the poll evaluation follow an order-
ing induced by simplex gradients [23]. It is suited for solving single objective Derivative-
Free Optimization problems, having consistently showed its competitiveness when com-
pared with other DFO solvers [51, 56], even if released only in a serial version. The global
convergence analysis guarantees that a subsequence of the sequence of iterates gener-
ated by the algorithm will converge to a stationary point of the optimization problem, as
proven in [5, 35, 59, 61].

Its current structure can be described in the following steps, that will be further
detailed: Initialization, Search Step, Poll Step, Compute Descent Indicators, Order
Directions and Update the Mesh Size Parameter. All steps except the Initialization
are repeated in each iteration, until a stopping criterion is satisfied. Notice that, for
convenience, the order and description of these steps is directly related to the code im-
plementation, being slightly different from the framework proposed in [23]. Only one

objective function is accepted but several restrictions can be considered.

3.1.1 Initialization

Choose xy and a(y > 0. Choose a set of positive spanning sets D, the set of directions

with good geometrical properties. Positive spanning sets for R” generate any vector of R"
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through non negative linear combinations of their elements [24]. Select all other necessary

constants, including the ones for updating the step size parameter.

3.1.2 Search step

It is based on the minimization of quadratic interpolation or regression models, within
a trust region, which size is directly related to the step size parameter. The models are
built using sets of previously evaluated points. If a point x, corresponding to the model
minimization, satisfies f(x) < f(xx), then it is accepted as the new iterate, x;,; = x, the

iteration is declared successful, and the poll step is not performed.

3.1.3 Poll step

This step evaluates the polling set defined as B = {x;+ayd : d € Dy}, following a previously
determined order and storing each evaluated point. If a polling point x; + aydy is found
such that f(x; +aydy) < f(x), then the polling procedure is stopped, xj,1 = xi + aydy, and

the iteration is declared successful. Otherwise the iteration is declared unsuccessful and

Xk+1 = Xk-

3.1.4 Compute Descent Indicators

This step is skipped if there are not enough previously evaluated points to allow the
computation. Otherwise, compute some form of simplex derivatives [18] in order to
obtain a quality descent indicator. This descent indicator is the one used on the ordering

step.

3.1.5 Update the Mesh Size Parameter

If the iteration was declared unsuccessful, the step size parameter ay is decreased (default

is to halve it). Otherwise, it is kept constant or increased (default is to keep it constant).

3.1.6 Order Directions

Select the positive spanning set Dy € D to be used in the next iteration (usually contains
2n + 2 vectors, where 1 is the problem dimension). If a descent indicator is available,
order the directions in the positive spanning set according to the smallest angle with the
descent indicator. These directions will be used to compute the poll points. The estab-
lished order attempts to evaluate first the most promising points in terms of objective

function value, increasing the value of an opportunistic approach.

Finally, return to the search step to begin a new iteration, until a stopping criterion is

met.
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3.2 Available Strategies

Several strategies are implemented in the SID-PSM algorithm, corresponding to different
algorithmic variants that may be of interest, depending on the concrete optimization
problem. Having more information about the function to optimize allows a customized
approach to the problem. These strategies include the use of a cache, the disable of
the search step, additional ordering strategies, the use of an opportunistic or complete
approach (regarding the poll step), as well as other specific parameters.

In addition to these strategies, it is possible to consider different stopping criteria
(based on the final function value, or the number of evaluations/iterations on the step
size parameter) and define the update on the step size.

To choose/confirm the options that were adopted as default in the code distribution,
an initial comparative study was performed, using the number of function evaluations
and the computational times as performance indicators.

The algorithmic strategies tested were as follows:

* Opportunistic vs. complete versions for polling.
¢ Including or not a search step (based on the minimization of polynomial models).
* Use or not of a cache.

* Two different versions of the routine responsible for the computation of the quadratic

models, which will be minimized in the search step (quad_Frob)

Initially, eight combinations of algorithmic strategies were tested (without the quad_Frob
variants). After reducing them to the two best versions, the different quad_Frob routines
were included, obtaining four algorithmic versions to test in the second phase of this pro-
cess. The version that provided the best results was chosen as default for the distributed
version of the code.

The original default version is characterized by an opportunistic polling strategy: the
first poll point found that guarantees a better solution than the current one is immediately
accepted as the poll center for the next iteration, and the remaining poll points are not
evaluated. However, one could have opted for a complete strategy (greedy): all poll points
are tested and the one that corresponds to the greatest decrease of the objective function
value (if any) is chosen. Thus, part of the work developed was the implementation of this
complete version and the evaluation on its performance. The inclusion of this version
also supports the validation process of the parallel version, as their results should match.

Regarding the search step, we wanted to verify its effectiveness and test its combina-
tion with the other parameters. As observed in [19], versions including a search step are
expected to present superior performance regarding the number of function evaluations,

especially for smooth problems.
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The effectiveness of the cache was also evaluated through the analysis of hits / misses
(hit ratio) in addition to the aforementioned methods.

Finally, we tested two versions of the quad_Frob routine. According to the profiler,
more than 90% of the serial execution time (that ignores function evaluation time) is
spent on solving a system of linear equations, whose size can depend quadratically on
the number of variables. Thus, this is a concerning part for performance optimization.
The first implementation is the original one, which resorts to the computationally expen-
sive method of Singular Value Decomposition [25]. The second one applies the mldivide
MATLAB function, that automatically chooses a different method (expectedly better) de-
pending on sparsity and other characteristics of the system to be solved. This approach
seems to present a tradeoff between computational time (faster) and solution quality
(slightly worse). If the quality of the solution wouldn’t be significantly affected, it could

be interesting to include this more economical alternative.

3.3 Benchmarking

For numerical testing, we gathered 27 academic problems proposed by several sources in
the literature [9, 16, 26, 32, 33, 43, 46, 47, 58]. These problems were coded in MATLAB
and revised by the research team, including 15 smooth and 12 nonsmooth problems. Each
problem was considered with different dimensions: usually 6, 10, 20 and 40, sometimes
including 30, 50 and 60, depending on relevance and test duration. We intend to retrieve
results based on smoothness and for the general class of all problems. Additionally, we
tested a real application problem related to the production of styrene, with dimension 8.

Two different systems were used to run the tests. The first one is a machine that
belongs to the Centre of Mathematics and Applications of FCT NOVA (Markov), with 2
Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz (20 cores, 40 threads total), 200GB of RAM
and Linux operating system. Markov is shared with other users and can be subject to
different loads at any time, incurring in time fluctuations that make results imprecise.
In a small test where each condition was tested 5 times, we detected mean fluctuations
around 12% in a sequential run, without additional load at the time. For this reason, all
tests that needed (precise) computational times were run on Azure Virtual Machines on
the Cloud (mean of 5% variation, which is acceptable). We used Standard Dv3 Machines
with different sizes: 4, 8, 16, 32 cpus. Most tests were run in a Linux operating system,
except for the real application that was tested on Windows. The MATLAB version used
was 2018b.

Besides computational time performance, results regarding the number of function
evaluations were reported using data profiles. Data profiles, as described in [44], config-
ure a tool for analyzing the performance of Derivative-Free Optimization solvers when
there are limitations on the computational budget, which is often the case. Given a set
of problems, data profiles compute and graphically display the percentage of problems

that can be solved (within a certain small tolerance), inside a given budget of function
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evaluations. The cost unit is 7 + 1 function evaluations, a representative unit for simplex
gradient estimates (that require n+ 1 evaluations) and that easily relates to poll step itera-
tions (in the case of SID-PSM, each iteration may cost up to 2 units as we can evaluate up
to 2n+ 2 points). Analyzing the obtained graphs, it is possible to detect the solvers that
work best given a fixed budget of function evaluations, or the percentage of problems
that a solver can eventually solve given unlimited budget. Note that time measures have

no impact on data profiles.

3.4 Numerical Experience

3.4.1 Code Optimization

Before advancing to the code parallelization, it is recommended to profile and optimize
the serial version of the code, tackling the areas that would most benefit performance
[2]. Code optimization performed using MATLAB Profiler, a tool that provides a good
outlook on functions’ computational times and possible improvements.

For logical operators, short circuiting was applied. In this way, the evaluation of a
logical expression is finished as soon as its final result is defined. For example, in the case
A&&B, if A is false there is no need to check the logical value of B and thus we can spare
some operations [40].

Regarding arrays (either vectors or matrices), MATLAB allows dynamic array growth,
meaning that we can always add or concatenate new elements to an existing array. This
seems convenient for the programmer but incurs in unnecessary memory overheads:
every time we expand an array, we are allocating memory for a new array of increased
size and all the elements are copied for the new memory location. This can be particularly
harmful when done inside a loop. The solution is preallocation of memory, which can
be made either by explicitly creating an array of the intended size or running a loop
backwards, since the first element will automatically cause the allocation of the full array.
[1, 13, 40]. This was the single aspect that made the most difference in performance,
particularly in the quad_Frob routine where the gains were very substantial (as can be
seen in Figure 3.1).

At last, memory references are also important to point out, in this case the lack of
them. MATLAB does not allow explicit referencing. As a safety mechanism to avoid
unintended errors coming from passing references to functions, the only case where a
reference is passed is when the corresponding variable is not changed by the body of the
function. Thus, all auxiliary variables that were not actually needed were suppressed, in
order to avoid unnecessary copies [13, 40].

The plot on Figure 3.1 shows the results obtained by running the complete set of
problems in the case of enabling the search step. Considerable gains can be noticed,
increasing with problem size. In the case of disabling the search step, no differences were

observed.
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Figure 3.1: Computational time of SID-PSM, when using a search step.

3.4.2 Algorithmic Variants Comparison

Using data profiles [44] and treating every option tested as a different solver, it becomes
easy to objectively compare them. To make this approach completely solver independent,
it would require knowing in advance the optimal solutions for all problems. Some of
them were unavailable in literature. In these cases, we used as solution the best value
obtained by any of the solvers, thus maintaining the results comparable. Each data
profile was generated in the aforementioned conditions, except now all dimensions were
merged, treating each problem with a different size as a different problem (totalizing 108
problems).

As to be expected, complete versions seem to perform badly, while variants consid-
ering a search step show a superior performance in both solving problems faster and in
the percentage of problems solved. Finally, regarding the use of cache, results seem to be

very close. Figure 3.2 depicts the data profiles corresponding to each variant considered.

Additionally, we also tested the percentage of cache hits. In this case, a hit means that
one function evaluation was saved by reusing the previous result of an already evaluated
point. Our results show hit ratios between 0,69% and 3,14% (see Table 3.1), lowering
with the increase on problem dimension. This can be easily explained by the behavior of
the algorithm. Each poll step following an unsuccessful iteration will generally have no
matches, due to the reduction of the step size. Following a successful poll step, there are
only a few points from the previous step that may appear on the new polling set, leading
to few matches. Occasionally, points obtained previously by the search step may originate
additional matches, with a very low probability. In line with this behavior, the proportion
of hits/misses will tend to reduce each time the problem dimensions increase, due to the
increase of the number of poll points. There are typically very few hits, but considering

the high cost of function evaluations, the use of a cache may still be beneficial.
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Figure 3.2: Data profile featuring the first eight variants. Legend: SEARCH - 0 absence / 1
presence of the search step; CACHE - 0 absence / 1 presence of a cache; OPT - 0 complete
version / 1 opportunistic version.

The behavior of the algorithm was also analyzed independently for smooth and nons-
mooth problems. Results for smooth problems are similar to the general case. For nons-
mooth functions, deactivating the search step can be a wise choice for small computation
budgets (until 80) but afterwards the results are similar.

The two top versions (only difference is cache use) were then chosen for the next phase
of the performance assessment of the algorithm and combined with the two variants of
the quad_Frob routine. The resulting data profile is presented in Figure 3.3.

Focusing on this plot, one can observe that the old quad_Frob with cache performs
worse than the remaining variants. Notice that this is an important detail as it implies
worse final results. The other versions show close curves, meaning either result could be
acceptable. Now that this measure is assessed, it is important to understand which option
is faster.

In Table 3.1 we present the results regarding each version, averaging all problems
on our set by dimension. Except for dimension 6, the new quad_Frob versions (g2) are
significantly faster than the old ones and this difference increases with the increase on
the problem dimension.

The last step on this performance assessment was to clarify the role of the cache. We
point out that all functions included in this test set have a negligible computational cost
(virtually no time).

Recurring to the cache formula:
eval_time > cache_search_time x %hits + (eval_time + cache_miss_time) x Yomisses

and isolating the term corresponding to the evaluation time, we get the minimum
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time of evaluation (in seconds) that justifies the option of a cache (rightmost column on
Table 3.1):

> cache_miss_timex%misses

oS +cache_search_time

eval time

Predictably, these rise with dimension and despite the low hit ratios, cache look-ups
and misses are almost negligible, leading to very small values of computational time. As
we are interested in real application problems that have expensive function evaluations
(at least one second), these results indicate that the new quad_Frob with an active cache
is the wisest choice for the default version of SID-PSM algorithm.

After assessing the algorithmic performance of SID-PSM and having optimized the
serial version of the code, considering that the dominant cost on the execution of this
algorithm is the expensive function evaluations, the poll step becomes the main candi-
date for parallelization. Its structure is embarrassingly parallel and tackles the bottleneck
directly. As MATLAB already applies implicit parallel mechanisms to matrix operations
when at least two processors are available, no other worthwhile opportunities were found

for this implementation.

Comparison of Second Variants
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Figure 3.3: Data profile featuring the last four variants. Legend: SEARCH - 0 absence / 1
presence of the search step; CACHE - 0 absence / 1 presence of a cache; OPT - 0 complete
version / 1 opportunistic version; the two left curves incorporate the SVD procedure,
representing the two right ones the new approach (mldivide).
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dim version time cache_search cache_miss hit_ratio% min_eval_val

6 101q1 0.66 —_— —_ —_ —_

6 101q2  0.18 — — — —

6 111q1 0.22 7.62E-06 1.08E-05 3.08% 0.00035

6 111q2 0.22 7.76E-06 1.10E-05 3.14% 0.00035
10 101q1 0.97 —_— —_— —_— —_—
10 101q2  0.53 — — — —
10 111q1 1.19 7.67E-06 2.18E-05 2.38% 0.00090
10 111q2 0.75 8.62E-06 2.16E-05 1.77% 0.00121
20 101q1 10.80 —_— —_ —_ —_
20  101q2  5.42 — — — —
20 111q1 10.21 1.06E-05 1.11E-04 1.10% 0.00999
20 111q2 4.58 1.03E-05 1.06E-04 1.12% 0.00940
30 101q1 58.66 —_— —_— —_— —_—
30 101q2 31.91 — — — —
30 111q1 52.36 1.33E-05 1.02E-04 0.76% 0.01331
30 111q2 27.74 1.36E-05 9.54E-05 0.80% 0.01185
40 101q1  359.45 —_— —_ —_ —_
40 101q2 120.29 —_— —_— —_— —_—
40 111q1  295.81 1.79E-05 1.17E-04 0.69% 0.01698
40 111q2 132.08 1.61E-05 1.14E-04 0.69% 0.01655

Table 3.1: Computational times and cache hit ratios by dimension. Cache searches and
misses represent access times in seconds. Faster versions within each dimension are
outlined in bold.
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CHAPTER

PArRALLELIZATION OF SID-PSM

This chapter covers the process of parallelization of SID-PSM algorithm, featuring the
original algorithmic structure (Section 4.1), details on the different schemes considered

for parallelization (Section 4.2) and the numerical results obtained (Section 4.3).

4.1 Original Poll Structure

Algorithm 1 corresponds to the original poll step implemented on SID-PSM code. After
computing the set of points that should be evaluated (considering the previously estab-
lished ordering of the poll directions), each point is tested for feasibility (i.e if it satisfies
all the problem constraints, if any), and cache hit. If it is feasible and not in the cache,
we proceed to evaluation. The cache is then updated with the point and corresponding
objective function value, and success is tested. If an opportunistic strategy is in place, the
poll step ends on the first success.

Algorithm 1 Poll Step
1: success < 0
2: for i = 1:pointsToEval do
3: if constrained then

4: if not feasible then continue
5: match « search_cache(x;)
6: if match then continue
7: ftemp < eval_point(x;)
8: update_cache(x;, ftemp)
9: if ftemp < f then
10: success < 1
11: if opportunistic then break
12: end for
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This loop is not iteration independent, as updating the cache and evaluating success
might raise concurrency issues. Thus, and in order to facilitate the parallel implemen-
tation, the serial version was slightly modified. Instead of updating the cache following
each evaluation, relevant results (in this case the points, respective objective function
values and a logic array to crop irrelevant elements) are stored in memory, allowing the
cache to be updated only once in the end of the evaluation process. However, further
changes were still required for the parallel implementation (see Section 4.2).

As a final note on the cache use, if it is active, target points are checked before evalu-
ation, otherwise points are always evaluated. Nevertheless, evaluated points are always
stored by default for computing descent indicators and to be used in the search step, when

building the polynomial models.

4.2 Parallel Implementation

The parallel implementation is focused on the poll step, which presents an embarrassingly
parallel structure. The first step is then to make the cycle iteration independent, while
attempting to minimize worker communication. To this end, each worker will receive
a point to be evaluated and the objective function. For the complete version of polling,
a few global variables and functions (broadcast variables) are also necessary, as well as
access to output arrays (sliced output variables). All these variable types are accepted by
parfor, as seen in Table 2.1. Checking points for feasibility and cache hits one by one may
generate unnecessary tasks, in case the point is not evaluated afterwards. Instead, a serial
loop will check all points for feasibility and cache hits before proceeding to evaluations,
only keeping the ones that will actually be evaluated. Each worker will then evaluate
the objective function at the respective point and fill the corresponding parts of the
resulting arrays. After the poll step, these arrays will be cropped and reordered for
properly storing all results in the cache, at once, exhibiting the same behavior as the
serial version. Evaluating poll step success will only be done afterwards, at the end of the
current iteration.

Three parallel implementations were created, one relying on a complete polling strat-
egy, other using an opportunistic approach and the last one still considering an oppor-
tunistic strategy for polling, but with order guarantees. All three strategies were inte-

grated in the algorithm and can be selected with the respective code parameters.

4.2.1 Complete Polling Version

The complete polling version (see Figure 4.1) is fairly straightforward: parfor distributes
the points to evaluate to available workers, until all evaluations are performed. As the
complete strategy was not chosen as default for the serial version of the code, this parallel

version was not evaluated. We focused on the other two parallel implementations instead.
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1 % Compute the complete set of points to evaluate:
2 % For each point

3 % Check if feasible (constrained case)
4 % Check if cache hit (if actiwve)

5= parfor (ii = l:pointsToEval, nunmWorkers)

& — fremp = £ eval (x mat(:,ii}):

7T - if i=zfinite (ftemp)

g % Save function wvalue to array

o= end

10 - end

11 % Update evaluation counters

12 % Evaluate success && order results

13 % Update cache

Figure 4.1: Code snippet with the complete polling version implemented. Comments are
also part of the implementation, but the actual code was omitted for shortness.

4.2.2 Opportunistic Polling Version

This version is a bit more complex, due to the inclusion of asynchronous tasks (see Figure
4.2). The first loop (lines 5-7) sends the objective function and each point to the task pool,
to be distributed to available workers. Results are fetched one by one, as soon as they are
available, justifying the need of a second loop, for retrieving results. Completedldx repre-
sents the index of the task completed, and ftemp the objective function value obtained. If
the result obtained represents a decrease in the current objective function value, success
has been attained and all uncompleted tasks can be discarded. Finally, the loop ends,

remaining tasks are canceled and all future objects are cleared.

1 % Compute the set of points that may be evaluated:

2 % For each point:

3 % Check if feasible (constrained case)

4 % Check if cache hit (if actiwve)

== for ii = l:pointsToEval %%% Distribute points to evaluate to workers
6 — futures(ii}) = parfeval[@eval_point, 1, ®x mac(:,1ii), £ eval);
u|= end

B = for jj = pointsToEval:-1:1 %3%% Gather results

o= [completedIdx, ftemp] = fetchNext (futures);

10 % Update evaluation counters

11 — if isfinite(ftemp)

12 % Save worker index and funection walue to arrays
13 — if ftemp < £

14 — success = 1;

15 % 5awve successfull point

16 — break; %%% S5top the iteration

= end

g - end

19 — end

2= cancel (futures) ;

21 — futures (1:pointsToEval) = []:

22 % Order results (for cache insertion)

23 % Update cache

Figure 4.2: Code snippet with the opportunistic polling version implemented. Comments
are also part of the implementation, but the actual code was omitted for shortness.
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Since the complete polling version is not the code default, the opportunistic polling

version will be referred further as parallel version.

4.2.3 Opportunistic Polling Version with Order Guarantees

MATLAB documentation refers that tasks generally should be completed by the order
in which they were submitted, when using parfeval [40]. However, there is no guarantee
that this always happens, even with a single worker, as our numerical tests exposed. In
rare cases, we observed an order change on the evaluation of the poll points that would
conduce to very different final results. This is expected to happen frequently for a higher
number of workers, leading to a non-deterministic behavior of the algorithm. Depending
on order changes, the algorithm could follow different paths, reaching different final
results, both in terms of function value and the total number of function evaluations.
Consequently, its behavior is also unpredictable with reference to computational times.
Given that our ordering strategy based on descent indicators has proved to be effective
on achieving better results [23], we would prefer to keep it in the parallel version. Hence
the implementation of this version, which is identical to the opportunistic one, but where
results are retrieved by the order they were sent to evaluation, in every cycle. We expect
that more evaluations will be completed than in the pure opportunistic version, exposing

a tradeoff between speed and quality of the solution for these parallel versions.

The code is very similar to the one of the opportunistic version, except for the ordering
process. Every time a result of a function evaluation is received, its order is checked and,
if it is out of order, it is placed in a queue in the respective position, waiting for its turn to
be processed. When finding a successful point, all results already computed in the queue

are discarded alongside the remaining uncompleted function evaluations.

This version will be further referred as parallel_ordered, or simply ordered version.

4.2.4 Debugging

To assess the correctness of the parallel implementations, a simple test was performed:
all problems in the test set were solved in parallel, considering only a single worker,
and the results respecting to the number of function evaluations, number of iterations
and final values obtained were compared to those of the serial version. In the complete
polling version, since all points are always evaluated, the order does not matter, making
this approach adequate. The opportunistic polling version presented a more challenging
case, as results are non-deterministic. The solution found was to retrieve all results at the
same time, using parfevalOnAll, instead of retrieving one at a time, and process them in
the expected order. Regarding the opportunistic polling ordered version, results should

match those obtained in the serial run.
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4.3 Experimental Results

When a user intends to solve a problem using a parallel implementation, considering
the possibility of resorting to cloud services, he needs to decide how many workers to
provide to the parallel solver. Thus, it is required to find an "ideal degree of parallelism",
limiting the number of workers to a reasonable and expectedly efficient level. A naive
approach would consider using a number of workers equal to the number of poll points
at each iteration. However, for problems of higher dimensions this might be irrealistic,
due to possible limitations in resources, for example in a cloud setting.

In each iteration there are up to 2n+ 2 poll points, given a problem of dimension n. If
the step size is kept constant for successful iterations and the stopping criterion is based
on the step size, there is a fixed number of unsuccessful iterations. For the successful
ones, given the good results of the poll ordering strategy, it is possible that most poll
steps account only for a few function evaluations (note that an opportunistic strategy is
being considered). In this case, it is worth to investigate how many workers will in fact be
useful and if there is a predictive rule that we can extract for it, based on the dimension
or in the level of smoothness of the problem.

There is also a cost associated to parallelism, as it introduces several overheads. In
order to opt for a parallel version, it is necessary that the additional computations have a
sufficiently large impact. Thus, it is also important to understand under what conditions
parallelism can be valuable. More precisely, for which problem dimension or average
function evaluation times do we start benefiting from parallelism?

Answers to these questions correspond to the numerical experiments reported in this
section, being a starting point for the GUI development, as the results are included as

user recommendations.

4.3.1 Number of Workers

The default version selected in Section 3.4.2 was the one used in the numerical tests re-
ported in this subsection. The test battery was run considering dimensions 6 to 50. For
each problem, the number of function evaluations per poll step was retrieved. Within
each dimension, we computed the average and standard deviation, allowing the adjust-
ment of a linear regression line. Problems were split into smooth, nonsmooth and the
complete set (all). Plots were built taking into account two different measures: Average
(u) and Average + Standard Deviation (y + o). The latter will be referred to as upper-
bound (see Figure 4.3 and Table 4.1 for the original data). The upperbound version can
be particularly interesting as, assuming a Gaussian distribution for the number of eval-
uated poll points, it ensures that for around 84% of the cases the number of processors
provided will be enough to evaluate all poll points at a given iteration (depending on the

rounding rule applied).

In both approaches, especially when the standard deviation is added to the average
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Figure 4.3: Number of function evaluations required by the poll step - average () and up-
perbound (p + o), with corresponding regression lines. Dashed lines indicate the average
condition.

value, the nonsmooth case requires a considerably higher number of function evaluations
per poll step. This might reveal that the descent indicators (computed for exploring
first the most promising directions) are more effective on the smooth case (corroborating
results described in [18, 23]). As a consequence, a higher number of workers will be
required for solving nonsmooth problems, when compared to the smooth case. Table 4.2
reports the results of the linear regression adjustments.

Despite the good adjustment of the regression lines, when considering the approach
that adds the standard deviation to the average value (as will be discussed afterwards),
the lower dimensions (6 and 10) seem to be somewhat biased in these estimations. For
dimension 6, the line indicates 14-15 recommended workers, for a maximum of 14 evalu-
ations in the poll step. For higher dimensions, the ratio between the maximum number
of function evaluations at the poll step and the number of required workers increases
gradually. For dimension 50, around 35 workers would be required (in the general case),
which is about 1/3 of the possible 102 poll evaluations.

The R-squared value is a measure between 0 and 1 that estimates how well our re-
gression lines fit the data provided. A value close to one indicates a good linear fit,
implying a linear scalability regarding the problem size. The values obtained for the
average approach range from 41%-83%, while when considering the upperbound, values
are between 88%-96%, depending on the case (see Table 4.2). For the upperbound con-
dition, the obtained R-squared values state the quality of the regression lines as reliable

predictors of the number of function evaluations per iteration. However, considering that
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the number of workers to be recommended needs to be a power of two, we kept both

approaches in the analysis, always rounding up the average condition.

Dimension 6 10 20 30 40 50 Condition

Smooth 7 8 8 10 10 9 Average
13 16 18 25 27 28 Upperbound

Nonsmooth 7 10 14 14 17 16 Average
12 17 29 31 42 45 Upperbound

All 7 9 9 14 11 10 Average

12 16 21 31 31 31 Upperbound

Table 4.1: Average (u) and upperbound (y + o) values considered for the linear regression
adjustments.

Average

Smooth Nonsmooth All
Regression Line  0.05x +7.42 0.21x+7.64 0.09x+ 7.90
R-Squared (R?) 0.65 0.83 0.41

Upperbound

Smooth Nonsmooth All
Regression Line 0.36x + 11.78 0.75x + 9.91 0.45x + 11.97
R-Squared (R?) 0.94 0.96 0.88

Table 4.2: Regression lines and R? obtained.

4.3.2 Parallel vs. Serial Approach

For this evaluation we selected two representative problems of the test set, one smooth
and another nonsmooth. Despite different problems showing variations on serial execu-
tion times due to their particular structure, the large computational times associated to
function evaluations would make the serial part of the program irrelevant, what justifies
disabling the search step, as it accounts for most of the serial time. We note that these
problems are part of an academic test set, thus the corresponding function evaluation
times are insignificant (approximately zero).

The numerical study considered the problem dimensions (ranging from 6 to 60), dif-
ferent numbers of workers (powers of two from 2 to 16) and the two parallel opportunistic
versions. Results are shown in Table 4.3 and allow us to compare the time for the three
program versions, when the time for objective function evaluations is irrelevant. This

puts in evidence the overhead induced by the parallel framework.
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Notice that both parallel versions presented identical results and these remain con-
stant, independently of the number of workers, suggesting that the parallel overhead
observed does not depend on this number. In addition, the total number of function
evaluations performed and the final values obtained were practically the same in all three

versions enforcing the coherence of the retrieved execution times.

Number of Workers

Dimensions 2 4 8 16 Version
0.30 0.30 0.30 0.30 serial
6 2.68 2.32 2.39 2.33 parallel

2.70 2.38 2.36 2.39 par_ord
0.07 0.07 0.07 0.07 serial
10 5.63 4.61 4.81 4.41 | parallel
5.33 4.60 4.66 4.64 par_ord
0.41 0.41 0.41 0.41 serial
20 15.16 14.07 14.10 13.77 | parallel
15.38 14.40 14.13 14.48 | par_ord
2.86 2.86 2.86 2.86 serial
30 4456  40.67 42.10 63.23 | parallel
45.43 41.81 40.75 41.66 | par_ord
11.57 11.57 11.57 11.57 serial
40 65.40 60.49 64.28 60.96 | parallel
67.93 60.83 63.01 61.67 | par_ord
33.01 33.01 33.01 33.01 serial
50 124.04 111.38 110.96 111.53 | parallel
125.58 111.79 112.19 120.53 | par_ord
59.02 59.02 59.02 59.02 serial
60 176.97 156.88 156.97 155.72 | parallel
175.39 154.55 159.97 168.49 | par_ord

Table 4.3: Comparison of serial and parallel computational times (overheads), with deac-
tivated search step.

As stated previously, the goal here was to define the point where we start benefiting
from parallelism. The idea was to measure the overheads arising from parallel executions
and grasp on a minimum function evaluation time that would make those worthwhile.

To this end, the following formula was employed in the computations:

eval _timexnum_evals
num_workers

timepq, + <eval_timeX num_evals + timeg,

Leading to:

(time,,, —timeg,,)xnum_workers

eval_tlmez num_evalsx(num_workers—1) ’

where time,,, and time,,, represent the serial and parallel running times observed, ex-

cluding the fraction for objective function evaluations.
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In Table 4.4 we display the minimum function evaluation times computed. For con-
venience, these results concern only the opportunistic ordered version, since they were

indistinguishable for both parallel versions.

Number of Workers
Dimensions 2 4 8 16
6 0.014 0.009 0.007 0.007
10 0.017 0.010 0.009 0.008
20 0.022 0.014 0.011 0.011
30 0.035 0.021 0.018 0.017
40 0.036 0.021 0.019 0.017
50 0.050 0.029 0.025 0.025
60 0.062 0.034 0.031 0.031

Table 4.4: Minimum function evaluation times required for parallel gains, obtained by
dimension.

Even for the higher dimensions, the biggest time we uncovered was 0.062. This is
a very small time in comparison to those expected on real application problems. In
conclusion, results emphasize the importance of employing parallel strategies to improve
the performance of the SID-PSM algorithm. The practical effectiveness of these strategies

will be covered in the next subsection.

4.3.3 Parallel Gains

After understanding for which cases the parallel approach represents an improvement of
the numerical performance of the algorithm, the final step was to measure the effective
gains obtained on problems similar to those we intend to solve. Additionally, we aimed to
test the value of our recommendations regarding the number of workers to be considered,
and to enrich the test on which of the two conditions would provide a most cost-effective
solution (average or upperbound).

To this end, two sets of experiments were conducted, comparing serial with parallel
(opportunistic) executions. The first one respected to the complete test set. Although
these are only academic problems, we aimed to approximate our target class as best as pos-
sible. These functions were treated as blackbox and time delays were added to account for
expensive function evaluations. Results were split between smooth and nonsmooth cases,
possibly with different recommendations. The second test respected to a real application

problem from chemical engineering, related to styrene production and first mentioned in
[4]-
4.3.3.1 Test Setup and Performance Metrics

As it would be too costly (money and time-wise) to test all academic problems for the

intended dimensions, including the time delays, a different approach was followed. Every
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problem was run 10 times for each condition (number of workers and dimension), with
no time delays. The number of parallel cycles was accounted for (within each iteration)

in the following way: 0 or 1 during the search step (most times does one evaluation,

numEvals

which does not allow any parallel gain) and ==

(rounded up) during the poll step,
depending on the number of workers in use.

With this information, it was possible to estimate execution times for every problem,
given different delays. Results were averaged over the 10 runs. All results presented in
this section feature time delays including 0.1 and the range of 1 to 32 seconds, growing
in powers of two. Intermediate delays might be omitted to reduce redundancy.

As mentioned before, the sequential part of the algorithm is itself time-consuming,
due to lengthy procedures that could not be parallelized. The execution time of the par-
allel part is directly related to function evaluation times. This means that increasing
the time delays associated to function evaluations allows to decrease the impact of the
sequential part on the overall time, achieving higher speedups. We include 95% confi-
dence intervals to account for variability, in cases where it can be of interest. Both parallel
versions were tested: parallel and ordered.

The procedure to select the number of recommended workers was applied in the
following way. For the upperbound condition, results given by the previously estimated
regression lines (see Section 4.3.1) were rounded to the nearest power of two. For the
average condition, results from the regression lines were always rounded up, to the
nearest power of two, in an attempt to account for variability. The differences between the
recommendations obtained with each one of the two conditions grow with the problem
dimension, making the comparison more interesting for higher dimensional orders. Table
4.5 shows the problem dimensions and the number of recommended workers obtained,
that were considered for our tests.

In the remainder of this section, results are presented for a test set comprising 108
problems, with dimensions between 6 and 40. These 108 problems correspond to the
27 problems in our academic test set, run with the five dimensions considered. Label
rec respects to results computed with the number of workers recommended based on the
regression lines, while for rec_; and rec, | results are computed with the previous and next
powers of two, respectively. The goal is to test if the recommendation that the toolbox
provides guarantees a good performance without compromising too much on efficiency,
for a cost-effective solution. When considering dimension 6, only 14 evaluations are
performed in each poll step, therefore using more than 16 workers would be totally
unnecessary. For coherence with the strategy adopted to report the results, Figure 4.4
and Table 4.6 both use 8 workers as the recommended value for dimension 6, instead of
16 (hence the asterisk * in Table 4.5 for these recommendations). All other results use 16
as recommended, since only the recommendations (middle values) are considered.

Notice that in Table 4.5, when the number of recommended workers is 32, we would
need to run the problem set with 16, 32 and 64 workers. However, economical and

technical reasons related to cloud use, prevented us from using 64 workers. Thus, as it
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wouldn’t be possible to obtain the three results, we opted to exclude these problems from
the test set used for Figure 4.4. This test set comprises then 81 problems, with dimensions
between 6 and 20 (dimension 40 was excluded). Comparing plots between upperbound
and average conditions is unnecessary, since they are equivalent. For completeness and
because results for higher dimensions are also relevant since the need for parallelization
should increase, Table 4.6 reports execution referring times only for the recommended
values (middle values) and the test set is complete. All times displayed are expressed in
hours.

Speedup charts include our complete sample, since they were computed with the
number of recommended workers. Speedup values shown represent the average speedup
among all included problems (Figure 4.5) and the same applies to efficiency (Figure
4.6). These results were also analyzed distinguishing the smooth and the nonsmooth
cases, comprising the different recommendations (Figure 4.7). An additional table was
included (Table 4.7), allowing the comparison between speedups when the number of
recommended workers varies (only dimension 40).

When testing the parallel version that does not preserve the poll ordering for average
and upperbound strategies, we noticed that the quality of the solution was affected. The
previously established poll order changes often, leading to different paths and, conse-
quently, the final result obtained might be different, as a consequence of the stopping
criterion or of a different local minimum being found. Sometimes a better solution was
reached, others its quality decreased. This collection of problems is not typically used for
global optimization, so problems are expected to have few local minima, if any. For real
applications, where there are no indications on the total amount of local minima, this
can have a greater significance. The same effect was also verified in the styrene problem,
with considerable (negative) impact (more details in the Subsection 4.3.3.3). This was
the motivation to create an ordered version, that executes in parallel and yet respects
the ordering strategy defined by the serial implementation of the original algorithm. In
this way we ensure that the final result computed is the same amongst different runs and
equivalent to the one obtained for the serial version.

To evaluate the quality of our final solution, we adopted a specific metric that allows
for comparison between the solutions of parallel and serial executions. The following

formula was used:

Respar —Resgeq

max(l,’ResSqu’

(4.1)

where Res; stands for the final computed value of algorithmic version i. Positive val-
ues show a detriment on the quality of the final solution, by comparison with the serial
version. The result of this metric was intended to be given in percentage, representing a
relative variation by problem, given the variability on the orders of magnitude of the final
values that can go from 10? to 1072° (substantially lower than the precision of our stop-

ping criterion based on the step size - 107°). In order to address this problem, we used
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the function max(1, ¢) in the denominator. In this way, the metric represents an absolute
error when Resg,, is smaller than one, corresponding in the remaining cases to a relative
variation. The use of the factor 1 is definitely arguable, because it directly relates to the
type of error that our metric addresses. If we are not interested in a very high precision,
this strategy holds, justifying our choice. Reporting only average values for the indicator,
by aggregating the results, always incurs in loss of information. Presenting results for all
instances (problem and dimension) would be exhaustive. Even so, we report the best and
worst results obtained for this metric, in addition to the average values (see Table 4.8), for
each of the 10 runs performed. Gain and loss ratios represent the percentage of problems
where the final function value computed was better or worse than the one of the serial

run, respectively.

Dimension Smoothness Average Upperbound

S 8 16

6 NS 16 16
ALL 16* 16 *

S 8 16

10 NS 16 16

ALL 16 16

S 16 16

20 NS 16 32

ALL 16 16

S 16 32

40 NS 16 32

ALL 16 32

Table 4.5: Recommendation on the number of workers to be used for the problems con-
sidered, given average and upperbound strategies.

4.3.3.2 Results on the academic test set

Analyzing the results from Figure 4.4, it is clear the advantage of both parallel versions
with the increase of the computational time associated to function evaluations. However,
for the parallel version (without ordering guarantees), the marginal gain from rec_; to rec
is more meaningful than the one from rec to rec,;. This is the expected behavior: by in-
creasing the number of workers, we will always achieve gains in terms of computational
time, but these gains will be smaller each time. Our recommendation on the number
of workers to use seems to be an adequate cost-effective compromise. For the ordered
version this also verifies, although it is somewhat surprising that rec, takes more time
than rec. This happens because of differences on the final solution computed when run-
ning the same problem with a different number of workers. The algorithm is following
different paths and a lot more parallel cycles are completed for the rec,; case than for rec,

explaining why it takes more time.
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Figure 4.4: Aggregated time results for the academic test set, comparing both parallel
versions. The number of workers is abstracted in each bar, according to the recommenda-
tions. Black lines represent 95% confidence intervals.

Relevant time gains are noticeable in comparison to the serial version. Intervals for
a 95% confidence level show slight time variations among runs for the parallel version.

The ordered version reveals constant times (except for small machine fluctuations).

Version  Condition 0.1 1 2 Tmr delay 8 16 32 Evaluations
Parallel average 7.71 38.11 71.89 139.45 274.57 544.80 1085.26 539618
upperbound | 7.30 35.57 66.99 129.83 255.50 506.85 1009.54 524850
Par ord average 6.15 33.57 64.03 124.96 246.82 490.53 977.96 480642
- upperbound | 6.42 30.78 57.86 112.00 220.29 436.87 870.04 459960
Serial - 13.74 177.44 232.66 463.11 923.99 1845.77 3689.32 414799

Table 4.6: Aggregated execution times (in hours) and number of function evaluations
performed, given both recommendations for defining the number of workers.

Table 4.6 details the values obtained for execution times. Notice that a significant
time reduction is achieved even when only considering a 0.1 second delay in function
evaluations. We notice that we had previously estimated that parallel gains would be con-
siderable for a function evaluation time above 0.1 (see Subsection 4.3.2). Unexpectedly,
the parallel version takes more time than the ordered one, what can be explained by the
higher number of evaluations performed, due to different paths taken by the algorithm.
Comparing the two recommendation conditions for defining the number of workers to
be used, in the majority of cases upperbound outperforms average, as expected, since it

uses more workers.

Time delay 0.1 1 2 4 8 16 32
average 297 550 583 6.01 611 6.16 6.19
upperbound 4.04 7.92 8.44 8.74 8.89 8.97 9.01

Table 4.7: Average speedup for problems of dimension 40.
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Figure 4.5: Average speedup among all problems, given both recommendations / parallel
versions and different time delays for function evaluations.

In agreement with the previous computational time results, speedups also indicate in-
teresting gains (over 3) for a delay of 0.1 seconds and a slightly better overall performance
of the ordered version (Figure 4.5). Speedup grows substantially from 0.1 to 1 seconds
of time delay, being the subsequent increases less significant. Once more, these results
justify the need for a parallel solution. The recommendation on the number of workers to
use based on the upperbound condition outperforms the one based on the average, as ex-
pected. For problems of dimension 40, where the recommendation is different (Table 4.7),
the one based on the upperbound achieves a much higher performance, gaining almost
50% for a 32 second delay on function evaluations. Even at the cost of some efficiency,
this represents a significant increase in performance. Overall efficiency is stable across
the two recommendations and parallel versions (see Figure 4.6). However, it reveals low
values (around 30%). This is due to the opportunistic polling strategy, jointly with the
effective ordering. The parallel gains depend on the number of function evaluations per-
formed within each cycle, which will usually be a low value if the ordering strategy works
properly and opportunistic polling is considered. Also the execution time between the
serial and parallel parts of the algorithm may fluctuate. Speedup and efficiency will then
depend on the structure of the problem, constraining our measures to lower limits than

those we would usually expect for parallel strategies.

When separating speedup by level of smoothness of the problems, an interesting
effect can be observed: speedup is much larger for nonsmooth problems than for smooth
ones (see Figure 4.7). Two factors contribute to this effect, being the first related to
our test set. A small number of our nonsmooth problems perform only a few iterations,
being the majority of these iterations unsuccessful (so the algorithm can finish early).
This means that the corresponding polling cycles are complete (maximizing the number
of evaluations / cycle). This fact will highly increase the speedup of these problems,
resulting in larger speedup values for nonsmooth functions. The second factor is related
to the algorithm itself. As observed in Section 4.3.1, the ordering strategy is found
to perform better for smooth problems (decreasing the number of evaluations / cycle).
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Figure 4.6: Average efficiency among all problems, given both recommendations / parallel
versions and different time delays for function evaluations.
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Figure 4.7: Average speedups split by smoothness class.

Additionally, the search step performs very well in smooth problems, which leads to
comparatively less poll steps performed than for nonsmooth functions, consequently
increasing the sequential part of the algorithm. These results are again consistent across
both recommendations and parallel versions.

With all the analysis performed, we are finally able to decide on the strategy regarding
the recommendation of the number of workers to use, that will integrate the GUI to be
developed. Our goal is to maximize the achieved speedup without losing too much
on efficiency, for a cost-effective solution. The upperbound condition seems a good fit
since the efficiencies analyzed are very close, with significant speedup gains. Also, the
statistical bound provided by this condition is of practical interest, offering a good level of
parallelism on each cycle (84% of function evaluations are covered). The expected gains
should also be more consistent, since using the average always implies some variability.
To conclude, we have chosen the upperbound as our recommendation method for a cost-
effective number of workers to be used.

Concerning the quality of the final solution, it was necessary to evaluate the values
obtained by the parallel version, since the order changes have impact on the results (see

Table 4.8). Gains and losses seem to be well distributed across problems, with around 33%
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Run 1 2 3 4 5
Value -99.96% -99.96% -99.99% -81.62%  -100.00%
Problem activefaces activefaces activefaces activefaces activefaces
Best case
Smoothness ns ns ns ns ns
Dimension 20 20 20 20 20
Value 36.29% 36.29% 36.29% 86.75% 36.29%
Worst case Problem broydn3d  broydn3d broydn3d activefaces  broydn3d
Smoothness s s s ns s
Dimension 20 20 20 10 20
Average -0.54% -0.54% -0.55% 0.20% -0.48%
Gain ratio 33.33% 33.33% 32.41% 36.11% 28.70%
Loss ratio 32.41% 32.41% 31.48% 29.63% 36.11%
Run 6 7 8 9 10
Value -49.61%  -100.00% -99.68% -99.99%  -100.00%
Problem activefaces activefaces activefaces activefaces  broydn3d
Best case
Smoothness ns ns ns ns s
Dimension 20 20 20 20 10
Value 72.63% 93.86% 16.68% 36.29% 7.83%
Worst case Problem  activefaces activefaces chaincrescentll  broydn3d  problem19
Smoothness ns ns ns S ns
Dimension 10 10 40 20 10
Average 0.31% 0.44% -1.03% -0.83% -1.22%
Gain ratio 32.41% 30.56% 32.41% 35.19% 38.89%
Loss ratio 33.33% 37.96% 36.11% 33.33% 29.63%

Table 4.8: Results on the quality of the final solution computed for different runs. Each
run aggregates all problems and dimensions. The number of workers was selected using
the upperbound condition.

on each case (the remainder respects to the percentage of problems where the results are
the same). The average value of variation ranges from -1.22% to 0.44% among the several
runs. Best and worst cases suggest that some specific problems have the most impact
on the average result, and it is essentially the same problem for the best case (activefaces,
dimension 20). For the worst case, there is more variability between problems, with
broydn3d appearing the majority of times. No relation could be established between the
quality of the final solution and problem dimension. As as example, problem activefaces
shows a big gain for dimension 20 and occasionally a big loss for dimension 10.
Respecting the choice between parallel versions, results are still inconclusive. Testing

a real application problem is necessary and encloses more practical value.

4.3.3.3 Results on a real application problem - styrene

As aforementioned, this is a real chemical engineering problem that simulates the pro-
duction of styrene, described in [4, 7]. The process involves four steps: preparation of
reactants, catalytic reactions, a first distillation - where styrene is recovered, and a sec-

ond distillation - where benzene is recovered. During this second distillation, unreacted
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ethylbenzene is recycled as an initial reactant on the process. A numerical simulator of
this chemical process has been built, one function evaluation corresponding to a com-
plete simulation. Due to the presence of recycling loops like the one of ethylbenzene, the
complete process has to be simulated until the final result is provided. The time to get
an evaluation often fluctuates, ranging from 107 to 30 seconds (according to our tests),
with an average of 4.5 seconds. The presence of costly and blackbox function evaluations
configure this problem as representative of our target class.

The problem has 8 variables (subject to lower and upper bounds), related to the
industrial process, and 11 constraints, some process-related (e.g environmental norms
regarding excesses) and some economical (e.g investment value). The main goals were to
maximize the net present value (f;), the purity of produced styrene (f,) and the overall
ethylbenzene conversion into styrene (f3) [7]. However, since we are working on single ob-
jective optimization, we followed the approach used in [4]: to add f, and f; as constraints
imposing minimum lower bounds and consider —f; as our single objective function (SID-
PSM minimizes problems). Further description and a scheme of the production process
can be found in [4].

Since serial runs are deterministic (considering the total number of function evalua-
tions and the final solution) and time variations are meaningless in the cloud machines,
only one serial run was performed. The problem was run 30 times for each of the two
parallel versions evaluated (ordered and parallel) and different number of workers. This
larger sample provided us more robustness on the statistical analysis performed.

The presented results show execution times (Figure 4.8), information on worst/best/av-
erage runs (Figure 4.9), final function value obtained (Figure 4.12) and total number of
function evaluations (Figure 4.10). Concerning the evaluation of parallel gains, speedup
and efficiency were also reported (Figure 4.11).

Execution time

6000

5000

4000 parallel
I par_ord

Time (seconds)
w
o
o
o

2000 I . serial
0
2 4 8 16

Number of workers

Figure 4.8: Average runtime given different numbers of workers. Black lines represent
95% confidence intervals based on our sample of 30 runs.
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Figure 4.9: Best, worst and average runtimes for the parallel version, considering a sample
of 30 runs.

In Figure 4.8 we can observe that the ordered version performs well for a small num-
ber of workers (2,4), but the decrease in time gains is progressively smaller. On the other
hand, the parallel version is outperformed for low numbers of workers, but achieves
much higher gains with their increase (8 and 16). The results regarding 2 and 4 workers
are surprising, especially considering that the parallel version performs less evaluations
than the ordered one (see Figure 4.10). This can be explained by the variability among
function evaluation times, which leads to some outliers in different runs. Higher num-
bers of workers seem to mitigate this effect, leading to more stable overall execution
times, which enforces the idea that a high number of workers is preferable on real appli-
cation problems. Note that this problem has dimension 8, so each poll step consists on
2n+ 2 = 18 function evaluations. Since the parallel version allows order changes on the
evaluations, the algorithm may follow very different paths, possibly performing more or
less evaluations and incurring in different execution times. Figure 4.9 illustrates these
variations. We can see that there is a great difference between best and worst runs. This
difference is mitigated by the increase on the number of workers. However for 8 and 16
workers, the worst run still requires more than twice the time needed for the best run
(see Table 4.9).

Number of workers | Best run Average run Worst run
2 1779 3946 12050
4 1310 2221 4840
8 849 1150 1745
16 480 844 1273

Table 4.9: Execution times for best, worst and average runs of the parallel version. Time
is expressed in seconds. The serial version has an execution time of 4893 seconds.
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Concerning function evaluations (Figure 4.10), both versions increase their numbers
with the increase of the number of workers. We measure completed evaluations (instead
of initiated), so naturally with more workers available we end up with more completions,
despite their success. The ordered version starts the same as the serial one (2 workers)
and has big increases, especially for 16 workers. This is to be expected, since we wait
for evaluations to be completed in the exact order they are assigned. In the meantime,
several other function evaluations can be completed. The parallel version shows smaller
numbers of function evaluations, possibly due to shorter paths till termination. Note that
the final value computed may change with different numbers of workers, also adding

some more variability to all measures (see Subsection 4.3.3.4 below).

Function Evaluations
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=
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2 4 8 16
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Figure 4.10: Average number of function evaluations performed. Black lines represent
95% confidence intervals based on our sample of 30 runs.

Figure 4.11 displays speedup and efficiency obtained for both versions. These values
were computed for each of the 30 runs and then averaged. Although results are equiv-
alent for 2 and 4 workers, for higher numbers of workers the parallel version clearly
outperforms the ordered one, both in terms of speedup and efficiency, achieving accept-
able levels even for 16 workers. Note that 16 would be our recommended number of
workers to address this problem, based on the upperbound regression line. For the par-
allel ordered version, interesting speedups are achieved for 2 and 4 workers, increasing
slowly over the number of workers, along with a great loss in efficiency. Again, this might
be explained by two factors: the opportunistic polling strategy and the effectiveness of
the poll ordering. As the algorithm always stops right when success is found, we limit
the power of parallelism. If a complete strategy was in place, speedup would increase
since we would always evaluate all poll points. Given the adoption of these strategies, it

wouldn’t be possible to aim for a linear speedup, or even estimate a theoretical one.
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Figure 4.11: Average results on speedup and efficiency obtained for different numbers of
workers, considering a total of 30 runs.

A comparison between the final values computed by each version, is shown in Figure
4.12. The ordered version gives us the same result as the serial version, the best result we
were able to produce. However, for the parallel version the results obtained were poor
(along with some variation). A tradeoff between speed and the quality of the final result

seems to occur (in the previous subsection this was not so clear).

Final value
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Figure 4.12: Average final value computed (note that the problem is addressed as a
minimization one). Black lines represent 95% confidence intervals, based on our sample
of 30 runs.

Table 4.10 reports the percentage difference between the final value obtained in the
parallel and serial runs, resorting to the metric defined in equation (4.1). Result fluctua-
tions are captured within 95% confidence intervals. Although a similar analysis showed
almost no variation for the academic set of problems, a great loss of quality is observed
here, when using the parallel version. Depending on the number of workers, our final
computed value is between 4.66% to 16.52% worse than the one of the serial version.

Additionally, all runs of the problem produced worse solutions.
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Number of workers Final value variation

2 8.31-9.65%
4 9.26-10.50 %
8 13.14-16.52%
16 4.66 - 8.22 %

Table 4.10: Final value variation by number of workers, calculated using equation (4.1).
A 95% confidence interval addresses fluctuations.

After evaluating the parallel gains obtained on a real application problem, we are
finally able to select our default version. Even if these tests only comprised a problem,
this is more representative of the class of problems that we intend to address. We ob-
served that the parallel version performs much faster, but has the unintended property
of compromising the quality of the solution obtained. Our goal would be to improve
the performance of the algorithm with a minimum of quality loss. For this reason, the
ordered version seemed to be a good compromise between quality and efficiency and was

set as default in our code distribution. The parallel version is also provided as an option.

4.3.3.4 Final note

While running these tests we noted inconsistencies between serial runs that raised some
question about the determinism of the algorithm. This is especially meaningful when
working with parallel strategies, since it may have implications on the expected behav-
ior. We already anticipated that the parallel version would be non-deterministic, but
both the serial and the ordered version were supposed to be deterministic. Through sev-
eral specific small tests, the following became clear: different serial behavior should be
expected between different MATLAB versions; different machines or operating systems
have no impact on the result, given the same MATLAB version. However, results change
with the number of workers available, what we did not expect. After a comprehensive
search and some additional tests, we could understand that the quad_frob routine, and
in particular MATLAB mldivide routine, both used on the search step, were incurring in
small variations due to precision issues. MATLAB programs already take advantage of
available workers to speedup programs through implicit parallelism mechanisms. In this
case, the result of a search step could be slightly changed, leading to a different path and,
consequently, to a different result. This is true for all versions, including the ordered one,
and serial executions, when changing the number of workers available. For consistency,
we always force serial runs to use a single worker. Considering the ordered version, this
effect wasn’t noticeable in the styrene problem, and had a slight influence on times and
evaluations in the test battery, as previously discussed.
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CHAPTER

BoostTDFO TooLBOX

Part of the present work focused on the design of a code-integrative toolbox, featuring
a Graphical User Interface. The main goal is to provide to the user an interactive and
easy way of running the different Derivative-free Optimization solvers, property of the
research team, while aggregating them under an application. The toolbox should provide
information related to algorithmic choices, leading to the best use of the codes, and in-
clude a recommendation system for parallelism. This recommendation system is based
on the comprehensive study performed in Chapter 4. Our target users are mainly op-
timizers that need to address complex real application problems, but also researchers
that require results for complete sets of academic problems. The toolbox is suited for
local/global and single/multi objective Derivative-free Optimization, including the codes
SID-PSM [19, 23], DMS/BoostDMS [10, 22], GLODS [20] and MultiGLODS [21].

In this chapter, we describe all steps related to the development of the application. We
start by analyzing the design process, from beginning to end (Section 5.1). Then, the final
version of the toolbox is presented and thoroughly described, along with all the included
features (Section 5.2). Finally, the evaluation performed on the application is referred on
Section 5.3.

5.1 Design Process

The first step of the design process was to outline the specifications. Aiming towards a
user-centered design, we started by defining our target users (as aforementioned) and ad-
dressing the information requirements of each of the four algorithms. The user needs to
be able to choose between the different algorithms provided, configure parallel options (
when available), interact with the different algorithmic choices by setting the correspond-

ing parameters and provide the distinct files that define a problem: objective function(s),
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constraints, bounds and initial points. Information about all parameters and our rec-
ommendation for an appropriate number of workers to use should also be included, in
order to best guide the user in the customization process. A set of required features
was generated by the research team, as well as a rough sketch design that would contain
all necessary information. Following these specifications, mockups were produced, in-
cluding three different screens: algorithm selection, problem selection and parameter
customization. These mockups were designed with MockFlow, a tool for sketching appli-
cation interfaces, and are exhibited on Figure 5.1. After revising the mockups with the
research team, the development of the application initiated using Appdesigner,a MATLAB
tool suited for application development.

The considered approach followed a spiral design model. While maintaining a lin-
ear development structure, this model conveys some flexibility due to the intermediate
feedback. At every phase of the process, the design gets more complex and is evaluated
before proceeding to the next iteration. Ideally, the evaluation should always be done by
users. However, as the application layout is not too complex and the research team is
very familiar with the user needs and characteristics, the intermediate evaluations were
done within the research team. Only the evaluation of the final design was done by users,
through user testing (see Subsection 5.3). The development stage included two rounds of
feedback with the research team, and some additional feedback rounds with the princi-
pal investigator, who also qualifies as a target user. With all suggestions well integrated,

resulting in a robust design, the final interface will be presented in the next section.
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Figure 5.1: Final sketches obtained as a starting point for development (mockups).
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5.2 Final Product

The present toolbox was developed using MATLAB version R2019b. Compatibility with
previous versions of MATLAB is not guaranteed, due to recent features added by Math-
works. Depending on the solver selected, some additional MATLAB toolboxes might be
needed by the user: parallel executions require the Parallel Computing Toolbox, Boost-
DMS requires the Optimization Toolbox and GLODS and MultiGLODS both require the
Statistics and Machine Learning Toolbox. The GUI is tested to work on Windows, Linux
and MacOS systems.

5.2.1 Features and Layout

The toolbox features a simple four screen layout: Home, Algorithm Choice, Parameter
Customization and File Selection.

4

Home Algorithm Choice Customize Parameters Problem Definition

Welcome to boostDFO Toolbox

Derivative-free optimization GUI featuring:
SID-PSM, boostDMS, GLODS and MultiGLODS

1 - Algorithm Choice select algorithm and configure parallel options
2 - Customize Parameters | choose the desired parameters for optimization

3 - Problem Definition import problems and constraints and run the algorithm

Profile saving/loading is available, in case you want to keep your choices. If you forgot
to save, no problem! We will automatically save configurations for your last 10 runs.

FCT Fundagéo para a Ciéncia e aTecnologia PTDC / MAT-APL / 28400/ 2017

NISTERIO DA EDUCACAO E CIENCIA

NeVA NOVALINCS C

m ABORATORY FOR COMPUTER
e . 1':"(‘,’1Tt 4 F F{ l‘ ,1 1Tl f FACULDADE DE

SCIENCE AND INFORMATICS CIENCIAS E TECNOLOGIA
UNIVERSIDADE MOVA DE LISEOA

Figure 5.2: Home screen layout.

The first one (Figure 5.2) is a general home page, featuring a simple user tutorial,
information about project funding and research centers involved. The user should be
able to quickly understand how to use the toolbox. However, if the user needs additional
help or requires a more detailed explanation on the provided features, we also maintain

a complete user guide on the main folder (see Annex I).
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Figure 5.3: Algorithm Choice screen layout. Left figure shows the default layout; right
figure shows parallel options. Outlined features: Left figure - 1. algorithm selection. 2.
load profile. Right figure - 1. worker recommendation. 2. parallel version option. 3. local
machine or cluster selection.

The next screen, Algorithm Choice (Figure 5.3), allows the choice of the intended
algorithm, depending on the general class of optimization problem to be addressed (lo-
cal/global, single/multi objective). Parallel options are also available, for now only for
SID-PSM algorithm, including the number of processors to use, the recommendation on a
cost-effective number of processors, the kind of parallel version to use (keeping or not the
poll order) and the system architecture (local or cluster execution). Previously configured
clusters (using the MATLAB configuration tool) are automatically detected. In this way

it is possible to use online cloud services, or other customized systems.

The recommendation on the number of CPU cores to use depends on the number of
variables of the problem and its level of smoothness (smooth, nonsmooth or unknown).
According to the data provided, our wizard generates and displays a recommended value
(based in the analysis performed in Chapter 4). However, the user can always select a
different number of workers, as long as there are enough CPU cores in the machine. For
clusters, it is not possible to statically verify the maximum number of cores available, so
the toolbox allows any input value and the algorithms will run either with the selected

value or the maximum number of cores available, in case there are less workers available.

Parameter Customization (see Figure 5.4) is about parameter display and customization.
Depending on the selected algorithm, the corresponding parameters are presented along
with informative tooltips on the different options. The information icon on the top right
corner (see Figure 5.4) notifies the user on how to find these helping tooltips: hovering
the mouse on top of the desired parameter. It is always possible to reset all parameters to
the initial default values.

Finally, File Selection allows the the user to provide the necessary files (Figure 5.5).
Files uploaded can contain the objective function(s), the initial points, bounds and re-
maining constraints (depending on the algorithm). Also, special parameters that depend

on these files can be customized. Information on correct file building is presented in the

50



5.2. FINAL PRODUCT
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when the number of points in the interpolation set exceeds the number
of points required for complete quadratic interpolation

Unchecked: some of the interpolation points are discarded in order to
only compute determined quadratic interpolation models

Figure 5.4: Parameter Customization screen layout. Outlined features: 1. info button that
informs the user about helping tooltips. 2. a helping tooltip with all the information on
the selected parameter.

user guide, that is automatically opened if the user clicks the "Help on file construction”
button on the top right corner (element 1 of Figure 5.5). One or more files can be selected,
allowing the user to solve multiple problems. In this way, we fulfill the needs of both op-
timizers: the ones that need to address a real application problem, and those that require

results from test sets.

When pressing the "Optimize!"” button, the run begins, automatically saving the pro-
file and creating a new folder within the reports folder, duly identified with the name of
the selected algorithm and the timestamp. Inside, the user can find a .csv file with the
final information on all selected problems (one or several), along with the output files
generated by the algorithm, identified by problem name. These files might contain the
progression of the approximation to the problem solution, plots, error logs and MATLAB
variables related to the number of iterations, total function evaluations performed or cur-
rent variables that allow the problem run to be continued at a later stage. These outputs

depend on the algorithm selected and on the success of the run.

In case the user needs to repeat runs, we include a feature of saving/loading profiles.
These profiles allow the user to save all the information provided across the different

screens: algorithm (including parallel options), parameters and files selected. In this
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Figure 5.5: File Selection screen layout. Outlined features: 1. help button that automati-
cally opens the user guide. 2. save profile button.

way, the user can easily retrieve all configurations selected in a previous run and use
them to repeat an experiment or as a starting point for a new optimization. Additionally,
the profiles of the last 10 executions are automatically saved, in case they are eventually
needed.

Table 5.1 shows a summary of all the features provided by the toolbox.

Feature List
Simple tutorial and complete user guide
Algorithm selection (class of the optimization problem)
Parallel options, including:
Recommendation on the number of cores
Architecture selection (local/cluster)
Selection of parallel version
Parameter customization
Single/multiple file selection
Information on parameters and file options (helping tooltips)
Save/Load parameter profiles
Profile autosave (last 10 runs)
Execution of the different optimization algorithms

Table 5.1: List of features included in the toolbox.
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5.2.2 File System Layout

In order to comply with the complexity of integrating all the algorithms and different
features, a specific file system layout is used, upon which the toolbox is built (see Figure
5.6). The main directory includes the toolbox.mlapp file that launches the application,
along with the user guide and some hidden image files (logos of the supporting institu-
tions). The folder scripts includes all files needed on the application startup. The file
(constants.m) contains all static messages and paths necessary and the four different .mat

files enclose the default parameter values to initiate each of the algorithms.

Home Share View o
T™ » BoostDFO_Toolbox v @ | Search BoostDFO _Toolbox R
algorithms
problems

4 profiles

reports
scripts
4. toolbox
Size: 329 KB
E= user_guide
Size: 233 KB

Figure 5.6: File system layout.

The folder algorithms contains codes corresponding to the four algorithms, duly adapted
to integrate the interface.

On problems, the user can find several example problems already coded, to test the
different algorithms. Profiles is the folder where all parameter profiles are stored. It
already includes the defaultProfile that also loads on startup, and an autosave folder where
the application automatically saves the parameters used in the last ten runs performed.

Finally, the reports folder is where the user can find the optimization results.

5.2.3 Error Handling and Feedback

The application captures a comprehensive number of error cases that may arise. Informa-
tive feedback is always presented to the user, allowing for both understanding its causes
and finding out possible solutions. Figure 5.7 shows an example of feedback given in the
cases of success and failure of a run.

If an error is detected on startup (e.g. MATLAB path is not set to the root of the file
system), the application does not open and displays an error message, forwarding the
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user to possible solutions.

Optimization failed!

o Optimization failed.
eport

Optimization succeeded!

° Optimization completed successfully!

Results can be found In the 'reports' folder. More ag":ls e be found in the error logs, inside the.

e

s

Go to Reports Folder | [ OK Go to Reports Folder | ok |

Figure 5.7: Feedback received after the execution. Pressing "Go to Reports Folder"” auto-
matically opens the folder where the results are stored.

While optimization is running, possible errors, either due to incorrect file construction
or other unexpected case, are captured and stored in an error log, along with the algorithm
outputs. In this way, information on the errors is always given to the user without

blocking the application flow, eliminating the need for recovery.

5.3 Evaluation

Evaluation of the toolbox was made through user testing. Three testers were selected that
classified as typical users: optimizers that are familiar with Derivative-free Optimization
and solvers, with some degree of contact with the algorithms integrated in the toolbox, but
with no prior knowledge on the toolbox application. The tests were performed remotely,
using Zoom, a video conference platform, requiring users to share the screen with the
developer. The test script was followed by a quick questionnaire and both items were
shared on Google Forms. The procedure was thorough, taking between one and a half and
two hours to complete.

The test itself was a set of eight different tasks scenarios, organized on five topics (see
Appendix A). Each task scenario represents a typical task that users might perform using
the application. The information provided was minimal, to assess how easily users could
understand all the necessary steps on their own, or resorting to the helping tools that
the application provides (helping tooltips and user guide). However, some hints were
provided at times by the developer in order to reduce the possible frustration due to the
length of the test. For the same reason, some tasks were sometimes skipped, depending
on the performance of the user. If the user had already explored the feature to be tested
or had already understood perfectly all the steps he would have to take, that task could
safely be skipped without compromising the test.

At the end, the System Usability Scale (SUS) questionnaire [12] was applied. This is

a standard and well validated questionnaire that quantitatively measures usability, in
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a scale of 0 to 100 (see Appendix B). It is very quick and simple to apply, comprising
only ten questions. The version used and how the results are interpreted are part of the
original article [12].

By conducting this user test procedure, it was possible to gather both qualitative and
quantitative feedback on the toolbox.

5.3.1 Results

The general feedback obtained was that the toolbox was intuitive, easy to use and its
features were well integrated. Additionally, based on the user experience and comments,
several practical details were improved (e.g, level of information provided and layout
details). The main suggestions regarding this constructive feedback were essentially
three:

1. Users felt that the original toolbox should include a more detailed guide to detail
some of the features. At the time of the tests, the user guide only included help for file

construction, as this was the most difficult task to perform.

2. The Load/Save Profile was slightly confusing, as users thought they were supposed
to use it but didn’t know how. None of the users understood this feature on their own.
When explained, all of them responded positively, stating that it was a useful and practical

feature.

3. When selecting files corresponding to different optimization problems, it was not
clear if they could be picked individually and accumulate or if they should all be selected
at once. However, the file selection is followed by a field where the name of the selected
files appear, so this issue probably would only appear in a first usage of the toolbox.

Building up on this qualitative feedback, we decided to address the questions in the
user guide, including more useful information. Additionally, we felt some details were
missing in order to present a complete guide. Thus, all questions were better clarified and
integrated, along with new information on relevant features, system requirements and
further details. We expect that these points are now clearer and further improvements
might be added in the future.

Regarding our quantitative results, we obtained an average of 83.3 points in the SUS
scale. SUS questionnaire has been available for a long time (more than 30 years) and
the meaningfulness of the corresponding results has been extensively studied. Percentile
ranks and the Net Promoter Score [52] are some of the metrics considered for it. Percentile
ranks represent a normalized comparative measure, considering a broader universe of
applications. Converting our score to a percentile, our toolbox would be inside the 90-95
percentile, which is a very good indicator [52]. The Net Promoter Score evaluates the
likelihood of a user recommending the application to another person (colleague, peer)
and seems to be correlated to SUS scores [53]. Our score suggests that some of our

users could be classified as Promoters, what would help spreading the toolbox across the
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community. Since our sample of testers was reduced, further testing and feedback from

more users will impact on the result validation.
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The present work resulted in two major outputs: a parallelized version of the algorithm
SID-PSM (including two different parallel strategies) and a code-integrative Toolbox that
features a GUI for all four Derivative-free Optimization solvers (SID-PSM, DMS/Boost-
DMS, GLODS and MultiGLODS).

Furthermore, it provided a pretext to revise SID-PSM’s parameters and select the best
default options, through an extensive data profile analysis, and to introduce some perfor-
mance optimizations on the original code. Several algorithmic options were then analyzed
and compared. The version that includes active cache and search step, an opportunistic
poll strategy and an improved routine to build the quadratic models demonstrated a

superior performance and was thus selected as the default version of the code.

Then we described the introduction of parallelism in SID-PSM and analyzed the
potential parallel behavior of the algorithm, so that a recommendation can help a user se-
lecting the number of CPUs to use, even without any prior knowledge about the problem.
Building up on the number of function evaluations/poll step cycle, two recommendation
methods were proposed: one based on its average and other adding a standard deviation
to the average (upperbound). The upperbound approach seemed the best one, given the
efficiency observed on our problem test set being very close on both cases, with significant
speedup gains for this last approach. Also, the statistical bound provided is of practical
interest, offering a good level of parallelism on each cycle (at least 84% of function eval-
uations covered). The expected gains should also be more consistent, by mitigating the

variability present in the average approach.

Additionally, two different parallel version were designed and compared, both of
them targeting the poll step: a regular parallel version and one that keeps the order
of function evaluations within the poll step, taking advantage of the ordering strategy

already in place. The motivation to develop both versions came from the detection of a
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possible tradeoff between performance, expressed in computational time, and the quality
of the final result obtained. The proposed parallel versions were evaluated regarding the
recommended number of CPUs and applied to both an academic set of problems and a
real industrial application (the production of styrene). We verified relevant parallel gains
even for functions with an evaluation time of 0.1 seconds, outlining the advantages of the
parallel approach for tackling real application problems.

The results obtained with our test set, following the recommendation provided, reveal
a general speedup around 5.70, rising almost to 9 for problems of dimension 40. Also,
nonsmooth problems seem to benefit even more from parallelism, pratically doubling
the speedup obtained for smooth problems. These results allow us to foresee greater
speedups for more complex problems.

The relevance of offering the parallel ordered option to our users is illustrated by the
results obtained for the styrene production problem when using 16 CPUs (our recom-
mended value). Accounting only the regular parallel version, a speedup of almost 6 was
observed, compared to the serial version, but the solution obtained was almost 6% worse.
Following the ordering strategy on function evaluations led to an increase of 55% in the
execution time, but this is still less than 1/3 of the total time required by the serial ver-
sion, guaranteeing the quality of the final solution computed while maintaining a good
performance. This was the parallel version adopted as default in our code. However,
different problems can exhibit different behaviors and we give the user the possibility to
choose the parallelization strategy, based on his expertise and preferences.

As for our toolbox, it was possible to build an intuitive and easy-to-use system with
all the intended features. User testing was performed with three representative users,
applying a set of task scenarios for qualitative feedback and the SUS questionnaire for a
quantitative evaluation. The general feedback was that the features were well integrated
and the toolbox would be very practical for solving DFO problems. Also, the constructive
feedback provided allowed us to improve it further. We received an average score of 83.3
points in the SUS scale (0-100), what places our application inside the 90-95 percentile
rank on a normalized scale and suggests that some users are likely to recommend it to

others, helping spread the tool across the DFO community.

6.1 Future Work

After the successful parallelization of the SID-PSM algorithm, a natural direction to
proceed would be the parallelization of the remaining solvers, and their inclusion on the
toolbox. Additionally, further improvements to the toolbox might be made, as a result of
feedback from the community of users. Another research path that could be beneficial
is related to taking advantage of clusters and cloud services. In this work it has not
been possible to explore different cloud architectures as intended, due to the high cost
of MATLAB Parallel Server. Instead, we used a single machine for cloud testing, what
can be restrictive if the user needs a very high number of CPUs. Accordingly, it may also
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not seem advantageous for most users of our codes/toolbox to make use of this Parallel
Server. To tackle this issue, it would be valuable to explore a system that would interact
with the cloud or clusters and manage its instantiation, deployment and control directly

and on-the-fly, thus simplifying the process for the common user.
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User Testing Script

BoostDFO _Toolbox is a graphical user interface (GUI) developed as an
aiding tool for running optimization codes. It is suited for solving
single/multi objective and local/global Derivative-free Optimization
problems, featuring the codes SID-PSM, DMS/boostDMS, GLODS and
MultiGLODS. Some coded example problems are already provided with the
distribution, with the purpose of helping the user to run his/her own
problems. In the next screens you will be asked to perform some tasks using
this GUI.

1. Solving a specific problem

A - The user wants to run the problem ackley with the algorithm GLODS,
with a maximum of 500 evaluations. At the end, the user checks the results
obtained.

B -The user runs the problem exampleProblem, including the corresponding
constraints. This is a single objective, local optimization problem. At the
end, the user checks the results obtained.

2. Solving a set of problems

A - The user runs a set of problems, chosen from the ones already provided.
The algorithm to choose is MultiGLODS. At the end, the user checks the
results obtained.

B - The user wants to perform multi objective, local optimization in a set of
problems from those already provided. When selecting the initialization
files, he/she should select both the correct and some extra incorrect files.
At the end, the user checks the results obtained.



3. Solving a new problem

The user prepares all the necessary files to run his/her own problem. Any
kind of optimization may be performed. Then, the user runs the problem
and checks the results. If the problem optimization is time-consuming, a
small stopping criterion may be used.

3. Solving a new problem (applied only if the user doesn’t have his/her
own problem)

The user prepares all the necessary files to run the problem which data is
provided below. The optimization will be performed with the algorithm
boostDMS. In the File Selection screen, the list option should take the value
2.

Problem data:
Dimension — 30 variables
Objective function:

numVar = length(x);

g =1+9*sum(x(2:numVar))/(numVar-1);
f(1) =x(1);

fl2) =g *(1-(x(1)/9)"2);

Fo=f;

Bounds —[0,...,0] e [1,...,1] (problem dimension)

Initial Point: none

4. Solving a parallel problem —part 1

The user wants to run the problem brownal30 (dimension 30) using parallel
computing. This problem classifies as smooth. The parallel ordered version



should be used, and the stopping criteria is a maximum of 800 evaluations.
Additionally, the user should change three parameters (at will) within the
parameter customization area.

4. Solving a parallel problem — part 2

The user intends to run again the previous problem with the same options
but including a different stopping criterion.

5. Continue a previous run

The first task was to run the problem ackley with the algorithm GLODS,
allowing a maximum of 500 evaluations. Now the user wants to perform
more 1500 evaluations, restarting from the previous result.

Now that you have completed all tests on the interface, we ask you to fill a
quick usability questionnaire. Thank you for your kind collaboration!
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System Usability Scale

© Digital Equipment Corporation, 1986.

Strongly
disagree

Strongly
agree

1. | think that | would like to

use this system frequently

2. | found the system unnecessarily
complex

3. I thought the system was easy

to use

4. | think that | would need the

support of a technical person to

be able to use this system

5. | found the various functions in
this system were well integrated

6. | thought there was too much |
inconsistency in this system

7. | would imagine that most people
would learn to use this system

very quickly |

8. | found the system very
cumbersome to use

9. | felt very confident using the
system

10. | needed to learn a lot of
things before | could get going

with this system 1




Using SUS

The SU scale is generally used after the respondent has had an opportunity to use the
system being evaluated, but before any debriefing or discussion takes place. Respondents
should be asked to record their immediate response to each item, rather than thinking about
items for a long time.

All items should be checked. If a respondent feels that they cannot respond to a particular
item, they should mark the centre point of the scale.

Scoring SUS

SUS yields a single number representing a composite measure of the overall usability of the
system being studied. Note that scores for individual items are not meaningful on their own.

To calculate the SUS score, first sum the score contributions from each item. Each item's
score contribution will range from 0 to 4. For items 1,3,5,7,and 9 the score contribution is the
scale position minus 1. For items 2,4,6,8 and 10, the contribution is 5 minus the scale position.
Multiply the sum of the scores by 2.5 to obtain the overall value of SU.

SUS scores have a range of 0 to 100.

The following section gives an example of a scored SU scale.
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BoostDFO_Toolbox User Guide

BoostDFO_Toolbox is a code-integrative Graphical User Interface (application) suited for
local/global and single/multi objective Derivative-free Optimization. Its main goal is to
provide interactive and easy access to a suite of solvers that users can apply to their
problems. It features four different solvers, property of the research team: SID-PSM,
BoostDMS, GLODS, and MultiGLODS (more information on the Included Solvers section).
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System Requirements

The present toolbox was developed using Appdesigner on MATLAB version R2019b. It was
tested to work on Windows, Linux and MacOS. In order to use this GUI, the user should
have MATLAB 2019 (or a newer version) installed. Also, for using the different codes,
some additional MATLAB toolboxes might be necessary.

Parallel executions require the Parallel Computing Toolbox;
BoostDMS requires the Optimization Toolbox;
GLODS and MultiGLODS require the Statistics and Machine Learning Toolbox.

Compatibility with previous versions of MATLAB is not guaranteed, due to the new
features added by Mathworks.

Installation
After extracting the contents of the .zip folder, everything is set.

Even though toolbox.mlapp is the file that launches the toolbox, it relies on the file system
included in this folder. It is not recommended to change/delete any original folders/files,
as this may compromise the app functioning (except for the example problems; those can
be safely edited/deleted). New files generated by the toolbox are safe to delete (profiles,
excluding defaultProfile, and reports).

Opening the Toolbox
In the main directory (boostDFO_Toolbox), open the file toolbox.mlapp.

Sometimes MATLAB is not set to automatically open this type of files. If this verifies, the
user can choose one of two options:

find MATLAB path folder to open this file with MATLAB;

open the MATLAB command window, type the appdesigner command to open the
development environment, open the toolbox and click Run.

After the first use, MATLAB should be automatically configured to open .mlapp files.



Solvers Included

This toolbox includes four solvers, suited for different classes of Derivative-free
Optimization problems. More information on each one can be found at:

SID-PSM http://www.mat.uc.pt/sid-psm

BoostDMS http://www.mat.uc.pt/dms
http://ferrari.dmat.fct.unl.pt/personal/alcustodio/BoostDMS.pdf

GLODS http://ferrari.dmat.fct.unl.pt/personal/alcustodio/GLODS.htm

MultiGLODS http://ferrari.dmat.fct.unl.pt/personal/alcustodio/multiglods.htm

Parallel Versions

At the moment, SID-PSM is the only algorithm that features a parallel version. The other
parallel versions will be added in the future, as soon as they are developed.



Features

The toolbox includes four different screens: Home, Algorithm Choice, Parameter
Customization and File Selection. Those are designed to allow a quick and easy use of the
algorithms.

In the first one, Home, you can find a quick user tutorial. Below we give a better
explanation on the main features.

Solving single/multiple problems

The toolbox can be used to solve either one or more optimization problems. In this way,
we can meet the demands of optimizers that need to address a real application problem
(in any field), as well as researchers that require results from a complete test set.

On the File Selection screen, you can find selection buttons followed by text fields on the
right. When a file is selected, the corresponding name appears on the right side. If you
then select another file, they will switch. The selection of several files should be done at
once, using the keys CTRL + LEFT MOUSE CLICK or mouse dragging. In the right side, the
name of the different files selected will now appear.

For information on how to build the files correctly, see section Instructions on File
Building below.

Helping tooltips

Many options and parameters are available for user customization. You can always use
the recommended defaults. However, if you need details on what a specific
parameter/option does, just hover the mouse on top of the corresponding text and a
helping tooltip will appear.

Parallel Options (only available for SID-PSM)

Cluster selection

When solving problems resorting to parallelism, you may use your own machine (local) or
a cluster. The clusters should be previously configured (using the MATLAB configuring



tool) and are automatically detected. In this way it is possible to use online cloud services,
or other customized systems.

Worker recommendation

This is a recommendation provided on a cost-effective number of processors. In case you
are using cloud services or would like to spare some available cpus, this is an indicator for
a good performance. If you don’t have these restrictions and have more cpus than those
recommended, you can use them for increased performance, up to the total number of
function evaluations per poll step completed by the algorithm (2*problemDimension + 2,
in case of SID-PSM). There will be no performance gain after this point.

The number of variables and level of smoothness of the problem(s) directly impact the
recommendation. If you are solving multiple problems with parallel options, please make
sure that all of them have the same number of variables and level of smoothness.

The recommendation provided is based on numerical results obtained on a test set
comprising academic problems, which were analyzed as a whole and split by level of
smoothness. This recommendation ensures that the number of workers is enough for
completing the poll step in a single pass in 84% of the cases (assuming it follows a
Gaussian distribution).

Profiles (save / load / autosave)

In case you have the need to repeat runs, we include a feature of saving/loading Profiles.
These profiles save all the information provided across the different screens - algorithm
chosen, parameters and files selected.

The last 10 executions are automatically saved (autosave folder), in case they are
eventually needed.



Instructions on File Building

This section includes all the instructions on building the files necessary to solve
Derivative-free Optimization problems. Each subsection features a different algorithm.
Examples are provided for all of them, both here and inside the Problems\Examples
folder. All files are coded in MATLAB.

SID-PSM

The set of files exampleProblem was prepared as an example of a constrained problem to
be solved with SID-PSM.

It relates to the constrained optimization problem with two variables:
Min  (x2 - x12) 2
s.t.  -2<=x1<=0
X2<=1

The initial point considered is [-1.2 1]".

Problem (objective function) — required

This file codes the objective function, defining the problem. It can be located anywhere on
the computer, but the other files to load must be on the same directory. One or several
problems can be solved at once (all from the same directory).

It receives a point x and outputs the result of the evaluation of that point (single value).

e.g. function f = exampleProblem(x)

f=(x(2)-x(1)"2)"2;

Constraints - optional

This file includes all constraints that apply to the problem. It should be named as
*problemname*_const, replacing *problemname* by the name of the corresponding
problem (in our example, it would be exampleProblem_const). It is possible to solve both
constrained and unconstrained problems in the same run, by uploading only some
constraints files. SID-PSM requires no bounds for initialization, but these can be inserted
as constraints.



It receives a point x and outputs the constraints’ value at the given point (a column vector
of ¢ values, where c is the number of constraints). Constraints are always written in the

form Ci(x) < 0.
e.g. function [c_const] = exampleProblem_const(x)
c const=[];
c_const(1) =x(1);
c_const(2) =-x(1)-2;
c_const(3) =x(2)-1;

c_const = c_const’;

Gradients of Constraints - optional (required in the constrained case)

This file contains the gradients of the problem’s constraints. It should be named as
*problemname* const_grad. This file is required for solving constrained problems, since it
is used to build the poll directions.

It receives a point x and outputs the gradients of the constraints evaluated at x
columnwise (a matrix with of n*c values, where n (rows) is the number of variables and ¢
(columns) is the number of constraints).

e.g. function [grad_c] = exampleProblem_const_grad(x)
grad_c=[];
grad_c(:,1)=[10];
grad_c(:,2)=[-10];
grad_c(:,3) =[0 1],

Initialization (initial point) - required

This file includes only the initial point, as a single variable named x_initial. 1t should be
named *problemname?* _init. An initialization file must be provided to each problem
loaded.

The initial point is a column vector with the corresponding coordinates.

e.g. X_initial = [-1.2 1]";



BoostDMS

Problem (objective functions) — required

This file codes the different objective functions to optimize, defining the problem. As this
algorithm is suited for multiobjective optimization, several objective functions might be
included. The file can be located anywhere on the computer, but other files to load must
be on the same directory. One or several problems can be solved at once (all from the
same directory).

It receives a point x and outputs the result of the evaluation of that point, given the
different objective functions (column vector of values).

e.g. function [F] = ZDT1_example(x)

numVar = length(x);

g =1+ 9*sum(x(2:numVar))/(numVar-1);

fl1) =x(1); %function 1
f(2) =g*(1-sqrt(x(1)/a)); %function 2
Fooo=f

Constraints - optional

This file includes all constraints that apply to the problem, except for problem bounds.
These are provided in the initialization file. This file should be named
*problemname*_const, replacing *problemname* by the name of the corresponding
problem. It is possible to solve both constrained and unconstrained problems in the same
run, by uploading only some constraints files.

It receives a point x and outputs the constraints’ values at the given point (column vector
of ¢ values, where c is the number of constraints). Constraints are always written in the

form Ci(x) < 0. Check SID-PSM section for an example, since this part works similarly.

Initialization (initial points + bounds) - required

This file includes the initial point, as a single variable named x_initial, as well as the
problem bounds. It should be named *problemname* _init. An initialization file must be
provided to each problem loaded.

The initial point is a column vector with the corresponding coordinates. The problem
bounds (lower and upper) are also column vectors, where the size of the vector



corresponds to the number of problem variables. Bounds are always required, being set to
-inf or +inf if they do not apply to a given problem. Variable x_initial must be present, but
may be empty depending on the Jist option chosen:

When list == 0 — the user can provide its own list of initial points to start the
optimization procedure. Variable x_initial is then a matrix where each column
corresponds to a different point. If variable x_initial is empty, the initial point is the
middle point defined by the bounds.

When list == 1/2/3 — variable x_initial should be empty (if not, it will be ignored).

When list == 4 — the file to provide is the output of a previous run of the problem
BoostDMS _lastiteration_*problemname*.m (relocated to the problem directory
and renamed as *problemname* _init). This file allows the user to continue running
a problem that stopped for an unknown reason (e.g. hidden constraints) or with a
more precise stopping criterion, by saving all the relevant variable information.
Besides the initial points and bounds, this option features some additional
information and is not intended to be user created.

In the case that the pareto_front option is inactive, only one point will be generated by
the algorithm (rather than an approximation to the complete Pareto front). Thus, only the
first point on x_initial would be considered as initialization.

e.g. (forlist ==1/2/3) X_initial = [];
lowerbound = zeros(30,1);
upperbound = ones(30,1);
GLODS

Problem (objective function) - required

This file codes the objective function, defining the problem. It can be located anywhere on
the computer, but the other files to load must be on the same directory. One or several
problems can be solved at once (all from the same directory).

It receives a point x and outputs the result of the evaluation of that point (single value).

e.g.

function f = becker_lago(x)

f = (abs(x(1))-5)*2+(abs(x(2))-5)*2;



Initialization (initial points + bounds) - required

This file includes the initial point, as a single variable named x _initial, as well as the
problem bounds. It should be named *problemname* _init, replacing *problemname* by
the name of the corresponding problem. An initialization file must be provided to each
problem loaded.

The initial point is a column vector with the corresponding coordinates. The problem
bounds (lower and upper) are also column vectors, where the size of the vector
corresponds to the number of problem variables, and are always required. Variable
x_initial must be present, but may be empty depending on the list option chosen:

When list == 0 — the user can provide its own list of initial points to start the
optimization procedure. Variable x_initial is then a matrix where each column
corresponds to a different point. If variable x_initial is empty, the initial point is the
middle point defined by the bounds.

When list == 1/2/3 — variable x_initial should be empty (if not, it will be ignored).

When list == 4 — the file to provide is the output of a previous run of the problem
glods_lastiteration_*problemname*.m (relocated to the problem directory and
renamed as *problemname* init). This file allows the user to continue running a
problem that stopped for an unknown reason (e.g. hidden constraints) or with a
more precise stopping criterion, by saving all the relevant variable information.
Besides the initial points and bounds, this option features some additional
information and is not intended to be user created.

e.g. (forlist==1/2/3) x_initial = [];
lowerbound = -10*ones(2,1);

upperbound = 10*ones(2,1);

MultiGLODS

Problem (objective functions) - required

This file codes the different objective functions to optimize, defining the problem. As this
algorithm is suited for multiobjective optimization, several objective functions might be
included. The file can be located anywhere on the computer, but other files to load must
be on the same directory. One or several problems can be solved at once (all from the
same directory).

It receives a point x and outputs the result of the evaluation of that point, given the
different objective functions (column vector of values).



e.g.

function [F] = ZDT1_example(x)

numVar = length(x);

g =1+ 9*sum(x(2:numVar))/(numVar-1);

fl1) =x(1); %function 1
f(2) =g*(1-sqrt(x(1)/9)); %function 2
Fooo=f

Initialization (initial points + bounds) - required

This file includes the initial point, as a single variable named x_initial, as well as the
problem bounds. It should be named *problemname* _init, replacing *problemname* by
the name of the corresponding problem. An initialization file must be provided to each
problem loaded.

The initial point is a column vector with the corresponding coordinates. The problem
bounds (lower and upper) are also column vectors, where the size of the vector
corresponds to the number of problem variables, and are always required. Variable
x_initial must be present, but may be empty depending on the list option chosen:

e.g.

When list == 0 — the user can provide its own list of initial points to start the
optimization procedure. Variable x_initial is then a matrix where each column
corresponds to a different point. If variable x_initial is empty, the initial point is the
middle point defined by the bounds.

When list == 1/2/3 — variable x_initial should be empty (if not, it will be ignored).

When list == 4 — the file to provide is the output of a previous run of the problem
multiglods_lastiteration_*problemname*.m (relocated to the problem directory
and renamed as *problemname* _init). This file allows the user to continue running
a problem that stopped for an unknown reason (e.g. hidden constraints) or with a
more precise stopping criterion, by saving all the relevant variable information.
Besides the initial points and bounds, this option features some additional
information and is not intended to be user created.

(for list == 0) x_initial(:,1) = 0.2*ones(30,1);
x_initial(:,2) = 0.6*ones(30,1);
lowerbound = zeros(30,1);

upperbound = ones(30,1);
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