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Abstract

GLODS is a global derivative-free optimization algorithm, relying on local directional

direct search, aided by a clever multistart strategy that does not conduct all the lines of

search until the end. In 2015, time of the first release of the corresponding solver, GLODS

was shown to be competitive when compared to state-of-the-art algorithms, such as MCS

or DIRECT.

GLODS resorts to sampling techniques to look for minima on a global scale, not

taking advantage of the information gathered in previous iterations. As such, the main

goal of this work is to replace the pseudo-random sampling approach, used by GLODS

to initialize new lines of search, by the minimization of global models of the objective

function, defined using radial basis functions, and computed using the points previously

evaluated by the algorithm. This should allow a better placement of the starting points for

new local lines of search, and, in turn, significantly increase the numerical performance

of the algorithm.

Naturally, incorporating radial basis functions in GLODS poses new challenges. In

this work, we will address questions such as which radial basis functions to use, which

points should be selected to compute them, how to minimize these functions, and how to

take advantage of their minima in the execution of the algorithm.

The new version of GLODS, incorporating radial basis functions, was calibrated to

its best numerical performance, and then compared against other state-of-the-art solvers,

such as MCS, DIRECT, MATSuMoTo, and ZOOpt. The results obtained are strongly

positive. The new algorithm clearly outperforms its previous version, and is competitive

with the other solvers tested.

Finally, parallel strategies were implemented and tested. Results showed that it is

very beneficial to evaluate multiple points simultaneously, for objective functions whose

evaluation time is as low as 0.1 seconds. The proposed algorithm, called BoostGLODS, is

a cutting-edge, powerful and efficient parallel global derivative-free optimization algo-

rithm.
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Resumo

O algoritmo GLODS é um método de otimização global sem recurso a derivadas, ba-

seado em procura direta direcional, aliada a uma estratégia de reinicialização inteligente,

que não leva todas as linhas de procura até ao final. Em 2015, ano em que foi disponi-

bilizada a primeira versão do correspondente código, o algoritmo GLODS mostrou-se

competitivo com outros algoritmos do estado da arte, como sejam o MCS e o DIRECT.

O algoritmo GLODS usa técnicas de amostragem pseudo-aleatórias para procurar

mínimos numa escala global, não tirando partido da informação adquirida em iterações

anteriores. Assim, o objetivo principal deste trabalho é substituir as estratégias de amos-

tragem pseudo-aleatória, usadas pelo GLODS para inicializar novas linhas de pesquisa,

pela minimização de modelos globais da função objetivo, definidos à custa de funções

de base radial, que são construídos usando pontos que o algoritmo já avaliou em itera-

ções anteriores. Esta substituição deverá permitir ao GLODS um melhor posicionamento

dos pontos para inicialização de procuras locais, o que, por sua vez, deverá levar a um

aumento significativo do desempenho numérico do algoritmo.

Naturalmente, incorporar funções de base radial no GLODS traz desafios adicionais.

Neste trabalho, iremos responder a perguntas como que funções de base radial usar, que

pontos selecionar para as construir, como minimizar estas funções e como incorporar essa

informação na execução do algoritmo.

A nova versão do GLODS, que já contempla o uso de funções de base radial, foi

calibrada com vista a ter o melhor desempenho numérico. Posteriormente, foi comparada

com outros algoritmos do estado da arte, como sejam o MCS, o DIRECT, o MATSuMoTo,

e o ZOOpt. Os resultados obtidos são muito positivos. O novo algoritmo mostra um

desempenho claramente superior à sua anterior versão, e é competitivo com os restantes

algoritmos testados.

Finalmente, foram implementadas e testadas estratégias de paralelismo. Os resulta-

dos mostram que é bastante benéfico avaliar vários pontos em simultâneo, para funções

objetivo cujo tempo de avaliação é tão baixo como 0.1 segundos. O algoritmo proposto,

designado por BoostGLODS, é um algoritmo paralelo de otimização global sem recurso a

derivadas, com estratégias de ponta, poderoso e eficiente.

vii



Palavras-chave: Otimização global, Otimização sem derivadas, Funções de base radial,

Modelos sub-rogados, Métodos de procura direta, Métodos de procura

em padrão, Otimização não suave

viii



Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

1 Introduction 1

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives and thesis organization . . . . . . . . . . . . . . . . . . . . . . 3

2 The original GLODS 5

2.1 Main algorithmic structure . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Algorithmic steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Radial Basis Functions 17

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 RBF families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Challenges when handling RBF models . . . . . . . . . . . . . . . . . . . 23

3.4 Acquisition functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 BoostGLODS 29

4.1 BoostGLODS’ search step . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Search step launching criteria . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Algorithmic flow strategies and RBF minima handling . . . . . . . . . . 31

5 Performance Assessment Tools 33

ix



5.1 Test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Data profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Performance profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Scoring graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Calibration of BoostGLODS 43

6.1 Minimization method for RBFs . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Search step launching criteria . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Algorithmic flow strategies and RBF minima handling . . . . . . . . . . 49

6.4 Point selection to build RBF models . . . . . . . . . . . . . . . . . . . . . 50

6.5 Calibration of the number of initial points and of the upper limit to the set

of points selected for RBF models . . . . . . . . . . . . . . . . . . . . . . 53

6.6 Quadratic tail for the aTPS model . . . . . . . . . . . . . . . . . . . . . . 53

6.7 Acquisition functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Benchmarking BoostGLODS 59

7.1 Competing solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Parallelization of BoostGLODS 65

8.1 Parallel strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9 Conclusions and open questions 75

Bibliography 77

x



List of Figures

2.1 Flowchart of the general algorithmic structure of GLODS. . . . . . . . . . . 9

3.1 Plot of the interpolating function s, computed for function f (x) = x(x − 1),

using the kernel h(x) = x3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Comparison of different shape parameter values c for a radial basis function

of type Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Showcase of the bed of nails effect in a radial basis function of the Gaussian

family with a very high value of the shape parameter c, when applied to the

function f (x) = x3 − 2x2 − x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Plot of the acquisition function a computed for function f (x) = x(x − 1), con-

sidering α = δ = ϵ = 1
4 and ψ(||x − xi ||2) = 1. . . . . . . . . . . . . . . . . . . . 28

5.1 Distribution of the dimension of the problems in the test set. . . . . . . . . 36

5.2 Example of data profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Example of performance profiles. . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Example of overlapping data profiles. . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Example of a scoring graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Data profiles corresponding to the use of different methods for RBF minimiza-

tion for the CUBIC model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Data profiles for ten runs BoostGLODS, using the GS method to minimize

RBFs (CUBIC model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Execution time corresponding to a run of BoostGLODS when solving the prob-

lem collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Scoring graph for the search step launching criteria, for the CUBIC model. 47

6.5 Data profiles for ten runs of BoostGLODS using the GS method to minimize

RBFs and CONSEC2 to launch the search step (CUBIC model). . . . . . . . 48

6.6 Scoring graph for the search step launching criteria, for the CUBIC model. 48

6.7 Scoring graph for the search step launching criteria, for the aTPS model. . 49

xi



6.8 Scoring graph for the algorithmic flow strategies and RBF minima handling,

for the CUBIC model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.9 Scoring graphs for the point selection strategies, for the CUBIC model. . . 51

6.10 Scoring graphs for the point selection strategies, for the aTPS model. . . . . 52

6.11 Data profiles for the best versions of BoostGLODS. . . . . . . . . . . . . . . 54

6.12 Performance profiles for the best versions of BoostGLODS, measuring the

number of local minima identified. . . . . . . . . . . . . . . . . . . . . . . . 54

6.13 Data profiles for the linear and quadratic tails, considering the final Boost-

GLODS version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.14 Data profiles for the ACQ versions with α = 1.50485078125 and α = 1.5049. 57

6.15 Data profiles for the ACQ tests. . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1 Data profiles for the final version of BoostGLODS with different initialization

strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2 Data profiles for BoostGLODS and its competitors. . . . . . . . . . . . . . . 63

8.1 Execution time of sequential and parallel strategies. . . . . . . . . . . . . . 66

8.2 Modified data profiles for the parallel BoostGLODS versions, corresponding

to different numbers of workers. . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3 Performance profiles for the execution time of the parallel BoostGLODS ver-

sions, corresponding to different numbers of workers. . . . . . . . . . . . . 70

8.4 Data profiles for the selection of additional poll centers. . . . . . . . . . . . 73

8.5 Modified data profiles for the selection of additional poll centers. . . . . . . 74

xii



List of Tables

3.1 Some RBF families and their respective orders and parameters range. . . . 21

5.1 Collection of problems used for testing. . . . . . . . . . . . . . . . . . . . . 33

6.1 Point selection strategies for calibration. . . . . . . . . . . . . . . . . . . . . 53

xiii





List of Algorithms

1 Adding a point x to the list L. . . . . . . . . . . . . . . . . . . . . . . . . . 7

xv





xvii





1

Introduction

1.1 Context and motivation

In global optimization, the goal is to find the best possible value for a given objec-

tive function, respecting the existing constraints. Problems of this kind can be simply

treated as minimization problems, since any maximization problem can be formulated as

a minimization one, by considering the symmetric of its objective function.

For unconstrained convex functions, a local minimum can be found using one of

the classical local optimization methods, such as the Gradient Descent algorithm [36],

when in presence of derivatives, or directional direct search methods [13], otherwise.

In this case, as the objective function is convex, there can only be one extremum point.

Therefore, the local minimum found is also the global minimum. However, for non-

convex functions, many local minima may exist, which makes it harder for an algorithm

to identify the global minimum or to guarantee that it has been identified. For this reason,

global optimization is a scientific domain that often proves itself much more challenging

than its local counterpart.

In this work, the objective functions for which we want to compute the global min-

imum do not have derivatives available. This is because the expression defining the

objective function is unavailable, which is commonly referred to as Black-box Optimiza-
tion, the objective function is non-smooth, or a significant amount of noise is present

in its evaluation. Thus, our task is even tougher, as we cannot rely on derivative-based

methods. Despite this substantial increase in difficulty, these problems arise in multiple

areas of study, as is the case with the design of hybrid electric vehicles [18], reinforcement

learning in robotics [28], molecular conformal optimization problems [4], acoustics [34]

or multidisciplinary design optimization [38]. As such, developing algorithms for global

derivative-free optimization is a very relevant study area.
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CHAPTER 1. INTRODUCTION

1.2 State of the art

MCS [20] and DIRECT [24] are two state-of-the-art solvers suited for global bound-

constrained derivative-free optimization, inspired by branch and bound algorithms [27]

in the area of combinatorial optimization. Both algorithms rely on successively partition-

ing the feasible region, in an attempt to identify and narrow down the regions that yield

the lowest function values. Areas identified as promising are explored further, while

uninteresting ones are left behind, largely unexplored. The main difference between the

two algorithms lies in the way this exploration takes place. DIRECT simply divides the

promising regions into smaller ones, whereas in MCS a local optimization procedure is

conducted by computing local models of the objective function. In addition to the global

minimum, MCS is also capable of identifying some local minima. Despite having been

released more than 20 years ago, both solvers are still renowned global derivative-free

optimization algorithms, continuing to be used to benchmark new methods.

As an alternative to partitioning the feasible region, one could start multiple local

search lines from different points scattered throughout the feasible region. This is the idea

behind multistart strategies, which are also part of the Global and Local Optimization

using Direct Search (GLODS) algorithm [15]. Although simple at its core, this approach

requires careful thinking of how the starting points should be selected, as well as how

many points should be considered - having too many or not spreading them enough might

have consequences in the efficiency of the algorithm, whilst not significantly improving

the quality of the minima found, as several local lines of search might converge to the

same point, wasting precious budget. On the other hand, choosing too few starting points

might lead to a very scarce search in the feasible region, possibly leaving interesting areas

unexplored. GLODS tries to address these questions by granting each point evaluated a

comparison radius, which is then used to merge different local lines of search when they

come too close to each other, preventing unnecessary function evaluations and signifi-

cantly speeding up the process of finding the global minimum, as well as leaving more

budget to further explore the feasible region.

Another possible approach to global derivative-free optimization problems consists

in the use of the so-called surrogate functions - functions that are simultaneously cheap

to compute and capable of mimicking the behavior observed in the original objective

function, albeit with much less detail. One way of using these functions is to alternate

between building a model of the objective function, using points previously evaluated and

the surrogate function of choice, and minimizing that model to then evaluate the minima

found on the real objective function, until a stopping criterion is met. Naturally, it will be

much less computationally demanding to minimize models based on surrogate functions

than the original objective function. This is the idea behind MATSuMoTo [31], where

radial basis functions [9, 49] were chosen as surrogate functions, allowing an efficient

exploration of the feasible region. ORBIT [50] also resorts to using radial basis functions

as surrogates for the real, expensive function, but its algorithmic structure is different
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1.3. OBJECTIVES AND THESIS ORGANIZATION

from the one previously described, as it uses a trust-region [12] approach.

Although widely used and with interesting results, the quality of surrogate models

is highly dependent on the sample set considered. Acquisition functions [43] can help

with the selection of adequate sample sets. Building upon an already existing surrogate

model, they promote the exploration of areas of the feasible region that have not yet been

explored. Models based on acquisition functions are less likely to stagnate early on harder

problems than ones purely based on surrogate functions.

Another state-of-the-art global derivative-free optimization algorithm is SRacos [19],

used by the ZOOpt [29] optimization toolbox. SRacos is a solver that tries to find the

global minima of an objective function via classification techniques [51]. This means that

its main goal is to build a model capable of classifying solutions as either good or bad. In

SRacos, at each iteration, the best solution is classified as good, and the remaining ones as

bad. Sampling from areas outside the vicinity of bad solutions is then preferred and the

process repeats itself until no more function evaluations are allowed. Only the best point

found so far carries over to the next iteration. When the solver stops, the feasible region

is expected to be moderately well explored, and a good solution is expected to have been

identified.

1.3 Objectives and thesis organization

The main objective of this thesis is to improve the numerical performance of the

GLODS algorithm by using radial basis functions. As described in Section 1.2, GLODS

uses an adapted multistart strategy, where new local searches are initialized but not

always conducted until the end. However, these new initializations are performed with

sampling techniques, not taking advantage of the information gathered by the algorithm

in previous iterations. The idea to be explored in this work is how to take advantage of this

information, by incorporating surrogate models in GLODS, leading to an improvement of

the numerical performance of the code. By using previously evaluated points to compute

a rough model of how the objective function behaves globally, instead of looking randomly

inside the feasible region, GLODS should be able to better place new starting points for

local searches, and, as a consequence, reach the global minimum faster, or find additional

local minima.

The rest of this work is organized as follows. In Chapter 2, a review of the origi-

nal GLODS algorithm is presented, including its convergence analysis (see Section 2.2).

Then, in Chapter 3, we introduce radial basis functions. This includes the considerations

necessary to handle them in any solver (see Section 3.3). Afterwards, in Chapter 4, the

new search step is proposed, and additional considerations pertaining to incorporating

surrogate models in GLODS are detailed. Then, the study conducted to calibrate the new

algorithm to its best numerical performance begins. Firstly, in Chapter 5, the tools used

to assess the performance of solvers are presented. Then, in Chapter 6, multiple versions

of the new algorithm are tested against each other and ruled out, until only the final

3



CHAPTER 1. INTRODUCTION

best version remains. Finally, in Chapter 7, the best version is compared against other

state-of-the-art solvers. Two additional chapters remain. In Chapter 8, considerations

regarding parallel strategies are tested, and their results presented. Finally, in Chapter 9,

we draw conclusions from the results obtained, and some interesting alternatives to some

of the decisions taken are mentioned.

4



2

The original GLODS

In this chapter, we will detail the main algorithmic structure of GLODS, as well

as its algorithmic variants and which of these came out as the top performers in the

tests conducted at the time the solver was first released, and are now used as GLODS’

default settings. Some important theoretical properties regarding the convergence of the

algorithm will also be stated.

2.1 Main algorithmic structure

GLODS is a global derivative-free optimization algorithm, suited for bound con-

strained problems, heavily relying on local directional direct search [13] aided by a clever

multistart strategy. Like any directional direct search method, each iteration of GLODS is

organized in a search step and/or a poll step. The goal is to be able to thoroughly explore

promising areas of the feasible region using local search - the poll step -, whilst being

able to identify these areas using multistart strategies - the search step.

Multistart is applied to GLODS in a simple way: in the first iteration, a few lines of

search are initialized. Then, as the algorithm converges to local minima, new lines are

initialized in the feasible region, but not taking advantage of the information collected

during the optimization procedure. Additionally, when two lines are sufficiently close,

they are merged and only one of them is further explored. This allows GLODS to be much

more efficient than the classical multistart strategies.

2.1.1 The list

Throughout GLODS’ execution, a list of points is kept, storing all the relevant points

evaluated so far. For every point x, the list will also keep some important information

about it:

1. its corresponding value in the objective function f , f (x);

2. its corresponding step-size parameter α, which will dictate the distance between

itself and the points that will be evaluated should x be selected for local exploration

5



CHAPTER 2. THE ORIGINAL GLODS

at the poll step;

3. its comparison radius r, used to measure its closeness to other points already evalu-

ated and stored, providing a way to merge local lines of search that come too close

to each other;

4. its active or inactive state, which indicates whether x is the best point of its local

line of search.

Points can be added to the list under a few conditions. A schematic description can

be found in Algorithm 1. In all cases, if a newly evaluated point xnew is added to the

list, all active points comparable to it with worse function value change their state to

inactive (line 9 in Algorithm 1). If xnew is not comparable with any point already in the

list, meaning it does not fall inside the comparison radius of any of the points in the list

(line 1), then it is a point in a completely unexplored area of the domain. As such, xnew
will be added to the list as an active point (line 2). If xnew is comparable to an active point

(idom > 0) and every point comparable to xnew has a worse objective function value than

xnew (pdom = 0), then xnew will be added to the list as an active point. If xnew is comparable

both to an active point and at least another point in the list, and presents a better objective

function value than the active point, but a worse objective function value than the other

point, then xnew will be added to the list as an inactive point (idom > 0∧ pdom = 1).

When deciding if a point has a better objective function value, a forcing function ρ

can be used (lines 6 and 13). A forcing function ρ [26] is a positive, continuous, non-

decreasing function that satisfies ρ(t)/t → 0 as t decreases to 0. Forcing functions are

useful because they force the algorithm only to accept new points when there is a sufficient
decrease of the objective function value, making the algorithm more robust when there is

noise in function evaluation. Typical examples of forcing functions are ρ(t) = t1+a, where

a > 0. Alternatively, a simple decrease approach could be considered, where ρ(t) = 0, ∀t ∈R.

In this case, in addition to the conditions described before, xnew may also be added to the

list as an active point when it presents a better objective function value than any active

or inactive point it is comparable to (icomp > 0∧ pdom = 0).

6



2.1. MAIN ALGORITHMIC STRUCTURE

Algorithm 1: Adding a point x to the list L.
Input: x - point to be added to the list;

L - list of points currently stored;
α0 - α used in the initialization of the algorithm;
r0 - r used in the initialization of the algorithm;
f - objective function;
ρ - a forcing function or the null function;
spoll - 1 if called from the poll step, 0 otherwise;
αpoll - α of the polling center, when applicable;
rpoll - r of the polling center, when applicable.

1 if min
y∈L
||x − y|| − ry > 0 then

2 L = L∪ {(x,f (x),α0, r0,1)}
else

if x < L then
3 αmax = 0, rmax = 0, idom = 0, pdom = 0, icomp = 0
4 forall (y,f (y),αy , ry , iy) ∈ L do
5 if ||x − y|| − ry ≤ 0 then
6 if f (x) < f (y)− ρ(αy) then
7 icomp = icomp + 1
8 idom = idom + iy
9 iy = 0

10 if αy > αmax then
11 αmax = αy
12 rmax = ry

end
else

13 if f (y) ≤ f (x)− ρ(αy) then
14 pdom = 1

end
end

end
15 if pdom = 0 then
16 ix = 1

end
17 if idom > 0∨ (ρ(·) ≡ 0∧ pdom = 0∧ icomp > 0) then
18 if spoll = 1 then
19 L = L∪ {(x,f (x),αpoll , rpoll , ix)}

else
20 L = L∪ {(x,f (x),αmax, rmax, ix)}

end
end

end
end

end
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2.1.2 Algorithmic steps

The general structure of GLODS is detailed in Figure 2.1. Each iteration of a classic

direct-search method of directional type can be classified as either successful or unsuc-
cessful. In GLODS, an additional option is possible: merging. A successful iteration is

declared when a new active point xnew has been added to the list. If no new point was

added, then the iteration is declared as unsuccessful. If all new points were added as

inactive, the iteration is said to be a merging iteration.

2.1.2.1 The initialization step

GLODS is initialized by considering a finite set of distinct points. These points are

then evaluated and Algorithm 1 is called to, hopefully, add all of them to the list. GLODS’

considers the default values for α and r to be equal to 1, but these can be changed by

the user. If changed, r must be at least as large as αmaxd∈D ||d||, where D is the set of

poll directions considered at the current iteration, so that the points generated at the poll

step are comparable with the poll center (see Section 2.1.2.2 for more information on the

poll step). The solver then proceeds to the poll step or the search step, depending on the

number of points in the list and the criteria chosen to perform a search step (see Section

2.1.2.3).

The initial set of points can be computed by different methods:

1. Random sampling [41], where points are randomly scattered across the feasible

region;

2. Latin hypercube sampling [32], where random sampling is performed in subdo-

mains of the feasible region, guaranteeing that randomness does not concentrate

points too close to each other;

3. Points equally spaced in a line segment, connecting two opposite corners of the

feasible region, jointly with the central point - GLODS’ default option;

4. A user-provided list of points, useful when the user already has some knowledge of

where the global minimum of the objective function might be.

Additionally, the user can also select the number of points for initialization. By default,

the number of points considered is equal to the problem dimension n, when n is an odd

number, and n+ 1, when n is even, in order to always include the central point in the line

segment option for initialization.

2.1.2.2 The poll step

The poll step is responsible for GLODS’ convergence and is also the main focus of the

algorithm. For this step, it is necessary to define a set of directions D. This set must be

a positive spanning set [39]. Then, the active point xbest with the best objective function

8



2.1. MAIN ALGORITHMIC STRUCTURE

Figure 2.1: Flowchart of the general algorithmic structure of GLODS.
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value is selected as a poll center and polling around it is performed, meaning that points

of the form xbest +αbestd are evaluated, where d ∈D. Lastly, Algorithm 1 is called to add

the new points to the list.

When handling the points generated in this step, GLODS can either evaluate all of

them, or until one is added to the list as active, disregarding the remaining ones. The

first approach is designated as complete polling, whereas the second one is designated as

opportunistic or greedy polling. By default, GLODS resorts to the latter.

Every iteration of GLODS performs a poll step, with the exception of when the search

step is successful, meaning that a new active point was added to the list at this search

step.

2.1.2.3 The search step

Since the poll step is where convergence is ensured, the search step enjoys much more

freedom in its definition. However, this step must still be defined with care, as its quality

directly ties with the quality of the minima found, since this step is what grants GLODS

its global properties.

The search step generates new points in an attempt to cover the whole feasible region,

should an infinite number of function evaluations be allowed. With this goal in mind, the

search step selects the points to be evaluated based on sampling techniques:

1. Random sampling [41], like in the initialization;

2. Latin hypercube sampling [32];

3. 2n-centers [15], a deterministic strategy developed by GLODS’ authors;

4. Halton and Sobol sequences [25], two pseudo-random sampling techniques [35],

meaning that they mimic the randomness of random sampling but are deterministic

– given the same input multiple times, the output will always be the same.

Since the search step is not mandatory for GLODS’ convergence, there is also the

option of not evaluating any points in the search step, effectively disabling this step.

When enabled, the search step does not need to be executed at every iteration. Strategies

to choose whether to perform a search step at a given iteration are based on one of the

following criteria:

1. The number of active points in the list falls below a threshold set by the user;

2. A number (also set by the user) of consecutive iterations have been unsuccessful.

By default, GLODS uses Sobol sequences when performing a search step, and a search

step is performed when there is only one active point in the list. When performed, the

number of points generated in the search step is equal to the dimension of the problem.

10
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2.1.2.4 The update step

Depending on how the iteration was classified, old points in the list may see their

corresponding α and r updated. Newly added points also need to have their correspond-

ing step-size, α, and comparison radius, r, set. To do this, points are handled based on

whether they were generated in the poll step or in the search step. If the points were

generated in the poll step and the iteration was unsuccessful, then the point chosen for

local exploration xpoll will have both its αpoll and rpoll reduced. If generated in the poll

step and the iteration was successful or merging, xnew will inherit these values from xpoll ,

either keeping or increasing them. If generated in the search step, αnew and rnew are set

to the values of the point with largest α found in the set of comparable points of worse

objective function values. When xnew is not comparable to any point in the list, αnew and

rnew are set to the default values used in the initialization of the algorithm. In a successful

search step, the newly set values for αnew and rnew may also be kept or increased.

2.1.2.5 Stopping criteria

At the end of every iteration, a few criteria are checked, in order to decide if the

algorithm should proceed to the next iteration, or if it should halt its execution. Like

many other directional direct search methods, these criteria will be based on either the

step-size, or on the number of function evaluations performed. The criteria considered

for GLODS are:

1. The step-sizes of all active points in the list have fallen below a threshold set by the

user;

2. The number of function evaluations performed has exceeded the maximum imposed

by the user.

The first criterion closely relates to the convergence properties of GLODS, to be detailed

in Section 2.2. GLODS identifies points as local minima by analyzing their corresponding

step-size. If a point is a local minimum and is in the list, then it should be an active point

(as active points are the best of their respective local lines of search). Since it is active,

GLODS will eventually select it as a poll center. However, since it is a local minimum, all

of its offspring will have a worse objective function value, resulting in an unsuccessful

poll step. As such, its step-size will be reduced. This process repeats itself throughout the

run, unless we purposely choose to stop the local search around this point by identifying

it as a local minimum. The first criteria listed is met when all active points in the list have

been identified as local minima. By default, GLODS considers a point a local minimum

when its step-size falls below 10−8.

The second criterion provides a strict limit to the number of function evaluations

allowed. By default, the maximum number of function evaluations allowed is 20000.

GLODS stops as soon as one of these two criteria is met.

11
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2.2 Convergence

In this section, a few theoretical properties related to the behavior of the GLODS

algorithm will be stated. However, the corresponding proofs will not be detailed in this

work. These can be consulted in the original publication [15].

In a classical directional direct search method, it is guaranteed that there is always

a poll center at the end of an iteration, so that the algorithm may proceed. In GLODS,

this guarantee may not be obvious, as only active points can ever be selected as poll

centers, and the list manipulates their active and inactive states, often turning active

points inactive but never the other way around. Nevertheless, at each iteration of GLODS,

there is always at least one active point in the list of points stored (see Proposition 3.1 in

[15]).

The convergence analysis of GLODS relies on imposing one of two globalization strate-

gies: integer lattices (as in Generalized Pattern Search (GPS) [5] or Mesh Adaptive Direct

Search (MADS) [6]), meaning that all points generated by the algorithm lie in an implicit

integer lattice, or sufficient decrease (as in Generating Set Search (GSS) [26]), meaning

that ρ is not the null function, but a forcing function.

Before proceeding, a few general assumptions are necessary.

Assumption 1 The feasible region Ω ⊆R
n is a compact set.

Assumption 2 The objective function f is lower-bounded in Ω.

The first step in guaranteeing convergence in GLODS is to ensure that one sequence

of points in the list generated at different iterations has the corresponding step-size pa-

rameters sequence converging to zero. In other words, the algorithm must generate a

sequence of iterates that converges to some point in the feasible region.

As briefly mentioned in Section 2.1.2.2, the set of directions chosen at each iteration

must be a positive spanning set. For continuously differentiable functions, a finite set

of directions which satisfies appropriate integrality requirements is enough [5, 26]. Oth-

erwise, the union of all positive spanning sets considered through all the iterations, D,

should be dense in the unit sphere. However, when considering a globalization strategy

based on integer lattices, additional assumptions are required to guarantee that all the

points are generated in the implicit mesh.

Assumption 3 The set D= D of positive spanning sets is finite and the elements of D are of
the form Gz̄j , j = 1, . . . , |D |, where G ∈Rn×n is a non-singular matrix and each z̄j is a vector in
Z
n.

Assumption 4 Let D represent a finite set of positive spanning sets satisfying Assumption 3.
The set D is so that the elements dk ∈Dk ∈ D satisfy the following conditions:

1. dk is a non-negative integer combination of the columns of D.
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2. The distance between xk and the point xk +αkdk tends to zero if and only if αk does:

lim
k∈K

αk∥dk∥ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K .

3. The limits of all convergent subsequences of D̄k = {dk/∥dk∥ : dk ∈ Dk} are positive span-
ning sets for Rn.

In addition to these, some assumptions regarding the step-size update are also needed.

Assumption 5 Let τ > 1 be a rational number and mmax ≥ 0 and mmin ≤ −1 integers. If the
iteration is successful, then the step-size parameter is maintained or increased by considering
αnew = τm

+
α, with m+ ∈ {0, . . . ,mmax}. If the iteration is unsuccessful, then the step-size

parameter is decreased by setting αnew = τm
−
α, with m− ∈ {mmin, . . . ,−1}.

Assumption 6 At iteration k, the search step only evaluates points in

Mk =
⋃
x∈Ek

{x+αkDz : z ∈N|D |0 },

where Ek represents the set of all the points evaluated by the algorithm previously to iteration
k.

We now arrive to our first result, originally established by Torczon [47] in the context

of pattern search, and generalized by Audet and Dennis to GPS [5] and MADS [6].

Theorem 1 Let Assumption 1 hold. Under one of the Assumptions 3 or 4, combined with
Assumptions 5, 6 and ρ(·) ≡ 0, GLODS generates a sequence of iterates satisfying

liminf
k→+∞

αk = 0.

If, instead of using integer lattices, an approach based on requiring a sufficient de-

crease of the objective function value when adding points to the list is considered, there

is more flexibility on the type of poll directions considered, on the search step, and on the

strategy to update the step-size parameter. The following assumption is still required:

Assumption 7 The distance between xk and the point xk +αkdk tends to zero if and only if αk
does:

lim
k∈K

αk∥dk∥ = 0 ⇐⇒ lim
k∈K

αk = 0,

for all dk ∈Dk and for any infinite subsequence K .

The following result, first established by Kolda, Lewis and Torczon in GSS [26], can

be derived:
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Theorem 2 Let Assumptions 1 and 2 hold. When ρ is a forcing function and Assumption 7
holds, GLODS generates a sequence of iterates satisfying

liminf
k→+∞

αk = 0.

Thus, we conclude the first step in analyzing the convergence of GLODS. The next step

is to ensure that there is a convergent subsequence of iterates and that the corresponding

limit satisfies some stationarity result. In order to do this, we will focus on analyzing

the behavior of GLODS in refining subsequences, a particular type of subsequences of

unsuccessful iterations, first defined in GPS [5].

Definition 1 A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll steps is said
to be a refining subsequence if {αk}k∈K converges to zero.

Convergent refining subsequences are a consequence of Theorems 1 and 2 and As-

sumption 1. Thus, when the conditions required to fulfill either Theorem 1 or 2 are

met, GLODS will generate at least one convergent refining subsequence. The behavior

of GLODS will be analyzed in its limit point along refining directions, another concept

introduced in [6].

Definition 2 Let x∗ be the limit point of a convergent refining subsequence {xk}k∈K . If the
limit limk∈K ′ dk/∥dk∥ exists, where K ′ ⊆ K , dk ∈ Dk , and xk +αkdk ∈Ω, for sufficiently large
k ∈ K ′, then this limit is said to be a refining direction for x∗.

Since GLODS is intended for the minimization of non-smooth functions, a possible

stationarity result would consist in establishing the non-negativity of the Clarke–Jahn

generalized directional derivatives [23], computed for a limit point of the sequence of

iterates generated by the algorithm, for the whole set of directions belonging to the Clarke

generalized tangent cone to the feasible region [11]. To do this, the following definitions

are required.

Definition 3 A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ω ⊂ R
n at the

point x in the closure of Ω if for every sequence {yk} of elements of Ω that converges to x and
for every sequence of positive real numbers {tk} converging to zero, there exists a sequence of
vectors {wk} converging to d such that yk + tkwk ∈Ω.

Definition 4 The set T Cl
Ω

(x) of all Clarke tangent vectors to Ω at x is called the Clarke tangent
cone to Ω at x.

Definition 5 A vector d ∈Rn is said to be a hypertangent vector to the set Ω ⊂R
n at the point

x in Ω if there exists a scalar ϵ > 0 such that

y + tw ∈Ω, ∀y ∈Ω∩B(x;ϵ), w ∈ B(d;ϵ), and 0 < t < ϵ.
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Definition 6 The set T H
Ω

(x) of all hypertangent vectors to Ω at x is called the hypertangent
cone to Ω at x.

The Clarke tangent cone is the closure of the hypertangent cone, and the hypertangent

cone is the interior of the Clarke tangent cone. The Clarke tangent cone is a generalization

of the tangent cone commonly used in Nonlinear Programming (as in [36], Definition

12.2 and Figure 12.8).

Having defined the sets T Cl
Ω

(x) and T H
Ω

(x), we can now define the Clarke–Jahn gener-

alized directional derivative.

Definition 7 Let f be Lipschitz-continuous near a point x ∈Ω. The Clarke–Jahn generalized
directional derivative, computed for f at x, for d ∈ T H

Ω
(x) is defined as:

f ◦(x;d) = limsup
x′→ x,x′ ∈Ω
t ↓ 0,x′ + td ∈Ω

f (x′ + td)− f (x′)
t

,

This definition can be extended to directions v belonging to the Clark tangent cone to

Ω at x (Proposition 3.9 in [6]).

Definition 8 Let f be Lipschitz-continuous near a point x ∈Ω. The Clarke–Jahn generalized
directional derivative, computed for f at x, for v ∈ T Cl

Ω
(x) \ T H

Ω
(x) is defined as:

f ◦(x;v) = lim
d∈T H

Ω
(x),d→v

f ◦(x;d).

We now have all the necessary elements to define Clarke-criticality.

Definition 9 Let f be Lipschitz-continuous near a point x∗ ∈ Ω. The point x∗ is a Clarke
critical point of f in Ω if, for all directions d ∈ T Cl

Ω
(x∗), f ◦(x∗;d) ≥ 0.

Additionally, if the objective function f is strictly differentiable at x∗, meaning that

the Clarke generalized gradient [11] is a singleton, namely ∇f (x∗), then this definition

can be restated using the gradient vector.

Definition 10 Let f be strictly differentiable at a point x∗ ∈Ω. The point x∗ is a Clarke-KKT
critical point of f in Ω if, for all directions d ∈ T Cl

Ω
(x∗), ∇f (x∗)⊤d ≥ 0.

We can now establish the final results regarding the convergence of GLODS.

Theorem 3 Consider a refining subsequence {xk}k∈K generated by GLODS, converging to
x∗ ∈ Ω. Let d ∈ T H

Ω
(x∗) be a refining direction for x∗ and f be Lipschitz-continuous near

x∗. Under these circumstances, f ◦(x∗;d) ≥ 0.
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In other words, we have established stationarity along refining directions belonging to

the hypertangent cone T H
Ω

(x∗). To establish that x∗ is a Clarke critical point, we will require

the asymptotic density of these refining directions in T H
Ω

(x). The following theorem states

the result.

Theorem 4 Consider a refining subsequence {xk}k∈K generated by GLODS, converging to
x∗ ∈ Ω. Let T H

Ω
(x∗) , ∅ and f be Lipschitz-continuous near x∗. Assume that the set of re-

fining directions for x∗ is dense in T H
Ω

(x). Under these circumstances, x∗ is a Clarke critical
point of f in Ω.

If strict differentiability of f at x∗ is assumed, instead of Lipschitz-continuity near x∗,

then from Theorem 3 it follows that ∇f (x∗)⊤d ≥ 0, for all refining directions in T H
Ω

(x∗).

Consequently, from Theorem 4, is follows that x∗ is a Clarke-KKT critical point of f in Ω.

Thus, we conclude our analysis of the convergence of GLODS.
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3

Radial Basis Functions

This chapter explains what Radial Basis Functions (RBFs) are and why they are in-

teresting, not only to this work but also to others in global derivative-free optimization.

Some challenges that arise from the use of these surrogate functions and our proposed

approach to address them will also be detailed. Lastly, a short review of acquisition

functions will be presented.

3.1 Definition

A radial basis function is a function g : Rn → R whose value depends only on the

norm of the vector given as argument. In other words, g is a radial basis function if and

only if:

||x|| = ||y|| =⇒ g(x) = g(y), ∀x,y ∈Rn (3.1)

This property allows regarding function g as a composition of a function h : R+
0 →R with

a norm, meaning that g(x) = h(||x||), ∀x ∈Rn. Function h is usually referred to as the kernel
function. In particular, this means that these functions are much less computationally

demanding than the original functions we want to optimize. This is one of the reasons

why radial basis functions have been widely used in the literature as surrogate functions.

The other main reason is because they act as rough models of the objective function,

which allows predicting how a given objective function f behaves away from points

already evaluated. These models are computed, resorting to numerical interpolation.

In its most simple form, the interpolating function s is defined as a sum of identical

radial basis functions, centered at points already evaluated. Let xi , i ∈ {1, . . . ,m}, be the

points whose objective function values are already known. Function s is defined as

s(x) =
m∑
i=1

λi g(x − xi), ∀x ∈Rn. (3.2)

As s is an interpolating function, it must then conform to the following conditions:

s(xi) = f (xi), ∀i ∈ {1, . . . ,m}. (3.3)
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Combining (3.2) and (3.3) leads to the linear system of equations (3.4), where λi are

the model coefficients to be determined:
g(x1 − x1) g(x1 − x2) . . . g(x1 − xm)

g(x2 − x1) g(x2 − x2) . . . g(x2 − xm)
...

...
...

g(xm − x1) g(xm − x2) . . . g(xm − xm)




λ1

λ2
...

λm


=


f (x1)

f (x2)
...

f (xm)


(3.4)

For general functions g, solving this system would not be trivial or even possible. In

fact, when handling linear combinations of general functions such as in (3.2), Theorem

of Mairhuber–Curtis (see Theorem 1 in [30]) guarantees that there is at least one set of

points {x1, . . . ,xm} ⊂R
n, for n ≥ 2, such that the matrix A of the form

A({x1, . . . ,xm}) :=


g(x1 − x1) g(x1 − x2) . . . g(x1 − xm)

g(x2 − x1) g(x2 − x2) . . . g(x2 − xm)
...

...
...

g(xm − x1) g(xm − x2) . . . g(xm − xm)


(3.5)

is singular. However, one of the key features of radial basis functions is that they allow the

square matrix A to be positive definite. Positive definiteness implies that all eigenvalues of

the matrix are strictly positive. Since the determinant of a matrix is the product of all its

eigenvalues, and all eigenvalues of A are strictly positive, its determinant is also strictly

positive. Therefore, A is invertible, guaranteeing that the system (3.4) is determined.

Thus, the model coefficients can be uniquely determined. Positive definiteness partially

results from defining g as a function of the norm; under these circumstances, A as in (3.5)

is a distance matrix to which some continuous transformation was applied - the kernel

function h. By being a distance matrix, it is guaranteed that it is non-singular, regardless

of the set of points {x1, . . . ,xm} ⊂ R
n considered. However, derivatives are not defined at

these points. The transformation h solves this problem, granting it differentiability.

Depending on the kernel chosen, additional steps might be required in order to guar-

antee the non-singularity of A. A radial basis function g is said to be positive definite

if all matrices A of the form (3.5) are positive definite, regardless of the set of points

chosen. In this case, no further steps are needed. Otherwise, (3.2) should be augmented

to incorporate a polynomial tail. In this case, g is said to be conditionally positive definite.

The degree of the required polynomial depends on the family of kernels considered. Let

n ∈N, q ∈N and P nq−1 be the space of all polynomials of n variables and of degree at most

q − 1. Let p1, . . . ,pq be a basis of this space.

The extension of the simple RBF model (3.2) by a polynomial tail is then defined as

s(x) =
m∑
i=1

λi g(x − xi) +
q∑
j=1

γj pj(x), ∀x ∈Rn. (3.6)
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Additional constraints (3.7) are then considered, such that the system (3.8), resulting

from the conjunction of (3.3), (3.6) and (3.7), is always perfectly determined:

m∑
i=1

λi pj(xi) = 0, ∀j ∈ {1, . . . , q}. (3.7)

Orthogonality of λ to the basis p1, . . . ,pq is relevant when A is non-singular, despite g

being only conditionally positive definite. In this case, the system (3.4) is perfectly deter-

mined. Thus, a polynomial tail is not required, as the goal of adding a polynomial tail

is to fix the problem of system (3.4) not being determined (by fulfilling the conditional

positive definiteness of g). As such, conditions (3.7) ensure that the polynomial tail is

equal to zero in this scenario.

The augmented model and the orthogonality conditions can be combined into the

following system:
∑m
i=1λi g(xk − xi)+

∑q
j=1γj pj(xk) = f (xk), ∀k ∈ {1, . . . ,m},∑m
i=1λi pj(xi) = 0, ∀j ∈ {1, . . . , q}.

(3.8)

This system can also be written in the matrix form

g(x1 − x1) . . . g(x1 − xm) p1(x1) . . . pq(x1)
...

...
...

...

g(xm − x1) . . . g(xm − xm) p1(xm) . . . pq(xm)

p1(x1) . . . p1(xm) 0 . . . 0
...

...
...

...

pq(x1) . . . pq(xm) 0 . . . 0





λ1
...

λm
γ1
...

γq


=



f (x1)
...

f (xm)

0
...

0


, (3.9)

which is more commonly written as A P

P⊤ 0

λγ
 =

f

0

 , (3.10)

where

P :=


p1(x1) . . . pq(x1)
...

...

p1(xm) . . . pq(xm)

 , λ :=


λ1
...

λm

 , γ :=


γ1
...

γq

 , f :=


f (x1)
...

f (xm)

 . (3.11)

A conditionally positive definite radial basis function is said to be of order q ∈N if

q − 1 is the lowest degree of the polynomial tail that must be added to (3.2) so that (3.8)

is uniquely solvable. When a radial basis function is positive definite, it is said to be

of order 0, for ease of use. Naturally, different families of radial basis functions are of

different orders (see Table 3.1).
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3.1.1 An example

Let x1 = −4, x2 = 1, x3 = 3, f (x) = x(x−1), g(x) = ||x||3, p1(x) = x, and p2(x) = 1. The first

step to calculate the interpolating function s is to build the system of linear equations as

in (3.8), in order to determine the weights λi , for i ∈ {1,2,3} and γj for j ∈ {1,2}.

g(x1 − x1) g(x1 − x2) g(x1 − x3) p1(x1) p2(x1)

g(x2 − x1) g(x2 − x2) g(x2 − x3) p1(x2) p2(x2)

g(x3 − x1) g(x3 − x2) g(x3 − x3) p1(x3) p2(x3)

p1(x1) p1(x2) p1(x3) 0 0

p2(x1) p2(x2) p2(x3) 0 0





λ1

λ2

λ3

γ1

γ2


=



f (x1)

f (x2)

f (x3)

0

0


Using the values given, it follows that

0 125 343 −4 1

125 0 8 1 1

343 8 0 3 1

−4 1 3 0 0

1 1 1 0 0





λ1

λ2

λ3

γ1

γ2


=



20

0

6

0

0


.

Lastly, the system is solved and the values λi , for i ∈ {1,2,3} and γj for j ∈ {1,2} are

determined: 

λ1 = 0.05

λ2 = −0.175

λ3 = 0.125

γ1 = −1.25

γ2 = −6

As such, the interpolating function s has the following expression:

s(x) = 0.05||x+ 4||3 − 0.175||x − 1||3 + 0.125||x − 3||3 − 1.25x − 6

Figure 3.1 displays the plot of s, as well as each of its individual components, the known

points (xi , f (xi)), i ∈ {1,2,3}, where (3.3) holds, and the objective function f .

3.2 RBF families

Radial basis functions can be grouped into families, sharing common properties. Table

3.1 displays some of the RBF families known, as well as their respective orders and

parameters range.

In some expressions, there is a c parameter. This is usually regarded as the shape
parameter, and dictates the steepness of the function: higher values of c result in stronger

variations on the slope of the curves. Figure 3.2 displays a comparison of different values

for the shape parameter c for a radial basis function of the Gaussian family. When c is
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Figure 3.1: Plot of the interpolating function s, computed for function f (x) = x(x − 1),
using the kernel h(x) = x3.

Table 3.1: Some RBF families and their respective orders and parameters range.

Family Expression Order Parameters range
Polyharmonic Splines I ||x||2k−1 k k ∈N
Polyharmonic Splines II ||x||2k log(||x||) k + 1 k ∈N

Gaussian e−c||x||
2

0 c > 0
Multiquadric (||x||2 + c)

k
2

⌈
k
2

⌉
k ∈ 2N− 1, c > 0

Inverse Multiquadric (||x||2 + c)−
k
2 0 k ∈N, c > 0

high, the need to satisfy the interpolation conditions (3.3) leads to the bed of nails effect,

which can be seen in Figure 3.3.

Naturally, both c and k parameters have a very noticeable impact on the quality of the

interpolating function s. As such, care must be taken when choosing values for these pa-

rameters. The parameter k dictates the order of the radial basis function, and so, in order

to guarantee the solvability of (3.8), higher degree polynomial tails are required. On the

other hand, the parameter c has a direct impact on the accuracy of s when extrapolating,

as well as on the conditioning of (3.8), by what is referred to as the uncertainty principle
[42]: low values of c increase the accuracy of s, but in turn lead to ill-conditioned systems.

Thus, c should be neither too high nor too low. Rippa [40] proposed an algorithm that

dynamically calculates a good value for the shape parameter c, based on the set of points

considered. Alternatively, this issue can be bypassed altogether by simply choosing one

of the RBF families that do not include a shape parameter in their expressions, such as
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Figure 3.2: Comparison of different shape parameter values c for a radial basis function
of type Gaussian.
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Figure 3.3: Showcase of the bed of nails effect in a radial basis function of the Gaussian
family with a very high value of the shape parameter c, when applied to the function
f (x) = x3 − 2x2 − x.
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3.3. CHALLENGES WHEN HANDLING RBF MODELS

Polyharmonic Splines I and II.

3.3 Challenges when handling RBF models

Some issues arise when working with radial basis functions. One of such issues

consists on which radial basis function should be considered. The answer to this ques-

tion is not clear. Cubic radial basis functions - g(x) = ||x||3 - and Thin-plate Splines -

g(x) = ||x||2 log(||x||) - are the most popular, and have been used with promising results

in works such as ORBIT [50], MATSuMoTo [31], and GLIS [7]. Both are very attractive

by their ease of use, as no shape parameter is required, and are of relatively low order,

requiring only a linear polynomial tail to guarantee positive definiteness. However, the

thin-plate spline expression does not admit second-order derivatives for ||x|| = 0. As such,

the resulting interpolating function s will also not admit second-order derivatives for

the same cases. Since we want to use derivative-based methods to minimize the RBF

models, instead we considered the Altered Thin-plate Splines - g(x) = ||x||4 log(||x||), whose

second-order derivatives can be extended by continuity to cover the case where ||x|| = 0.

The second issue we face is deciding what points should be chosen to compute the

RBF models. Since GLODS performs most of the function evaluations at the poll step, it is

expected that several points in the list are very close to each other. Due to their proximity,

these points can be expected to carry similar information regarding the objective function.

Moreover, using points too close to each other may also worsen the conditioning of the

systems that need to be solved to compute the RBF models. As such, it is unwise to

consider the entire list of points when building an interpolation model. Instead, a number

of points should be selected based on their geometry and value to the interpolation model.

Iske [22] suggests that a uniformly distributed set of points is best. In this work, we will

consider three other strategies:

1. Choosing points in decreasing order of step-size (ALPHA);

2. Choosing active points first, in decreasing order of step-size, and then inactive ones,

also in decreasing order of step-size (ACTIVE);

3. Choosing the origin and the best point of each local line of search, and, if more

points are required, then selecting from the remaining points, also in decreasing

order of step-size (LINES). Best points are chosen first, in decreasing order of

step-size. Origin points are chosen after all best points have been selected, also in

decreasing order of step-size;

All these strategies strive to choose points significantly distant from each other, scattered

across the feasible region, while also providing the model with important information

regarding the objective function. Strategy ALPHA chooses points in decreasing order of

step-size because points with a large step-size are in either good or unexplored areas of

the feasible region. Also, since their step-size is large, they are very likely to be far away
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from each other. Strategy ACTIVE provides a trade-off between the first strategy and

giving the model the location of the best points found. Strategy LINES takes advantage

of how GLODS’ carries out local search by identifying each local line’s origin and best

points, and feeding these to the model. It is worth noting that when two lines are merged,

the newest line is terminated. Thus, for the purpose of strategy LINES, GLODS considers

the last active point of the terminated line to be one of the points to be selected when

selecting each line’s best point.

It is also important to consider how many points should be used for interpolation.

On one hand, selecting too many points increases the chance of having them too close to

each other. On the other hand, not selecting enough points most likely leads to insuffi-

cient information being fed to the model, resulting in very poor extrapolation accuracy.

Therefore, it is important to select an adequate number of points. As per ORBIT [50],

n+ 2 seems to be an appropriate lower bound to the number of points chosen, since the

RBF models will include a linear tail. It may happen that this new algorithm (GLODS

with the incorporation of RBFs in the search step, denoted by BoostGLODS from now

on) attempts to perform a search step before attaining the imposed lower bound. In this

situation, BoostGLODS will fall back to the original default search step of GLODS - Sobol

sequences. Regarding the upper bound, a few different options will be considered:

1. (n+1)(n+2)
2 (QUAD);

2. (n+ 1)(n+ 2) (DOUBLEQUAD);

3. 2(n+ 1)(n+ 2) (QUADQUAD);

4. +∞, no upper bound is imposed (INF).

These are derived from the number of points required to build a complete quadratic

interpolation model (expression QUAD). RBF models are more complex than quadratic

models, and so it makes sense to also consider more points to build them. Despite the

previous considerations, we decided to test not imposing an upper limit whatsoever

(expression INF). However, our perception is that the INF variant will not yield good

results.

Lastly, we require a method capable of minimizing the RBF models. Popular meta-

heuristics such as particle swarm, genetic algorithms, simulated annealing and tabu

search [10] could be used. Since radial basis functions have well defined derivatives, we

can also use derivative-based methods, which, from the theoretical point of view, are

more robust and often more efficient than pure metaheuristics. We selected a few MatLab

methods to incorporate and test in GLODS:

1. GlobalSearch (GS) [48];

2. MultiStart [1] using its default initialization (rMS) or using a user-defined initial-

ization (dMS);
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3. GlobalTR (GTR)[14].

GlobalSearch and MultiStart are both global derivative-based MatLab innate solvers, re-

lying on the MatLab function fmincon for local constrained nonlinear optimization. This

function corresponds to numerical implementations of a variety of algorithms. We will

be using the SQP algorithm, described in Chapter 18 of [36]. MultiStart simply performs

local search starting from a set of initial points, which by default is randomly generated.

GlobalSearch is also random, and so using either of them would deprive GLODS of its

deterministic nature. MultiStart, however, can be made deterministic by providing the

method with a user-defined set of initial points. In other words, we can make MultiStart

deterministic at the cost of having to decide which points should be used for its initial-

ization. GlobalTR, on the other hand, is a deterministic algorithm, using an optimization

approach based on trust-regions. The downside of GlobalTR is that it is much slower than

the other alternatives. GlobalTR was designed to work for a generic objective function,

spending a large portion of its running time in the estimation of the gradient and Hessian

of the objective function, as seen in Figure 4.12 in [14]. However, in our particular case,

the objective function we are interested in minimizing is a RBF. As such, we can calculate

the expressions defining the gradient and Hessian matrix, and use these to replace the

derivative-estimation methods in GlobalTR. This makes the algorithm much faster, albeit

still slower than the other two approaches considered.

Regarding MultiStart’s user-defined initialization, we chose to take advantage of the

geometry induced by the point-choice strategies. Since the set of points selected to build

each RBF model is expected to be sufficiently spread across the feasible region, these

points should be good candidates from where to start the minimization of the RBF model.

We also chose to keep the original search step philosophy of generating at most n points.

As such, we provide MultiStart with the first n points from the set of points chosen to

build the RBF model. Since MultiStart simply carries out local search initializing from

these points, we can expect at most n local minima will be identified.

3.4 Acquisition functions

We would also like to test the use of acquisition functions in GLODS. In this section,

we will detail the procedure adopted, largely based on the approach adopted in GLIS [7].

Acquisitions functions are functions that take on an already existing surrogate model

and elaborate on it, promoting the exploration of promising areas in terms of function

value or areas far away from already evaluated points. This provides a trade-off between

using the information available and getting additional information by evaluating points

in unexplored areas. Naturally, this does not mean acquisition functions are strictly

superior to pure surrogate models; sometimes opting for a greedy strategy is a better

approach than opting for a very thorough exploration of the feasible region, specially

when there are budget constraints.

25



CHAPTER 3. RADIAL BASIS FUNCTIONS

The first step in defining an acquisition function is to define inverse distance weight-

ing functions. These will gauge how close a point x is to a point already in the list;

the closer they are, the higher the value of this inverse function. The inverse distance

weighting functions are defined for every evaluated point xi , i ∈ 1, . . . ,m, as:

wi(x) =
ψ(||x − xi ||2)
||x − xi ||2

, ∀x ∈Rn. (3.12)

In this work, the expressions considered for ψ were ψ(α) = 1 and ψ(α) = e−α, α ≥ 0. The

next step is to normalize wi , scaling it to [0,1], which leads to the following functions vi :

vi(x) =


1, x = xi

0, x , xi , x ∈ {x1, . . . ,xm}
wi (x)∑m
j=1wj (x) , x < {x1, . . . ,xm}

(3.13)

Functions vi attempt to translate the proximity of x to the known points, on a normalized

scale (between 0 and 1). If x has already been evaluated, then its matching function vi
will be equal to 1 and all other vj functions, j , i, will be equal to 0. On the other hand,

if x has not been evaluated yet, then vi will be higher for points x is closest to, and lower

for points further away. This is useful because it allows us to define a function u that

measures the uncertainty of the base surrogate model s at point x:

u(x) =

√√
m∑
i=1

vi(x)
(
f (xi)− s(x)

)2
∀x ∈Rn. (3.14)

In other words, u measures the difference between the objective function value of the

known points and the value extrapolated from the surrogate model at x, weighted by the

proximity of x to the already evaluated points. More crudely, u indicates the level of trust

that can be safely given to the surrogate model; higher values of u indicate higher levels

of uncertainty in the model, and so less trust should be placed in it. Naturally, u(xi) = 0,

∀i ∈ {1, . . . ,m}.
In addition to the uncertainty function u, a function z that measures if x is in an

unexplored area of the feasible region is required. We will again make use of the wi
functions defined earlier, as they carry the proximity information: if all wi functions are

of very low value, then x is far away from all known points. Thus, x is in an unexplored

area of the feasible region. As such, the distance function z is defined as:

z(x) =

0, x ∈ {x1, . . . ,xm}
2
π arctan

(
1∑m

i=1wi (x)

)
, x < {x1, . . . ,xm}

∀x ∈Rn. (3.15)

This provides us with a normalized scale for how far away x is from any already evaluated

point. Since this scale is normalized, it needs to be properly scaled so that it is comparable

with the values observed in s. As such, let

∆F = max
{

max
i∈{1,...,m}

f (xi)− min
i∈{1,...,m}

f (xi), ϵ
}
, (3.16)
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where ϵ > 0.

The acquisition function for minimization is finally defined as:

a(x) = s(x)−αu(x)− δ∆Fz(x), ∀x ∈Rn, α,δ ∈R+
0 , ϵ ∈R

+, (3.17)

where α and δ are parameters that aid in controlling how much weight is placed onto

the non-surrogate model components of the acquisition function, and ϵ ensures that z

does not vanish when the values f (xi) happen to be very similar. The component αu(x)

promotes exploration of areas of the feasible region where there is uncertainty in the

surrogate model, and δ∆Fz(x) of areas that have not yet been explored.

As the acquisition functions in this work build upon a surrogate model based on RBFs,

they share the same considerations detailed in Section 3.3 regarding which RBF family

to choose, which and how many points to consider to build the RBF models, and how

to minimize them. It is important to note that the s component is constructed using the

points selected for interpolation, whereas the remaining components of the acquisition

function use all of the points in the list. In fact, as explained in Section 3.3, using all

the points in the list to compute s could be harmful to the quality of the model, since

the points are likely to be very close to each other. On the other hand, functions u and

z work on the proximity to known points. As such, by not considering the entire list of

points for these components, we might be promoting the exploration of areas that actually

have already been explored, simply because the acquisition model a did not know these

areas had already been explored. Moreover, once the base surrogate model s is built,

considering more points for the remaining components of the acquisition function does

not pose additional difficulties. These other components do not suffer a significant loss

of quality and efficiency from having more points to build them from, since there is no

linear system to be solved for u and z.

3.4.1 An example

Figure 3.4 shows an acquisition function model, when applied to the example de-

scribed in 3.1.1, now considering α = δ = ϵ = 1
4 and ψ(||x − xi ||2) = 1. In this example, we

can see that the acquisition function a looks much less like the original objective function

than the surrogate model s. This is a deliberate decision and stems from trying to pro-

mote the exploration of other areas of the feasible region. In this particular example, the

global minima for a is located near x = −1
2 . This area is close to the best point evaluated

so far, x2, yet both values u(−1
2 ) and z(−1

2 ) are high. Value z(−1
2 ) is high because x = −1

2

is relatively far away from all points already evaluated. Value u(−1
2 ) is high because the

values observed in the vicinity of x = −1
2 vary by a large amount, specially in the case of

x1. In fact, even though x2 is much closer (v1(−1
2 ) = 0.1343 and v2(−1

2 ) = 0.7313), this is

not enough to offset the difference in values observed, resulting in u(−1
2 ) being a high

value. This is a symptom of not having enough points evaluated between x1 and x2. This

does not happen as severely in the case of the local minima x = 2, as x1 is much further
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away than it is from x = −1
2 . The points in the vicinity of x = 2 are both much closer to it

and their values in the objective function are also closer, resulting in much lower values

for z(2) and u(2), respectively.
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Figure 3.4: Plot of the acquisition function a computed for function f (x) = x(x − 1), con-
sidering α = δ = ϵ = 1

4 and ψ(||x − xi ||2) = 1.
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4

BoostGLODS

As previously mentioned, GLODS’ search step is based on pseudo-random sampling

techniques. As such, choosing where to start new local lines of search is largely left to

chance. Using RBFs to model the objective function on a global scale should provide better

quality to the search step. With this in mind, in this chapter we first detail BoostGLODS’

search step. Then, we will revisit some of the decisions taken regarding when and how

to use GLODS’ search step, as well as introducing other new strategies to handle RBF

models in BoostGLODS. It is important to note that changing the search step does not

affect the convergence results of BoostGLODS.

4.1 BoostGLODS’ search step

As previously stated, the main goal of the new search step is to make an informed

decision of where to place new starting points in the feasible region, to initialize local lines

of search. Our approach is based on RBFs, in an attempt to capture the global behavior

of the objective function, based on points already evaluated in previous iterations. If

the RBF models are accurate, then their local minima are good candidates to start new

local lines of search. On the other hand, the models themselves are cheap to minimize, as

detailed in Section 3.1. As such, BoostGLODS should remain an efficient algorithm.

The new search step can be described in a few steps:

1. Using one of the strategies ALPHA, ACTIVE or LINES, described in Section 3.3, and

after deciding the maximum number of points to consider (QUAD, DOUBLEQUAD,

QUADQUAD or INF), select a subset of points in the list;

2. Select a family of RBFs, and set values for the parameters k and c, if applicable. See

Table 3.1 for the most widely used RBF families in the literature. In this work, we

will be testing the RBFs g(x) = ||x||3 (CUBIC) and g(x) = ||x||4 log(||x||) (aTPS);

3. Select a polynomial tail for the RBF model, according to the parameter k of the

family chosen. In this work, we will be testing a linear tail, where p1(x) = 1 and
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p2(x) = x, since this is the usual procedure adopted in other works for the RBF

families considered (see [31, 50]);

4. Compute the interpolating function s defined in (3.6), by solving the linear system

of equations (3.8);

5. Minimize function s using one of the solvers presented in Section 3.3 (GS, rMS, dMS

and GTR);

6. Call Algorithm 1 to possibly add the minima of function s to the list of points.

It is worth noting that, for aTPS, in order to guarantee the solvability of the linear

systems, which allows computation of the model coefficients, a quadratic tail is required,

according to Table 3.1. However, incorporating a quadratic tail would require additional

considerations regarding the number of points chosen, as n+2 points are no longer enough.

As such, we will postpone the use of a quadratic tail in aTPS until other tests have been

conducted.

As a failsafe, when enough consecutive search steps result in no new points added

to the list, disregarding any poll steps performed between search steps, BoostGLODS

will attempt to generate new points using Sobol sequences, whenever the search step

launching criteria are met. When a search step based on Sobol sequences is successful,

BoostGLODS will return to RBFs in its search step.

In the next sections, we will discuss new ideas on how to incorporate this new search

step into BoostGLODS.

4.2 Search step launching criteria

The first decision is related to the frequency of the search step. In the original GLODS,

a search step is performed whenever there is only one active point in the list. This

translates to roughly 5% of the iterations of a given GLODS’ run including a search

step, usually concentrated more towards the end. Increasing the number of search steps

performed and/or spreading them more evenly across a run of the algorithm could yield

better results. As such, additional criteria are proposed in BoostGLODS to perform a

search step:

1. The number of active points in the list becomes equal to or falls below a threshold

set by the user (MINACT followed by the threshold);

2. A number of consecutive iterations have been unsuccessful (CONSEC followed by

the threshold);

3. A number of iterations - not necessarily consecutive - have been unsuccessful

(JUSTSUC, again followed by the threshold).
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For all these strategies, the threshold acts as a tuning knob to set how early in the

run the search step is performed. For example, MINACT4 will start performing search

steps much earlier than MINACT2. Similarly, CONSEC3 will perform fewer search steps

than CONSEC2. Strategies MINACT and CONSEC were already implemented in the

original GLODS. Strategy JUSTSUC is exclusive to BoostGLODS. Strategy MINACT

reactively performs the search step when the local lines of search start stagnating. This

is a very conservative strategy that only initializes new local lines of search when the

number of active points in the list runs low. As such, a large portion of the search

steps performed will be concentrated in the last iterations of the run. Strategy CONSEC

proactively performs search steps when lines show some level of failure in a row. In

general, strategy CONSEC starts performing search steps much earlier in the run than

MINACT, but might not necessarily aggressively try to start new local lines of search as

the existing ones stagnate. Instead, CONSEC tries to prevent the number of active points

in the list from running low. Finally, strategy JUSTSUC is a new strategy designed to start

performing search steps even earlier than CONSEC, as the criteria is much easier to meet.

4.3 Algorithmic flow strategies and RBF minima handling

Another important aspect of RBFs in BoostGLODS that will be explored in this work

consists in the use of the RBF minima, generated in each search step. If these minima are

placed in good regions of the feasible region - which relates to the accuracy of the RBF

models -, it makes sense to explore them before the points GLODS typically selects as poll

centers. Moreover, it would also make sense to switch the main drive of the algorithm

from the poll step to this new and improved search step. To answer these questions, in

this section we will discuss four different strategies, divided into two main categories,

search-based strategies and poll-based strategies, depending on which step is meant to

be the main drive of the algorithm.

For search-based strategies, we will test one strategy entitled SEARCH, which per-

forms a search step at every iteration, and a poll step only when the search step is unsuc-

cessful. Since the search step is performed at every iteration, the search step launching

criteria discussed in Section 4.2 are irrelevant. Strategy SEARCH is closer to how RBF

models are typically handled by optimization algorithms. A model is built, minimized,

and refined using its old minima over and over again, until it is no longer successful.

For poll-based strategies, a few more options are available, and they can be combined

independently with the strategies defined in Section 4.2. These strategies will differ

mostly in how points generated at the search step are treated when selecting a point as a

poll center. Three options have been considered:

1. The active point, not yet identified as a local minima, with the lowest objective

function value is chosen as the poll center (NOPRIO). This is the default strategy

in the original GLODS;
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2. The active points generated at the search step are preferred when choosing a poll

center (POINTPRIO). When no such point exists, BoostGLODS falls back to strat-

egy NOPRIO until a new successful search step is performed. When more than one

active point is added to the list in a search step, BoostGLODS will poll around them

in increasing order of objective function value;

3. The best two points generated at the search step, as well as their successful offspring,

are preferred when choosing a poll center (LINEPRIO). As with POINTPRIO, when

no such points exist, BoostGLODS falls back to strategy NOPRIO until a new suc-

cessful search step is performed.

Strategies POINTPRIO and LINEPRIO are an attempt to give the RBF minima priority

over the standard NOPRIO strategy, recognizing that these points might be located in

more interesting areas of the feasible region. This would allow BoostGLODS to reach the

global minimum faster than GLODS, or to discover additional local minima. Strategy

POINTPRIO gives priority just to the points resulting directly from the search step. In

other words, polling around the RBF minima is done quickly, and the algorithm hastily

resumes the NOPRIO strategy once all RBF minima have been selected as a poll center at

least once. By doing this, it can happen that one of the RBF minima offspring becomes the

best point in the list. In this case, even if the algorithm is back to selecting poll centers

only based on objective function values, it can still choose the RBF minima offspring as

poll centers (if these are better than the points previously in the list). Strategy LINEPRIO

forces this behavior, by imposing polling around the best RBF minima and their offspring,

until the poll step is unsuccessful. This makes BoostGLODS explore the same local line

of search (whose starting point was a RBF minima) until it generates an unsuccessful poll

step, even if the points evaluated are of worse value than that of the ones previously in

the list. This procedure is only applied to the best two RBF minima because of the inter-

action with the strategies considered for search step launching. In the case of CONSEC2

strategies, at least the two best RBF minima and their successful offspring are explored,

before another RBF model is built.

32



5

Performance Assessment Tools

In this chapter, we will detail the tools used to measure the performance of Boost-

GLODS, as well as of other state-of-the-art solvers used to benchmark the proposed algo-

rithm. We will begin by describing the collection of problems tested and some considera-

tions pertaining to it. Then, we will briefly explain the tools widely used in the literature

to analyze the performance of algorithms. Finally, we will propose a new tool that aims

to clarify small differences in performance when the previous are not enough.

5.1 Test set

The first tool required to assess the performance of any solver is a problem collection.

Table 5.1 contains all the problems considered in the computational experiments, as well

as their dimensions (n), lower (l) and upper (u) bounds, and the number of local (loc)

and global (glob) minima known. When only one number is stated in Table 5.1 for a

bound, then it is assumed that this number is the common bound for all individual xi ,

i ∈ {1, . . . ,n}. For example, in the ackley problem, l = −30 and u = 30, meaning that

−30 ≤ xi ≤ 30, ∀i ∈ {1, . . . ,n}.

On the other hand, for example in the branin_hoo problem, l = [−5,0]⊤ and u = [10,15]⊤,

meaning that

−5 ≤ x1 ≤ 10,

0 ≤ x2 ≤ 15.

Table 5.1: Collection of problems used for testing.

Problems n l u loc glob

ackley [3] 10 -30 30 – 1

aluffi_pentini [3] 2 -10 10 2 1

becker_lago [3] 2 -10 10 4 4
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bohachevsky [3] 2 -50 50 – 1

branin_hoo [21, 37] 2 [−5 0]⊤ [10 15]⊤ 3 3

cauchy [8] 4 3 17 – –

cauchy [8] 10 2 26 – –

cosine_mixture [8] 2 -1 1 – –

cosine_mixture [8] 4 -1 1 – –

dekkers_aarts [3] 2 -20 20 3 2

epistatic_michalewicz [3] 5 0 π – 1

epistatic_michalewicz [3] 10 0 π – 1

exponencial [8] 2 -1 1 – 1

exponencial [8] 4 -1 1 – 1

fifteenn_local_minima [8] 2 -10 10 152 1

fifteenn_local_minima [8] 4 -10 10 154 1

fifteenn_local_minima [8] 6 -10 10 156 1

fifteenn_local_minima [8] 8 -10 10 158 1

fifteenn_local_minima [8] 10 -10 10 1510 1

fletcher_powel [8] 3 -10 10 – –

goldstein_price [8] 2 -2 2 4 1

griewank [20, 44] 5 -600 600 – 1

griewank [44] 10 -400 400 – 1

gulf [3] 3 [0.1 0 0]⊤ [100 25.6 5]⊤ – 1

hartman_4 [8] 3 0 1 4 1

hartman_4 [8] 6 0 1 4 1

hosaki [3] 2 [0 0]⊤ [5 6]⊤ 2 1

kowalik [3] 4 0 0.42 – 1

langerman [3] 10 0 10 – 1

mccormick [3] 2 [−1.5 − 3]⊤ [4 3]⊤ 2 1

meyer_roth [8] 3 -10 10 – –

miele_cantrell [8] 4 -10 10 – 1

multi_gaussian [3] 2 -2 2 5 1

neumaier2 [3] 4 0 4 – 1

neumaier3 [3] 10 -100 100 – 1

odd_square[3] 20 -15 15 – 1

paviani [3] 10 2.001 9.999 – 1

periodic [3] 2 -10 10 50 1

poissonian [8] 2 [1 1]⊤ [21 8]⊤ – –

powell [3] 4 -10 10 1 1

rastrigin [3] 10 -5.12 5.12 – 1

rosenbrock [8, 21, 44] 2 -5.12 5.12 1 1

rosenbrock [8, 21, 44] 6 -1000 1000 1 1

34



5.1. TEST SET

rosenbrock [8, 21, 44] 10 -2.048 2.048 1 1

salomon [3] 5 -100 100 – 1

salomon [3] 10 -100 100 – 1

schaffer1 [3] 2 -100 100 – 1

schaffer2 [3] 2 -100 100 – 1

schwefel [3] 10 -500 500 – 1

shekel_45 [8] 4 0 10 5 1

shekel_47 [8] 4 0 10 7 1

shekel_410 [8] 4 0 10 10 1

shekel_foxholes [3] 5 0 10 – 1

shekel_foxholes [3] 10 0 10 – 1

shubert [3] 2 -10 10 760 18

sinusoidal [3] 10 0 180 – 1

sixhumpcamel [8, 21] 2 [−3 − 2]⊤ [3 2]⊤ 6 2

sphere [20, 44] 3 -5.12 5.12 1 1

storn tchebychev [3] 9 -128 128 – 1

tenn_local_minima [8] 2 -10 10 102 1

tenn_local_minima [8] 4 -10 10 104 1

tenn_local_minima [8] 6 -10 10 106 1

tenn_local_minima [8] 8 -10 10 108 1

three_hump_camel [3] 2 -5 5 3 1

transistor [3] 9 -10 10 – 1

wood [8] 4 -10 10 – 1

Figure 5.1 summarizes the dimensions in the collection of problems considered in this

work. An important detail about these problems is that around 30% of them have their

global minimum in the center point of the respective feasible region. Some algorithms

include this point in their initialization, as is the case with GLODS and BoostGLODS (see

Section 2.1.2.1). As such, using the collection of problems with this initialization option

leads to bias in the results - the global minimum is reached in the initialization step for

30% of the problems considered.

For reasons that will later be detailed, we decided to divide the performance analysis

into two different stages: Stage 1, where we only compare different versions of Boost-

GLODS (see Chapter 6), and Stage 2, where we compare the best version of BoostGLODS

with state-of-the-art solvers (see Chapter 7). In Stage 1, the initialization of BoostGLODS

was changed to Sobol sequences. This way, we no longer forcibly include the center point

in the initialization step, and the bias in the results is removed. In Stage 2, since we are

using algorithms from other authors that have been extensively tested in their respective

works, we would like to keep all of their default settings. As such, we decided to intro-

duce some minor modifications in the collection of problems, instead of changing the

algorithms’ initialization steps. In the original GLODS article [15], the bounds of each
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Figure 5.1: Distribution of the dimension of the problems in the test set.

problem were perturbed, by shrinking the upper bound by 35% of its distance to the

lower bound. In Stage 2 of this work, we instead chose to move both the lower and upper

bounds. This new collection is called the translated collection, and problems therein are

of the form

min f (x1, . . . ,xn)

s. t. li ≤ xi −
(−1)i

3
ui − li

2
≤ ui , ∀i ∈ {1, . . . ,n},

where li and ui are the lower and upper bounds of variable xi , respectively.

It is important to note that, since we split the performance assessment of BoostGLODS

into two different stages, each using its own collection of problems, Stage 2 provides a

fairer ground of comparison in regards to other solvers, as it is not the collection of

problems for which we selected the best version of BoostGLODS. Also, as we are moving

the bounds outside its original definition, some feasible regions may now include points

where the objective function is not defined. Namely, problems gulf and paviani were

disregarded in Stage 2. Finally, since the default initialization of GLODS provides better

results than Sobol sequences (see Chapter 7), we will once again initialize BoostGLODS

with points in a line segment.

5.2 Data profiles

Data profiles [33] are a tool proposed by Moré and Wild to assess the performance of

different solvers, specifically developed for derivative-free optimization. In this scientific
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domain, it is expected that the time required to evaluate the objective function largely

out-weights the computational time of any other calculations. Thus, data profiles measure

performance in terms of number of function evaluations required to solve a problem; the

better the solver’s performance, the less function evaluations it requires.

Let Pbe a set of problems and Sbe a set of solvers. A fundamental concept in defining

data profiles is when to consider a problem p ∈P successfully solved by solver s ∈ S. For

that, the decrease measured relatively to the initialization is compared to the decrease

obtained by the best value known for the problem (fl). In more detail, solver s solved

problem p if

f (x1)− f (xbest) ≥ (1− τ)
(
f (x1)− fl

)
, (5.1)

where x1 is the first point evaluated by s, xbest is the best point found by s, and τ is

the level of precision wanted. Higher levels of precision, corresponding to lower levels

of τ , require larger decreases in order for a problem to be considered solved. In this

work, unless otherwise stated, the precision level considered is τ = 10−5. Define hp,s as

the minimum number of functions evaluations required by solver s to satisfy (5.1) for

problem p. A data profile ds(σ ) is defined by

ds(σ ) =
1
|P|

∣∣∣∣∣∣
{
p ∈P :

hp,s
np + 1

≤ σ
}∣∣∣∣∣∣ , (5.2)

where np is the dimension of problem p. In other words, a data profile ds(σ ) represents the

percentage of problems in P that solver s solved, requiring at most a number of function

evaluations equivalent to σ simplexes (sets of n+ 1 function evaluations).

Figure 5.2 displays an example of data profiles. In this case, within the budget σ =

1000, solver A solved around 60% of the problems in the collection, solver B around 70%,

and solver C about 50%. Overall, solver B is clearly superior at every budget. Solver C

eventually surpasses solver A at very large budget levels, albeit not by a very significant

percentage.

It is worth noting that, as seen in this example, it is not always verified that ds(σ )→ 1

as σ →∞. This means that not all problems are solvable by any of the solvers compared,

regardless of the budget considered. This is specially the case in this work, as we decided

to incorporate the information available on each problem’s global minimum into all data

profiles computed in Stage 1. The best value obtained for each problem, for any strategy

tested, is kept and used as fl , instead of limiting fl to the best value among the versions

currently being compared.

5.3 Performance profiles

Performance profiles [17] are another tool we will use to measure the performance

of BoostGLODS. These were developed for general nonlinear optimization algorithms.

Unlike data profiles, performance profiles do not limit themselves to measuring perfor-

mance based on the number of function evaluations required. Other metrics, such as
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Figure 5.2: Example of data profiles.

execution time or number of local minima identified, can be considered. However, it is

assumed that the metric considered only takes strictly positive values and that the lower

the value of the metric, the better the performance is. This means that, for example, when

considering as metric the number, m, of local minima identified, since a higher value

corresponds to a better performance, the metric is adapted to 1
m . This way, we heavily

penalize low counts for the local minima found.

A performance profile is a function defined based on ratios. Let tp,s denote the value

of the metric considered for solver s ∈ Sand problem p ∈P. A ratio is computed between

this value and the minimum value obtained for the same metric by any solver for problem

p:

rp,s =
tp,s

min{tp,s : s ∈ S}
. (5.3)

The performance profile ρs(α) corresponds to the percentage of problems in P whose

performance ratio rp,s is within a factor α of the best possible ratio:

ρs(α) = =
1
|P|

∣∣∣∣{p ∈P : rp,s ≤ α
}∣∣∣∣ , α ≥ 1. (5.4)

This definition of ratios and performance profiles leads to two important properties

when comparing different solvers. The first is that

rp,s = 1⇔ tp,s = min{tp,s : s ∈ S}. (5.5)

In other words, the ratio for problem p and solver s is equal to one if and only if s presents

the best performance out of all the solvers in S, when solving problem p. This, in turn,
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leads to ρs(1) representing the percentage of problems for which solver s is the best (the

efficiency of solver s). The second property is shared with data profiles, where ρs(α) as

α→∞ indicates the percentage of problems that solver s is able to solve, for the stopping

criteria considered. This is called the robustness of solver s.

Figure 5.3 displays an example of performance profiles, where solver C is the most

efficient of the three solvers, and is as robust as solver B.
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Figure 5.3: Example of performance profiles.

5.4 Scoring graphs

Often, when using data profiles to compare the performance of similar versions of a

solver, the resulting graph would have several overlapping lines. This makes it very hard

to decide which version is superior, for a given budget. Figure 5.4 displays an example of

this. As such, an additional tool that allows us to decide which version is the best would

be very helpful. With this purpose, we developed the scoring graphs.
A scoring graph takes a number of pre-built data profiles, gives each one a score η

based on their performance for all budget levels, selects one as the baseline solver and then

compares all other solvers’ scores with the score of the baseline solver. The score for a

solver s is given by

ηs(ω) =
1−ω
l1

∫ l1

0
ds(σ )dσ +

ω
l2 − l1

∫ l2

l1

ds(σ )dσ, (5.6)

where 0 ≤ l1 < l2 are budget thresholds, and 0 ≤ ω ≤ 1 is a weight. In other words, the

score ηs(ω) is a normalized and weighted sum of the areas under the data profile for
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σ ∈ [0, l1] and σ ∈ [l1, l2]. Values for l1 and l2 should be set according to what is considered

a low budget and the maximum budget. In this work, we set l1 = 750, because this

is where we see the most improvement in the data profiles for GLODS, and l2 = 2000,

because beyond σ = 2000, typically there are very few performance swings. In fact, in

our tests, we impose a limit of 20000 function evaluations to any solver run. Since the

computation of a data profile budget σ comes scaled by 1
np+1 , for example, for a problem

with np = 10, then, for σ ≥ 20000
10+1 ≈ 1818, no more function evaluations are allowed.

Therefore, no change is expected in the data profiles beyond this point; the algorithms

have already stopped. If np is lower, then the number of function evaluations allowed is

reached later. However, experience tells us that problems of lower dimensions are usually

easier to solve. In fact, for most problems of lower dimension, GLODS meets the stopping

criteria related to the step-size of active points before reaching the maximum of function

evaluations. As such, the majority of these problems will be solved within the [0, 2000]

interval. Considering the dimensions in Figure 5.1, we believe l2 = 2000 is a good cutoff.

After calculating the score for each data profile, the scoring graph is then populated

with the relative scores between each solver s and the baseline solver A, δs(ω),

δs(ω) =
ηs(ω)− ηA(ω)

ηA(ω)
· 100. (5.7)

These scores δs(ω) represent the relative increase (or decrease) in performance between

solver s and the baseline solver A at each weight ω. Large positive values indicate a

substantial increase.

Figure 5.5 displays the scoring graph resulting from the data profiles in Figure 5.4,

selecting solver B as the baseline solver. It is much easier to see the differences in per-

formance in the scoring graph. In this example, solver C is the best at most weights ω,

being only surpassed by solver E for very low budgets. This could also be seen in the data

profile, as for σ < 300, E is better than C. Solver C remains the best for σ > 300, having

a score slightly higher than A for all weights due to the slight advantage it has before

reaching σ = 500. In this case, as we consider the weights where E is superior to C too

low (ω < 0.2), we would unanimously choose C as the best solver in this test.
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Figure 5.4: Example of overlapping data profiles.
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6

Calibration of BoostGLODS

This chapter will detail the study that was conducted in order to narrow down the

many possibilities for the final version of BoostGLODS, corresponding to the version with

the best numerical performance.

We will begin by choosing an initial version as close as possible to the original GLODS.

This version will use all GLODS default settings and simply replaces the use of Sobol

sequences with RBF models in the search step. Then, we will venture into the many

decisions we have to take regarding all the necessities to incorporate RBF models in

BoostGLODS.

Since the number of versions available prevents us from testing all of them at once,

we decided to conduct the study by making one decision at a time for each strategy,

occasionally grouping more than one together if the number of possible combinations

is low enough. As mentioned in Section 3.3, we will be using the CUBIC (g(x) = ||x||3)

and aTPS (g(x) = ||x||4 log(||x||)) RBF families. Since we cannot guarantee that both these

types of models will perform similarly according to the strategies presented in Section

3.3 and Chapter 4, we will study them independently. When all options have been tested

for both, we will finally compare each study’s final version, and select the best. Finally,

for the aTPS version, we will try replacing the linear tail in the model with a quadratic

tail, more in line with the theoretical requirements of this RBF family. The assessment of

the performance of acquisition models applied to the best version of BoostGLODS will

also be considered.

As previously detailed in Section 2.1.2.3, the default settings of GLODS are to launch

a new search step when there is only one active point in the list (MINACT1), to select the

poll center corresponding to the active point with step-size above the stopping threshold

and the lowest objective function value (NOPRIO), and to provide no special treatment

to the points resulting from the search step. Also, GLODS initializes with points in a line

segment, but as previously explained in Section 5.1, at this stage we decided to change

this initialization to Sobol sequences so that the results were not influenced by the test set.

Moreover, strategies to choose which points to build RBF models with were necessary. For

that purpose, we considered ALPHA (just selects points in decreasing order of step-size),
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which is the simplest and easiest strategy to start with. Regarding the number of points to

build the RBF models, we select n+2 as the lower limit and DOUBLEQUAD ((n+1)(n+2))

as the upper limit. For the RBF minimization method, there is no need to select one for

the initial version, as this is the first setting we will be testing.

The characteristics of the initial version of BoostGLODS are summarized as follows:

• Initialization: Sobol sequences, generating n+ 1 points when n is even, and n other-

wise;

• Search step launching criteria: MINACT1;

• Algorithmic flow strategy: NOPRIO;

• RBF models: CUBIC or aTPS (we will study both independently);

• RBF solver: (not applicable, since it will be the first setting tested);

• RBF point selection: ALPHA;

• RBF upper limit: DOUBLEQUAD.

6.1 Minimization method for RBFs

In Section 3.3, we proposed four different methods to minimize RBF models in Boost-

GLODS: GlobalSearch (GS), MultiStart with a deterministic initialization (dMS), Multi-

Start with a random initialization (rMS), and GlobalTR (GTR). The GS and rMS methods

have random components in their algorithmic structure, whereas dMS and GTR are de-

terministic. Figure 6.1 shows the data profiles for the first batch of versions tested, where

each version only differs from the initial version of BoostGLODS, detailed in the previous

section, in the method used to minimize RBF models.

These data profiles indicate a similar performance for the variants proposed, with

GS pulling ahead by a small margin. However, since GS is a random algorithm, we

would like to make sure that GS does not present high variance before proceeding and

selecting GS as the default solver to minimize RBF models. Figure 6.2 displays data

profiles corresponding to ten runs of BoostGLODS using GS as the RBF solver. As can

be seen, the results do not vary significantly. However, this can be explained by the

search step launching criteria, as MINACT1 results in an average of 5% of the iterations

performing a search step, which is a rather low percentage. In future tests, this percentage

could increase, depending on the strategy selected to launch the search step. So, we can

expect the variance induced by using GS to also increase. Of the deterministic solvers,

GTR is slightly better in terms of percentage of problems solved than dMS. However,

as indicated in Figure 6.3, GTR is clearly much slower, limiting the use of strategies

that make a more intensive use of the search step. Using different search step launching

criteria increases the number of search steps performed in a run, which in turn increases
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Figure 6.1: Data profiles corresponding to the use of different methods for RBF minimiza-
tion for the CUBIC model.

the number of calls to the GTR method. This magnifies the difference in computational

time required by GTR and the other three methods. Additionally, in derivative-free

optimization, it is expected that the vast majority of the execution time of an algorithm

is spent evaluating the objective function. If minimizing a RBF model takes an amount

of time comparable to evaluating the objective function, then there is little point in using

RBFs. Therefore, we consider that the small increase in performance observed in Figure

6.1 is not enough to completely justify the use of GTR. We decided to keep dMS as backup

solver, should GS induce too much variance in BoostGLODS in future tests.

The results for the aTPS model were identical, and so the same decisions were made.

6.2 Search step launching criteria

Regarding the search step launching criteria, three strategies were considered, MI-

NACT, CONSEC and JUSTSUC, each with a tuning knob in the threshold required. As

such, in this section we will be testing the performance of these three strategies, when

applied to the initial version of BoostGLODS, but using only the RBF solvers selected

in the previous section. The strategy MINACT launches the search step based on the

number of active points in the list; CONSEC performs a search step based on the number

of consecutive unsuccessful iterations; JUSTSUC performs a search step based on the

number of unsuccessful, not necessarily consecutive, iterations. Since we wanted to have

a reasonable number of search steps per run, as well as well distributed, we considered
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Figure 6.2: Data profiles for ten runs BoostGLODS, using the GS method to minimize
RBFs (CUBIC model).
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Figure 6.3: Execution time corresponding to a run of BoostGLODS when solving the
problem collection.
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the strategies from MINACT1 to MINACT3, CONSEC2 to CONSEC3, and JUSTSUC3.

Figure 6.4 reports the scoring graphs for this batch of versions tested with the CUBIC

model, where the solvers considered for minimizing RBFs are GS and dMS.

The version with the highest score is the version that uses GS coupled with CONSEC2

(search step performed when two consecutive iterations have been unsuccessful). In this

version, about 30% of the iterations consist in a search step, which is much higher than

the 5% previously observed. As such, it is wise to check again the variance induced by

GS. This can be seen in Figure 6.5. As predicted, now that the search step is performed

more often, the variance in the results is much higher than desired. Thus, we disregarded

the GS method, and accepted dMS as the default solver for minimizing RBF models in

BoostGLODS from now on.

Figure 6.6 displays the scoring graph for the search step launching criteria, filtering

out the versions using the GS method. The best version for the CUBIC model is dMS

coupled with MINACT2 (search step performed when there are two or less active points

in the list not yet identified as local minima). For the aTPS model, Figure 6.7 indicates

that dMS coupled with MINACT3 is the best option. It is worth noting that Figures 6.6

and 6.7 seem to indicate that the MINACT strategies selected as best for the CUBIC and

aTPS models are a local optimum with regard to the associated threshold. With this

purpose, we included MINACT4 in Figure 6.7.
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Figure 6.4: Scoring graph for the search step launching criteria, for the CUBIC model.
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Figure 6.5: Data profiles for ten runs of BoostGLODS using the GS method to minimize
RBFs and CONSEC2 to launch the search step (CUBIC model).
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Figure 6.6: Scoring graph for the search step launching criteria, for the CUBIC model.
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Figure 6.7: Scoring graph for the search step launching criteria, for the aTPS model.

6.3 Algorithmic flow strategies and RBF minima handling

In this section, we will test the performance of the strategies SEARCH (the search-

based strategy), and NOPRIO, POINTPRIO and LINEPRIO (the poll-based strategies).

Unlike the poll-based strategies, the strategy SEARCH performs a search step at every

iteration, and only performs a poll step when the search step is unsuccessful. NOPRIO,

POINTPRIO and LINEPRIO only perform a search step when its launching criteria are

met, and perform a poll step when the search step is not performed or is performed

but unsuccessful. NOPRIO picks a poll center based on only the objective function

value, POINTPRIO gives priority to the points coming directly from the search step and

LINEPRIO gives priority to the two best points coming from the search step as well

as their successful offspring. For the SEARCH strategy, since a search step is always

performed at every iteration, the search step launching criteria does not matter. For the

poll-based strategies, we considered MINACT2 for the CUBIC model and MINACT3 for

the aTPS model. Additionally, we selected dMS as the RBF minimizer.

Figure 6.8 displays the scores for these four strategies. It indicates that NOPRIO

is the best strategy. However, we believe that the performances of POINTPRIO and

LINEPRIO are close enough, so that they can be improved to be competitive against

NOPRIO. Strategy SEARCH, on the other hand, is too behind for this to happen. As such,

we decided not to give up on POINTPRIO and LINEPRIO yet, but disregard SEARCH.

The results for the aTPS model are identical. Thus, the same decisions were taken.
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Figure 6.8: Scoring graph for the algorithmic flow strategies and RBF minima handling,
for the CUBIC model.

6.4 Point selection to build RBF models

In section 3.3, we proposed three strategies that dictate which points in the list will

be selected to compute RBF models: ALPHA, ACTIVE and LINES. We will combine

these with the three strategies carried over from the last section. Strategy ALPHA chooses

points in decreasing order of step-size, strategy ACTIVE picks active points first, and

then in decreasing order of step-size, and strategy LINES chooses the starting and best

points of every local line of search first, and then in decreasing order of step-size.

Figures 6.9 and 6.10 report the results for the point selection strategies for each of

the algorithmic flow strategies. For strategy NOPRIO, ALPHA seems to be the best

alternative, for both CUBIC and aTPS models. For the remaining combinations, the

choice is not as obvious. For strategy POINTPRIO, in the CUBIC model case, ACTIVE is

the best strategy. In the aTPS case, there is no major difference between the performance

of the different point selection strategies. As such, we decided not to exclude any of the

POINTPRIO combinations yet, for the aTPS case. For the LINEPRIO strategy, in both

CUBIC and aTPS models, the results are identical regardless of the point selection strategy.

However, the scores obtained with the CUBIC model are lower than the ones obtained

with the aTPS model, and much lower than the ones of NOPRIO and POINTPRIO for the

CUBIC model. As such, we will disregard the LINEPRIO combinations for the CUBIC

model. Table 6.1 summarizes the versions that will be calibrated in the next section.
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Figure 6.9: Scoring graphs for the point selection strategies, for the CUBIC model.
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Figure 6.10: Scoring graphs for the point selection strategies, for the aTPS model.

52
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LIMIT TO THE SET OF POINTS SELECTED FOR RBF MODELS

Table 6.1: Point selection strategies for calibration.

CUBIC aTPS
NOPRIO ALPHA ALPHA

POINTPRIO ACTIVE ALPHA, ACTIVE, LINES
LINEPRIO - ALPHA, ACTIVE, LINES

6.5 Calibration of the number of initial points and of the upper

limit to the set of points selected for RBF models

All that is left regarding the study of RBF models in BoostGLODS is to calibrate the

number of points evaluated in the initialization step and the upper limit to the number

of points in the set selected to compute RBF models. For the former, as we want to cover

a wide range, we considered an+ b points, where a ∈ {1,2,3} and b ∈ {0,5,10,15,20}. For

the latter, as discussed in Section 3.3, we considered the expressions c(n+ 1)(n+ 2), where

c ∈ {12 ,1,2,+∞} (QUAD, DOUBLEQUAD, QUADQUAD and INF, respectively), based on

the complexity of RBF models when compared to complete quadratic models. Naturally,

combining all of these options with the versions selected in Table 6.1 results in a huge

number of scoring graphs to include in this work. As such, we decided to present only the

versions with the best results, which can be found in Figure 6.11. Since their performance

is very similar, an additional criterion is required to assess which version is the best. For

this purpose, performance profiles were computed, based on the number of local minima

identified for these three versions. The results are presented in Figure 6.12 and show that

the aTPS version is slightly better than the other ones in both graphs, giving us confidence

to select it as the best version of BoostGLODS. As such, from now on, we will refer to this

version as the final version of BoostGLODS.

6.6 Quadratic tail for the aTPS model

Since the final version of BoostGLODS uses the aTPS RBF model, a quadratic tail

should be implemented and tested to match the theoretical considerations outlined in

Section 4.1. In fact, according to Table 3.1, the aTPS RBF model is of order 3, which

requires a polynomial tail of degree 2 in order to guarantee the nonsingularity of the

linear systems (3.10), built throughout the execution of the algorithm. It is worth noting

that, even though the polynomial tail used in all our tests up until now is linear, we did

not encounter any singular system, including the aTPS case.

Figure 6.13 displays the performance for the final version of BoostGLODS when ap-

plied a linear and a quadratic tail. Since both versions are equal in performance and the

quadratic tail does not provide a noticeable increase to the performance of BoostGLODS,

we kept the final version using a linear tail, as it is simpler to compute, and leads to

slightly faster computations.
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Figure 6.11: Data profiles for the best versions of BoostGLODS.
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Figure 6.13: Data profiles for the linear and quadratic tails, considering the final Boost-
GLODS version.

6.7 Acquisition functions

In this section, we will be testing the use of acquisition functions (ACQ) in Boost-

GLODS, whose computation was detailed in Section 3.4. For the base surrogate model,

we will consider the RBF models selected in the previous section. The main challenge

of including ACQ functions in BoostGLODS is that they require the calibration of three

extra parameters, α, δ and ϵ, that dictate how exploration of the feasible region takes

place. Parameter α promotes the exploration of areas where the base RBF model might

not be accurate. Parameter δ promotes the exploration of areas far away from known

points. Parameter ϵ ensures that the distance function z defined in (3.15) does not vanish

when the values observed in the objective function do not vary greatly.

Based on the work of Bemporad [7], to assess the performance of ACQ models in the

final BoostGLODS version, we defined the following scoring problem:

max
ηs(α,δ,ϵ)

(0.4)

ηs(0,0,0)
(0.4)

· 100 (6.1)

s. t. 0 ≤ α ≤ 3

0 ≤ δ ≤ 3

0.1 ≤ ϵ ≤ 3

where s(α,δ,ϵ) denotes the final version of BoostGLODS when using ACQ functions with

parameters α, δ and ϵ, and ηs(α,δ,ϵ)
denotes the scores defined in (5.6). Naturally, s(0,0,0)

55



CHAPTER 6. CALIBRATION OF BOOSTGLODS

represents the final version of BoostGLODS, where the ACQ model matches the RBF

model. In other words, we intend to maximize the score obtained at weight ω = 0.4 for

the scoring graphs comparing the final version of BoostGLODS when using only RBF

models and when using ACQ models. The weight ω = 0.4 was selected because the

performance for low budgets is more important than for large ones. The constraints

considered in this problem are the same that were considered for GLIS [7].

Considering the nature of problem (6.1), the SID-PSM [16] algorithm was used to

solve it. SID-PSM is a local derivative-free optimization algorithm designed to solve

constrained or unconstrained nonlinear problems. Much like GLODS, SID-PSM is also

structured into poll and search steps. In the poll step, simplex gradients are estimated in

order to guide local exploration, by imposing an order to the test of the poll directions. In

the search step, quadratic polynomial models are built, by reusing previously evaluated

points, and minimized, in an attempt of finding a better point. Regarding the initial point

required by SID-PSM to solve problem (6.1), we used the values obtained in GLIS [7]:

α = 1.5078, δ = 1.4246, ϵ = 1.0775. (6.2)

From this starting point, SID-PSM arrived to the solution

α = 1.50485078125, δ = 1.4246000000, ϵ = 2.5853000000. (6.3)

Unfortunately, the excessive decimals are important because ACQ functions seem to be

extremely sensitive to small variations in the parameters. For example, approximating

the parameter α to 1.5049 results in a somewhat significant decrease in performance,

displayed in Figure 6.14. Therefore, these models are flimsy and leave us very reluctant

in using them in BoostGLODS. Moreover, ACQ models take much longer to build and

evaluate than RBF models. Also, as suggested by Figure 6.15, using ACQ models does

not increase the performance of BoostGLODS over just using RBF models. For all these

reasons, we concluded that ACQ functions should not be used over RBFs.
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Figure 6.14: Data profiles for the ACQ versions with α = 1.50485078125 and α = 1.5049.
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Figure 6.15: Data profiles for the ACQ tests.

57





7

Benchmarking BoostGLODS

In this chapter, a benchmark of BoostGLODS will be presented, using other state-

of-the-art solvers in the area of global derivative-free optimization. A brief explanation

of the selected solvers will be provided and their performance will be compared to the

performance of BoostGLODS.

As explained in Section 5.1, the numerical assessment of the performance of Boost-

GLODS was divided into two stages. This chapter corresponds to Stage 2, where Boost-

GLODS will be initialized with points in a line segment, as detailed in Section 2.1.2.1,

since this strategy corresponds to the best algorithmic performance of the solver, as in-

dicated by the data profiles in Figure 7.1. Thus, to avoid bias due to the change of

initialization, the translated collection of problems will be considered, as explained in

Section 5.1.

7.1 Competing solvers

For the purpose of comparing the performance of BoostGLODS with other state-of-

the-art global derivative-free optimization algorithms in this area of study, the following

solvers were selected:

• MCS [20];

• DIRECTGL [45];

• MATSuMoTo [31];

• ZOOpt [29].

MCS [20] is an algorithm developed by Huyer and Neumaier based on partitioning the

feasible region. As the algorithm progresses, the domain is divided into smaller partitions,

each represented by a pivot point, whose objective function value is known. The domain

is not partitioned uniformly; comparing different pivots guides MCS to further partition

good areas of the feasible region, and leave the worse areas behind. In good areas, a local

search is performed, resorting to quadratic models, in order to improve the numerical

59



CHAPTER 7. BENCHMARKING BOOSTGLODS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
s
(

)

Line segment

Sobol sequences

Figure 7.1: Data profiles for the final version of BoostGLODS with different initialization
strategies.

efficiency of the algorithm. If the algorithm finds itself in the vicinity of a minimum,

the local search is quick to identify it. Although it was released some years ago, this

algorithm was selected because it presented better performance than the original GLODS

and continues to be regarded as one of the best global derivative-free optimization solvers

available.

DIRECTGL is part of the DIRECTGO [45] toolbox developed by Stripinis and Paulav-

ičius, whose goal was to improve the original DIRECT [24] algorithm. DIRECT is a very

popular algorithm, as it provides a way of applying Lipschitz optimization without re-

quiring the explicit use of the Lipschitz constant. Similarly to MCS, DIRECT also works

by partitioning the feasible region. However, the original implementation of DIRECT

is not competitive against newer algorithms. Many attempts were made at improving

its performance. DIRECTGO is a toolbox containing many of these improved DIRECT-

based algorithms, DIRECTGL being one of them. Of the four algorithms with no extra

input parameters presented in DIRECTGO, namely Aggressive DIRECT, DIRECTG, DI-

RECTL and DIRECTGL (see Table 2 in [45]), DIRECTGL is the one that presents the

best performance (as suggested by Figure 7 in [45]). DIRECTGL distinguishes itself from

the original implementation of DIRECT by the strategy considered to select potentially

optimal hyper-rectangles (see [46]).

Of the four algorithms chosen, MATSuMoTo [31] is the only one to use a classical ap-

proach to radial basis functions and surrogate-based optimization. Developed by Müller,

MATSuMoTo starts by evaluating a randomly-generated set of points. This information

60



7.2. PERFORMANCE COMPARISON

is then used to compute a radial basis function model of the objective function, which

is minimized. The minima of the model are evaluated in the true objective function and

added to the model, to increase its accuracy. Other candidate points may be considered

for evaluation in addition to or instead of the surrogate minima, based on a score. This

process repeats itself until a stopping criterion is met. MATSuMoTo is guaranteed to

find the global minimum, if an infinite number of evaluations is allowed, as result of a

restarting strategy. When MATSuMoTo recognizes that no progress is being made (the

algorithm has converged to a local minimum), it restarts from scratch, quarantining all

points found so far, excluding them from being considered in the computation of any

radial basis function model in posterior iterations. MATSuMoTo is a natural choice as

comparison solver, since it is a very good example of applying radial basis functions to

global derivative-free optimization.

ZOOpt [29] is an algorithm based on classification techniques. Much like MCS and

DIRECTGL, it also works by dividing the feasible region. However, unlike the previous

two algorithms, the partition is not kept nor does it evolve from iteration to iteration.

As such, division begins from scratch in every iteration. In the first iteration, a set of

randomly generated points is evaluated, and each point is classified as good or bad. Most

commonly, only the best point (of lowest function value) is classified as good. Points

that are good are carried over to the next iteration, and the division process begins. For

each variable and good points, a randomly-generated range is selected, as to not violate

the bounds of the problem. This results in the good points each being encapsulated

in a hyper-rectangle. Then, sampling is performed in the areas strictly outside any of

the hyper-rectangles generated. The sampled points are then evaluated in the objective

function, all points are reclassified, and this process begins anew.

7.2 Performance comparison

Since we are comparing BoostGLODS to algorithms with random components, data

profiles, as defined in Section 5.2, are not enough. As such, we decided to alter how data

profiles are constructed, in order to accommodate randomness. Let q be a random solver

and dqi , with i ∈ {1, . . . ,m}, the data profiles constructed for each individual run when

comparing q to other solvers. Based on dqi , we built two extra data profiles, in order to

provide a range of performance for solver q at every budget level σ ,

dqbest (σ ) = max
i∈{1,...,m}

dqi (σ ), ∀σ ∈ [0,2000], (7.1)

dqworst (σ ) = min
i∈{1,...,m}

dqi (σ ), ∀σ ∈ [0,2000], (7.2)

where dqbest indicates the upper limit of performance for solver q over m runs, and dqworst
the lower limit, for every budget σ .

In addition to these two new data profiles, another one can be constructed, in order

to indicate where the performance of q over m runs will most often be located. For every
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σ ∈ [0,2000], without loss of generality, order dqi (σ ), i ∈ {1, . . . ,m} such that dq1
(σ ) ≤ . . . ≤

dqm(σ ). Then,

dqmed (σ ) =


dq⌈m2 ⌉

(σ ), m = 2R− 1
dq m

2
(σ )+dq m

2 +1
(σ )

2 , m = 2R
, ∀σ ∈ [0,2000], R ∈N. (7.3)

In other words, dqmed (σ ) represents the median performance of q overm runs at every bud-

get σ . Therefore, we can replace the original data profiles dqi with the new profiles dqbest ,

dqworst , and dqmed . This way, we have a tool that is capable of comparing the performance of

random solvers against deterministic ones. This procedure was applied to MATSuMoTo

and ZOOpt, after running them ten times each over the translated collection of problems.

The results are displayed in Figure 7.2.

At the precision level of τ = 10−5, unfortunately BoostGLODS is not able to surpass

MCS, which stands in the lead by a significant margin. However, the performance in-

crease observed in BoostGLODS by comparison with the original GLODS is very notice-

able. In fact, this increase allows BoostGLODS to present a better performance than

MATSuMoTo at every budget, even if by a small margin for low budgets. GLODS was

only as good as MATSuMoTo’s worst case scenario, for low budgets, and would perform

similarly to MATSuMoTo’s median case, for larger ones. Also due to this increase in

performance, the budget threshold at which DIRECTGL surpasses GLODS went from

σ = 700 (when comparing to the original GLODS) to σ = 1500 (when comparing to

BoostGLODS), meaning that BoostGLODS remains relevant for much larger budgets. In

fact, DIRECTGL’s growth in percentage of problems solved is relatively steady through

the budget, whereas BoostGLODS presents a very rapid growth until σ = 300, slowing

down significantly afterwards, which makes it significantly better than DIRECTGL for

lower and medium budgets of function evaluations. Moreover, the gap in performance

between BoostGLODS and DIRECTGL is much larger at low and medium budgets (where

BoostGLODS is better) than at high budgets (where DIRECTGL is better).

For low levels of precision (τ = 10−3), all solvers are much closer in performance, with

MATSuMoTo pulling slightly ahead of its competitors. BoostGLODS is one of the solvers

at the higher end of performance for all budget levels, whereas GLODS is on the lower end.

MATSuMoTo’s lead can be explained by the fact that it is a very good algorithm to find

good areas of the feasible region. By spraying a number of points across the feasible region,

and aided by RBF models, MATSuMoTo quickly identifies promising areas. However, it

does not possess good capabilities to refine points identified as good, leading to a decline

in performance relative to other solvers as the precision level increases. On the other

hand, algorithms such as MCS, BoostGLODS, GLODS, and DIRECTGL do not suffer great

loss in performance. For τ = 10−7, DIRECTGL surpasses GLODS at medium budgets, but

never surpasses BoostGLODS. Moreover, the gap between MCS and BoostGLODS is much

narrower than for τ = 10−5. Thus, we can conclude that BoostGLODS is very competitive,

being only outperformed at this stage by MCS.
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Figure 7.2: Data profiles for BoostGLODS and its competitors.
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8

Parallelization of BoostGLODS

In a context of expensive function evaluation, each function value computed at the

search or poll steps directly contributes to the performance of the algorithm. However, in

BoostGLODS, all these points are queued and evaluated sequentially, one at a time. For

this reason, BoostGLODS lends itself well to parallel strategies.

In this chapter we will use parallel strategies to simultaneously evaluate multiple

points, in each step of BoostGLODS. This should result in a significant decrease in the

execution time of the algorithm for expensive functions, as multiple calls to the objective

function, that previously were executed in a queued fashion, are now condensed into the

same time frame. Figure 8.1 illustrates this idea, considering the evaluation of five points.

In the next sections, we will detail the strategies implemented for the parallelization

of BoostGLODS, and we will comment on the results obtained. It is important to note that

all experiments in this chapter considered the conditions described for Stage 1, regarding

the collection of problems and the initialization strategy for BoostGLODS.

8.1 Parallel strategies

In order to discuss the introduction of parallel strategies in BoostGLODS, two funda-

mental concepts are necessary. The first is the concept of worker. A worker represents

an entity responsible for evaluating the objective function at a given point. Each worker

may only evaluate one point at a time, but multiple workers may be used simultaneously.

The more workers available at a time, the more points BoostGLODS may evaluate at once.

Workers are independent from each other, unless strictly stated otherwise. Figure 8.1 also

illustrates the use of multiple workers: in the sequential version, only one worker is used,

resulting in all points being queued and evaluated in sequence; in the parallel version,

five workers are used, resulting in all points being evaluated simultaneously. The second

concept essential to parallelism is the concept of batch. A batch is a set of points to be

simultaneously evaluated within a step, taking into consideration the number of workers.

In other words, a batch must fulfill the following condition

|B| ≤ w, (8.1)
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Figure 8.1: Execution time of sequential and parallel strategies.
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where B is the batch and w is the number of workers available. A batch cannot contain

points from different steps of the algorithm. The final version of BoostGLODS, calibrated

in Chapter 6, evaluates 2n points in the initialization step. Since BoostGLODS uses oppor-

tunistic coordinate search, each poll step evaluates at most 2n points. As the MultiStart

method used in the final version of BoostGLODS is initialized with a set of n points, then

at most n points result from it. Also, when using Sobol sequences, n points were gener-

ated. In other words, each search step evaluates at most n points. As such, the number of

batches required to evaluate all points in the initialization or poll steps is⌈2n
w

⌉
, (8.2)

and in the search step is ⌈ n
w

⌉
. (8.3)

For example, suppose that there are 4 workers available. To solve the becker_lago problem

of dimension 2, only one batch is needed per step of the algorithm, as indicated by

conditions (8.1), (8.2), and (8.3). Consider now the ackley problem of dimension 10,

with the same amount of workers available. Now, up to 20 points may be evaluated in the

poll step. However, since only 4 workers are available, only 4 points may be evaluated

simultaneously. As such, in this case, the points to be evaluated in the poll step are split

into 5 batches (see (8.2)), so that each individual batch fulfills condition (8.1). In the

search step, since 10 points are to be evaluated at most, 3 batches are required (see (8.3)).

The concept of batch is very useful in parallelization because one batch in a parallel

algorithm can be considered of similar cost to one function evaluation in a sequential

one.

The first strategy for parallelization is the natural one, consisting in directly replacing

the queue system in each point-evaluating step of BoostGLODS (initialization, poll, and

search steps) with the worker-based system, allowing for parallel evaluation of multiple

points in the objective function. Both the order in which the points are evaluated, as well

as the opportunistic nature of BoostGLODS in the poll step (once a point is successfully

added to the list, all other evaluations within the step are canceled), were kept, so that

the sequential version of BoostGLODS selected in Chapter 6 matches the parallel version

of BoostGLODS, when only one worker is available.

The second strategy for parallelization consists in selecting more than one poll cen-

ter in each poll step, leading to the additional consideration of which points should be

selected. For this purpose, two approaches were considered. The first is letting Boost-

GLODS select points naturally, based on the point choice strategy being used (NOPRIO,

POINTPRIO, or LINEPRIO). For example, for the NOPRIO strategy, instead of consider-

ing only the active point with the lowest objective function value, we can also select the

active point with the second-lowest objective function value, totaling two poll centers.

A second approach consists in forcing BoostGLODS to select other additional points for

polling. In this case, BoostGLODS always selects the best active point in the list, not yet
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identified as a minimum, as a poll center, before selecting other points based on the point

choice strategy.

Since we can now force BoostGLODS to always select the best point as a poll center

and still select additional poll centers, we considered an additional point choice strategy,

based on the step-sizes of the points in the list. This strategy is called ALPHAPRIO and

selects as poll centers points in decreasing order of step-size, and in increasing order of

objective function value, in case of ties. This strategy is interesting because, coupled with

forcing the selection of the best active point as a poll center, it allows BoostGLODS to

simultaneously refine the best points in the list and explore good areas of the feasible

region.

In addition to which points to select, it is also a concern how many poll centers should

be considered. For this purpose, a number of poll centers may be defined by the user,

or we can allow BoostGLODS to dynamically determine how many poll centers can be

selected for each problem, based on the number of workers available, problem dimension

and/or number of active points in the list. In this work, if the number of poll centers

is defined by the user, meaning that it is fixed, we considered two or three poll centers.

When BoostGLODS dynamically decides how many poll centers should be selected, since

evaluating the offspring of a poll center requires at most 2n evaluations, we considered

the number of poll centers given by

max
{⌊ w

2n

⌋
,1
}
, (8.4)

where n is the problem dimension, and w is the number of workers available. In Section

8.2, this strategy will be denoted by per-problem poll centers. Finally, we also considered a

strategy where all active points are selected as poll centers. Naturally, for this strategy, no

considerations on type or number of points to be selected are required, since only active

points not yet identified as local minima can be selected as poll centers.

8.2 Computational results

The first results we will discuss relate to simply replacing the queue system in the final

version of BoostGLODS, calibrated in Chapter 6, with the worker-based system. Since

data profiles were not designed with parallel algorithms in mind, some modifications

were required. In the original data profiles, function hp,s measures the number of function

evaluations until problem p is considered solved by algorithm s. In this first experiment

of parallelization, modified data profiles were considered, where function hp,s measures the

number of batches required. Results are displayed in Figures 8.2 and 8.3, and correspond

to the first strategy discussed in the previous section.

As expected, Figure 8.2 indicates that the availability of more workers leads to better

performance. In fact, as the number of workers increases, the number of points allowed

in each batch also increases (see condition (8.1)), resulting in less batches needed to solve

the same problem. However, there are significant diminishing returns as the number
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Figure 8.2: Modified data profiles for the parallel BoostGLODS versions, corresponding
to different numbers of workers.

of workers increases. This is due to the distribution of the dimension of problems in

the collection. For example, increasing the number of workers from 2 to 4 provides a

benefit to all problems. The lowest problem dimension is 2. Thus, the number of batches

required in every poll step goes from 2 to 1. However, increasing the number of workers

from 8 to 16 does not provide a benefit to all problems in the collection. For example,

with 8 workers available, for any problem with dimension 4 or lower, the poll step already

only required 1 batch. Increasing the number of workers to 16 does not lower the number

of required batches. As such, benefits are only obtained for problems of dimension 5 or

higher.

The performance profiles reported in Figure 8.3 respect to computational time, com-

puted as

tp,s = e+m ·u, (8.5)

where e is the elapsed time between starting and stopping the algorithm, m is the number

of batches evaluated until the algorithm stopped, and u is the estimated time for one

objective function evaluation. This metric provides an estimate of the total time required

by the algorithm if one objective function evaluation took u seconds. It is important to

note that, for real cases with expensive objective functions, it is usual that one evaluation

takes one or more seconds to be completed. However, in Figure 8.3, the benefits of parallel

strategies in BoostGLODS can already be seen for values of u as low as 0.1 seconds. On

the other hand, for lower values of u such as 0.01 and 0.001, using parallel strategies is

worse than the sequential version of BoostGLODS. This is the result of the large overhead
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associated with the worker-based system, specially noticeable in the performance profile

corresponding to u = 0.001 seconds (see Figure 8.3). In fact, in this case, the sequential

version and the version with one worker evaluate the same exact points in the same exact

order; the only difference is the system used. However, these values for u are not relevant

in global derivative-free optimization.

Finally, the results for the strategies regarding the selection of additional poll centers

are displayed in Figure 8.4. Given the previous results, these strategies were tested using

the worker-based system instead of the sequential queue-based one, with 32 workers

available. In each data profile, there is a version which only selects one poll center in each

poll step. For the LINEPRIO data profile, this is the worker-based implementation of the

final version of BoostGLODS, calibrated in Chapter 6. For the ALPHAPRIO data profile, it

is the same as the LINEPRIO one, but replacing the strategy LINEPRIO with the strategy

ALPHAPRIO. For the POINTPRIO data profile, it is the worker-based implementation

of the version of BoostGLODS in Figure 6.11 that uses the POINTPRIO strategy. In

all three data profiles, the versions that select more than one poll center use the same

settings as the respective version that selects only one. Each version is identified by the

number of poll centers selected in each poll step, when it is fixed and defined by the user,

or by per-problem or all active points as, when it is dynamically computed. Per-problem
explicitly calculates the number of poll centers for each problem, according to (8.4), and

all active points as simply selects all active points not yet identified as local minima as

poll centers. In the absence of with best point prio, the corresponding version selects poll

centers naturally as indicated by its respective strategy (LINEPRIO, ALPHAPRIO, or

POINTPRIO). Otherwise, the best point is always selected as a poll center.

Unfortunately, the results indicate that selecting more than one poll center is detri-

mental to the performance of the algorithm. In Figure 8.4, regular data profiles are

presented, that show that all versions tested solve less problems than the version that

only selects one poll center. This could be explained by the fact that selecting additional

poll centers also forces the algorithm to spend more function evaluations to reach the

same outcome as the version that selects only one poll center. However, benefits can still

be obtained regarding computational time, as a version that selects more than one poll

center will make better use of the workers available than one that only selects one poll

center. For example, suppose 32 workers are available. Then, for the becker_lago problem

of dimension 2, a version that only selects one poll center may evaluate up to 4 points

simultaneously, which only uses 4 of the 32 available workers. On the other hand, a

version that selects two poll centers may evaluate up to 8 points in the poll step, which

can all still be evaluated simultaneously, due to the number of workers available. This

means that the version that selects two poll centers evaluates up to twice as many points

in the same time frame. This could make the versions that select additional poll centers

reach the global minimum faster, despite the results reported in Figure 8.4. However, this

does not seem to be the case. In Figure 8.5, modified data profiles for the same LINEPRIO

versions as in Figure 8.4 are displayed. In these data profiles, the performance is now
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assessed in terms of the number of batches required to solve a problem, as opposed to the

number of function evaluations. Each batch may only contain points within the same step,

but may contain points from different poll centers, as long as the poll centers are selected

in the same poll step. This means that, in the scenario described earlier considering the

becker_lago example, a batch corresponds to up to 4 function evaluations for the version

that selects one poll center, and up to 8 for the version that selects two. In other words,

assessing performance in terms of batches takes into account the difference in worker

availability usage. Even in this case, the versions that evaluate more than one poll center

show worse performance.
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Figure 8.4: Data profiles for the selection of additional poll centers.
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Conclusions and open questions

At the time of its first release, GLODS was a competitive derivative-free optimization

solver, based on directional direct search, using pseudo-random techniques to initialize

new lines of search, but not taking advantage in this initialization process of the informa-

tion gathered by the algorithm in previous iterations. In this work, radial basis functions

were proposed to define a search step in GLODS, at no extra cost in terms of function

evaluations, since models are computed by reusing points previously evaluated.

Questions like which family of radial basis functions to consider, as several different

expressions are available, which sets of points to use to compute these global models,

as the corresponding quality directly relates to the set of points selected, and how to

minimize the computed models were addressed, as well as how to incorporate these

models in the algorithmic definition of GLODS, by defining criteria for how often a search

step should be performed and how the different minima of the radial basis functions

should be explored.

After extensive numerical testing of the different algorithmic variants considered,

translating different answers to the previous questions, the best version of GLODS, now

entitled BoostGLODS, uses Thin-Plate Splines radial basis functions, computed by select-

ing up to 2(n+ 1)(n+ 2) points to build the models, based on the history of each line of

search considered by the algorithm. Models are minimized with a deterministic version

of MultiStart, initialized using n of the points selected to build the models, and the corre-

sponding minima are evaluated in the true objective function. The two best points found,

and their successful offspring, are further explored in the poll step of the algorithm. This

search step is performed once there are three or less active points in the list of points

evaluated, not yet identified as local minima. Results indicate that this version clearly

outperforms the original GLODS, in terms of numerical performance.

Additionally, BoostGLODS was compared with other state-of-the-art global derivative-

free optimization solvers, namely MCS, DIRECTGL, MATSuMoTo, and ZOOpt, some of

which present a random behavior. Results indicate that the new algorithm is extremely

competitive with these solvers. With exception of MCS, BoostGLODS presents a bet-

ter numerical performance than all the solvers tested, regardless of the precision level

75



CHAPTER 9. CONCLUSIONS AND OPEN QUESTIONS

considered for solving the problems and of the budget of function evaluations allowed.

In what respects to MCS, for low precision values, BoostGLODS is competitive. Due to

the randomness presented in some of the algorithms tested and to the large number of

comparisons that needed to be performed, data profiles were adapted to address random

behavior of algorithms and a new type of performance tool was proposed, namely the

scoring graphs.

Finally, parallel strategies were implemented and tested. Again, data profiles were

adapted to measure the performance of parallel algorithms, by assessing it in terms

of number of batches required to solve a problem, as opposed to number of function

evaluations.

Parallel variants comprised the simple parallel evaluation of function values at the

different steps of BoostGLODS, to more sophisticated strategies that simultaneously se-

lected different poll centers to be evaluated in parallel. As expected, results suggest that

the parallel evaluation of objective functions values is advantageous for average function

evaluation times as low as 0.1 seconds. Strategies that simultaneously selected more than

one poll center indicated a decrease in the performance of the algorithm.

Despite the thorough study performed on how to incorporate global models in GLODS,

based on radial basis functions, alternatives could have been considered. Namely, Gaus-

sian processes are another type of surrogate models used to capture the global behavior

of a function. Even in the radial basis class of functions, there are many families that

could have been explored. The Cubic and Thin-Plate Splines expressions were considered

due to their easy implementation, since no additional parameters are required in the cor-

responding definition. However, other options could have been taken. In the near future,

BoostGLODS will be incorporated in the derivative-free optimization toolbox BoostDFO

[2], freely available to the research and industrial communities, allowing an efficient and

easy use of global derivative-free optimization methods by researchers and practitioners.
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