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Andrea Brilli ∗ Ana L. Custódio † Giampaolo Liuzzi‡ Everton J. Silva§

Abstract

In this work, we propose the joint use of a mixed penalty-logarithmic barrier ap-
proach and generating set search, for addressing nonlinearly constrained derivative-free
optimization problems. A merit function is considered, wherein the set of inequality con-
straints is divided into two groups: one treated with a logarithmic barrier approach, and
another, along with the equality constraints, addressed using a penalization term. This
strategy, initially proposed in the framework of LOG-DFL [12], is adapted and incorpo-
rated into SID-PSM [14, 15] algorithm, a generalized pattern search method, allowing to
effectively handle general nonlinear constraints. Under reasonable assumptions regard-
ing the smoothness of the functions, convergence is established, without any convexity
assumptions. Using CUTEst test problems, numerical experiments demonstrate the ro-
bustness, efficiency, and overall effectiveness of the proposed method, when compared
with state-of-art solvers and with the original SID-PSM and LOG-DFL implementations.
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1 Introduction

In this work, we consider the derivative-free optimization problem with general constraints
(linear and nonlinear), defined by:

min f(x)
s.t. g(x) ≤ 0

h(x) = 0
x ∈ X

(1)

where f : X ⊆ Rn → R∪{+∞}, g : X ⊆ Rn → {R∪{+∞}}m, h : X ⊆ Rn → {R∪{+∞}}p,
and X = {x ∈ Rn | Ax ≤ b}, with A ∈ Rq×n and b ∈ Rq. Furthermore, we assume that
the functions involved (f , g, and h) are continuously differentiable, but derivatives cannot
be either calculated or explicitly approximated. This is a common setting in a context of
simulation-based optimization, where function evaluations are computed through complex
and expensive computational simulations [3, 13].

Considering an initial point x0 ∈ X we define two sets: Glog = {ℓ | gℓ(x0) < 0}, and
Gext = {ℓ | gℓ(x0) ≥ 0}. We denote the sets defined by the inequality constraints as ΩGlog

and ΩGext , respectively. The first corresponds to the inequality constraints, to be addressed
with a logarithmic barrier approach, while the constraints in the second will be handled
using a penalization term. Further explanation will be given in Section 2. Additionally, Ωh

corresponds to the set defined by the equality constraints, and X is a polyhedron, defining a
set that we assume to be compact. Therefore, the feasible region F , which is assumed to be
nonempty, is given by

F = X ∩ ΩGlog ∩ ΩGext ∩ Ωh ̸= ∅,

and it is also a compact set.
Constrained derivative-free optimization is not new. In the context of pattern search

methods, the early works are co-authored by Lewis and Torczon, first considering bound [23]
or linearly constrained problems [24], and after for general nonlinear constraints [22]. When
the constraints are only linear, inspired by the work of May [29], procedures were developed
that allow to conform the directions to be used by the algorithms to the geometry of the
feasible region imposed by the nearby constraints [21, 24, 28], including specific strategies
to address the degenerated case [1]. In the presence of nonlinear constraints, augmented
Lagrangian approaches have been proposed [22], reducing the problem solution to a sequence
of bound constrained minimizations of an augmented Lagrangian function.

In the original presentation of Mesh Adaptive Direct Search (MADS) [7], a generalization
of pattern search methods, constraints were addressed with an extreme barrier approach, only
evaluating feasible points. If this saves in function evaluations, a very relevant feature for
the target problem class, it does not take advantage on the local information obtained about
the feasible region. Following the filter approaches proposed for derivative-based optimization
[18] and already explored in pattern search methods [4], linear and nonlinear inequalities
started to be treated in MADS with the progressive barrier technique [5]. Later, the approach
was extended to linear equality constraints [2], by reformulating the optimization problem,
possibly reducing the number of original variables.
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For directional direct search methods using linesearch, other approaches have been taken to
address general nonlinear constraints. These include nonsmooth exact penalty functions [25],
where the original nonlinearly constrained problem is converted into the unconstrained or
linearly constrained minimization of a nonsmooth exact penalty function. To overcome the
limitations associated to this approach, in [27] a sequential penalty approach has been stud-
ied, based on the smoothing of the nondifferentiable exact penalty function, including a well-
defined strategy for updating the penalty parameter. Recently, in the same algorithmic frame-
work, Brilli et. al. [12] proposed the use of a merit function that handles inequality constraints
by means of a logarithmic barrier approach and equality constraints by considering a penaliza-
tion term. This approach allows an easy management of relaxable and unrelaxable constraints
and avoids the abrupt discontinuities introduced by the extreme barrier approach.

In this work, the strategy of [12] will be adapted and incorporated into generalized pattern
search. Starting from the SID-PSM algorithm [14, 15], an implementation of a generalized
pattern search method, where polynomial models are used for both the search and the poll
steps to improve the numerical performance of the code, LOG-DS has been developed, a direct
search method able to explicitly address nonlinear constraints by a mixed penalty-logarithmic
barrier approach.

The manuscript is organized as follows. Section 2 details the proposed algorithmic struc-
ture and the related convergence properties are analyzed in Section 3. Details of the numerical
implementation are provided in Section 4 and numerical results are reported in Section 5. We
summarize our conclusions in Section 6, also discussing some future avenues of research. An
appendix completes the paper, including some auxiliary technical results.

1.1 Notation

Throughout this paper, vectors will be written in lowercase boldface (e.g., v ∈ Rn, n ≥ 2)
while matrices will be written in uppercase boldface (e.g., S ∈ Rn×p). The set of column
vectors of a matrix D will be denoted by D, and more generally sets such as N,Q,R will be
denoted by blackboard letters. The set of nonnegative real numbers will be denoted by R+.
Sequences indexed by N will be denoted by {ak}k∈N or {ak} in absence of ambiguity. Given a
point x ∈ Rn and a set Ω ⊂ Rn, we use the notation TΩ(x) to denote the tangent cone to Ω
at x.

2 A Direct Search Algorithm for Nonlinear Constrained

Optimization

This section is devoted to the introduction of a new DS algorithm, based on the sequential
minimization of an adequate merit function, to solve nonlinearly constrained derivative-free
optimization problems. Sequential minimization consecutively solves linearly constrained sub-
problems, differing from each other in a penalty parameter ρ.
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Following the original idea of [12], to solve Problem (1), a merit function is considered:

Z(x; ρ) = f(x)− ρ
∑
ℓ∈Glog

log(−gℓ(x)) +
1

ρν−1

(∑
ℓ∈Gext

(max{gℓ(x), 0})ν +
p∑

j=1

|hj(x)|ν
)
, (2)

where ρ > 0 and ν ∈ (1, 2]. Therefore, Z(x; ρ) = +∞, for all x ∈ X such that gℓ(x) ≮ 0, for
ℓ ∈ Glog.

For the linear constraints, defining the set X, strategies that conform the search direc-
tions to the geometry of the nearby feasible region are implemented, using the construction
procedure detailed in [1, 21, 24].

The following problem
min Z(x; ρ)

s.t. x ∈ X ∩ Ω̊Glog

(3)

will be considered at each iteration, with an adequate strategy for updating the parameter
ρ > 0. We assume that a point x0 ∈ X∩ Ω̊Glog is known, so that the set X∩ Ω̊Glog is nonempty.

Lemma 2.1. Let ρ > 0, ν ∈ (1, 2], and α ∈ R be given parameters. If X ∩ ΩGlog is compact,
then,

L(α) = {x ∈ X ∩ Ω̊Glog : Z(x; ρ) ≤ α}
is compact.

Proof. The set L(α) is bounded since, by definition, it is a subset of X ∩ ΩGlog which is
compact. It remains to prove that L(α) is closed. To this end, we will show that for any
sequence {xk} ⊂ L(α) such that lim

k→+∞
xk = x̄, it results x̄ ∈ L(α).

Since xk ∈ L(α), for all k, we have

Z(xk; ρ) ≤ α.

Taking the limit for k → +∞ in the above relation we get

lim
k→+∞

Z(xk; ρ) ≤ α. (4)

Then, x̄ ̸∈ ∂Ω̊Glog , otherwise we would get limk→+∞ Z(xk; ρ) = +∞ > α. Thus, x̄ ∈ X ∩ Ω̊Glog .
We know that Z(x; ρ) is continuous on X ∩ Ω̊Glog . Thus, by (4), we have

lim
k→+∞

Z(xk; ρ) = Z(x̄; ρ) ≤ α

which means that x̄ ∈ L(α). That concludes the proof.

One might notice that nonlinear constraints still appear, due to the presence of the in-
equalities in Glog which still need to be satisfied. Nevertheless, considering the properties
of the merit function and the structure of the proposed scheme, it will be clear that any
point x /∈ Ω̊Glog will be rejected. That is, Problem 3 can be reformulated using only linear
constraints, i.e.,

min Z(x; ρ)
s.t. x ∈ X.

(5)
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In the proposed approach, the acceptance of new points will rely on the notion of suffi-
cient decrease, justifying the classification of the algorithm as a Generating Set Search (GSS)
method. The next definition adjusts the concept of forcing function (see [20]) and is used to
define the sufficient decrease condition required to accept new points in LOG-DS.

Definition 2.2. Let ξ : [0,+∞) → [0,+∞) be a continuous and nondecreasing function. We
say that ξ is a forcing function if:

- ξ(t)/t → 0 when t ↓ 0;

- if ξ(t) → 0 then t → 0.

The proposed algorithmic structure is detailed below.

LOG-DS

Data. x0 ∈ X such that gℓ(x0) < 0 for all ℓ ∈ Glog, D a family of sets of directions, α0 > 0,
ρ0 > 0, ν ∈ (1, 2], θα, θρ ∈ (0, 1), ϕ ≥ 1, and β > 1.

For k = 0, 1, 2, . . . do

Step 1. (Search Step, optional)
If zk ∈ X can be computed such that Z(zk; ρk) ≤ Z(xk; ρk)− ξ(αk),
Then set xk+1 = zk, αk+1 = ϕαk, and go to Step 3.

Step 2. (Poll Step)

Select a set Dk ∈ D
If ∃ di

k ∈ Dk: xk + αkd
i
k ∈ X and Z(xk + αkd

i
k; ρk) ≤ Z(xk; ρk)− ξ(αk),

Then set xk+1 = xk + αkd
i
k and αk+1 = ϕαk.

Else set xk+1 = xk and αk+1 = θααk.

Step 3. Set (gmin)k = min
ℓ∈Glog

{|gℓ(xk+1)|}

If αk+1 ≤ min{ρβk , (gmin)
2
k} and αk+1 < αk,

Then set ρk+1 = θρρk.
Else set ρk+1 = ρk.

Endfor

Following the general structure proposed by Audet and Dennis [6] for generalized pattern
search, each iteration of LOG-DS is organized into two main steps, plus an additional one
related to the novel approach:

• Step 1 and Step 2, namely the Search Step and the Poll Step, which are part of the basic
structure of a generalized pattern search method, here applied to the solution of (5);
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• Step 3, the penalty parameter updating step, which is the original feature of the proposed
approach.

As usual, the search step is very flexible, not even requiring the projection of the generated
points in some type of implicit mesh, since a sufficient decrease condition is used for the
acceptance of new iterates. As it will be detailed in Section 4, the original SID-PSM algorithm
uses quadratic interpolation models, which are minimized to generate new trial points. The
latter approach is adapted into LOG-DS as described in Section 4.1, but since it is not relevant
for establishing convergence properties, for now it will be omitted.

For the theoretical analysis, we will consider general assumptions on the directions used
by the algorithm, formalized below.

Definition 2.3 (Active constraints and tangent related sets). For every x ∈ X, i.e., such
that Ax ≤ b:

IX(x) = {i | a⊤
i x = bi} (set of indices of active constraints)

TX(x) = {d ∈ Rn | a⊤
i d ≤ 0, i ∈ IX(x)} (tangent cone at x)

T ◦
X(x) =

v ∈ Rn | v =
∑

i∈IX(x)

λiai, λi ≥ 0

 (polar of the tangent cone at x)

Given an iterate xk ∈ X (possibly not belonging to the boundary of X), it is important
to be able to capture the geometry of the set X near xk. Hence, the previous sets are
approximated by the following ones, depending on a parameter ε > 0:

Definition 2.4 (ε-Active constraints and tangent related sets).

IX(xk, ε) = {i | a⊤
i xk ≥ bi − ε} (set of indices of ε-active constraints)

TX(xk, ε) = {d ∈ Rn | a⊤
i d ≤ 0, i ∈ IX(xk, ε)} (ε-tangent cone at xk)

T ◦
X(xk, ε) =

v ∈ Rn | v =
∑

i∈IX(xk,ε)

λiai, λi ≥ 0

 (polar of the ε-tangent cone at xk)

A relation between the two groups of sets of Definition 2.3 and Definition 2.4 has been
established in [28]. We recall the result in the following proposition.

Proposition 2.5. Let {xk}k∈N be a sequence of points in X, converging to x∗ ∈ X. Then,
there exists an ε∗ > 0 (depending only on x∗) such that for any ε ∈ (0, ε∗] there exists kε ∈ N
such that

IX(x
∗) = IX(xk, ε)

TX(x
∗) = TX(xk, ε)

for all k ≥ kε.

We are now in position of specifying the requests on the sets of directions, Dk, used by the
algorithm (see [26, Assumption 2]).
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Assumption 2.6. Let {xk}k∈N be a sequence of points in X. The sequence {Dk} of poll
directions satisfies:

Dk = {di
k | ∥di

k∥ = 1, i = 1, . . . , |Dk|}

and for some ε̄ > 0,

cone(Dk ∩ TX(xk, ε)) = TX(xk, ε), ∀ ε ∈ (0, ε̄].

Furthermore, D =
+∞⋃
k=0

Dk is a finite set, and |Dk| is uniformly bounded.

One problem still to be addressed is related to the fact that the merit function is defined
and differentiable only in the interior of the feasible region, i.e. Ω̊Glog . An analysis based on
differentiability assumptions seems not to be applicable. It turns out that the structure of the
merit function can be exploited to extract information that allows the infeasible points to be
treated as feasible failures, as it will be stated in Proposition 3.6.

Finally, some comments on the penalty parameter updating rule. This approach was
originally proposed in [12], in a clear difference with respect to interior point methods when
applied to nonlinear optimization problems (even when in presence of first or second-order in-
formation). In [17], the convergence of sequential penalization methods with a mixed interior-
exterior strategy for nonlinear optimization problems has been established considering the
sequence of exact minimizers of the subproblems. In general, finding the exact solution of any
subproblem is practically unviable. In [9], inspired by [17], the authors proposed a method
using Newton-type directions and the same mixed penalty approach, but allowing a mono-
tonically decreasing sequence of errors on the unconstrained minimizers. More precisely, the
algorithm decreases the penalty parameter when the Euclidean norm of the gradient of the
merit function is below the penalty parameter itself. In the present work, the updating rule
plays a crucial role in the convergence properties of the algorithm, allowing to establish the
boundedness of the sequence of associated Lagrange multipliers.

3 Convergence Analysis

In order to prove the global convergence of the method, we will establish that the sequences
of stepsizes and penalty parameters converge to zero. Initially, we derive an auxiliary result
analyzing the behavior of the algorithm for fixed values of the penalty parameter.

Lemma 3.1. Let {ρk}k∈N and {αk}k∈N be the sequences of penalty parameters and stepsizes,
respectively, generated by algorithm LOG-DS. Assume that

lim
k→+∞

ρk = ρ̄ > 0 (6)

Then,
lim

k→+∞
αk = 0.
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Proof. From the updating rule of the penalty parameter, i.e. ρk+1 = θρρk, we have that {ρk}
is a monotone non-increasing sequence. Furthermore, if ρk is updated infinitely many times
we would have ρ̄ = 0. Hence, we have that ρk+1 = ρk = ρ̄ for all k sufficiently large. Let us
split the iteration sequence into the following two sets

Ks = {k : xk+1 ̸= xk},
Ku = {k : xk+1 = xk}.

At every iteration k of the algorithm, for k sufficiently large, we have either Z(xk+1; ρ̄) =
Z(xk; ρ̄) (when k ∈ Ku) or Z(xk+1; ρ̄) ≤ Z(xk; ρ̄)− ξ(αk) (when k ∈ Ks). Hence, the sequence
of function values {Z(xk; ρ̄)} is monotonically nonincreasing. By Lemma 2.1, Z(x; ρ̄) has
compact level sets, thus it is bounded from below. Hence,

lim
k→+∞

Z(xk; ρ̄) = Z̄. (7)

If Ks is infinite, from (7) we get
lim

k→+∞
k∈Ks

ξ(αk) = 0.

Recalling Definition 2.2, we get
lim

k→+∞
k∈Ks

αk = 0. (8)

If Ku is infinite, for every k ∈ Ku, let us define mk to be the largest index such that mk ∈ Ks

and mk < k (the result is immediate if Ks is empty). Then, we can write

αk = αmk
ϕθk−mk−1

α .

When k → +∞, k ∈ Ku, we have that either mk → +∞ as well (when Ks is infinite) or
k −mk − 1 → +∞ (when Ks is finite). Thus, by (8) and the fact that θα ∈ (0, 1), we have

lim
k→+∞
k∈Ku

αk = lim
k→+∞
k∈Ku

αmk
ϕθk−mk−1

α = 0. (9)

The proof is concluded considering (8) and (9).

Lemma 3.1 is used to show that the sequence of penalty parameters converges to zero,
which is required to ensure that in the limit the algorithm will solve the original problem. As
a consequence, we are able to establish that the sequence of stepsizes will also converge to
zero in the general case. Since it is well-known that the stepsize is related to some measures
of stationarity of the problem [20], that property is also relevant.

Theorem 3.2. Let {ρk}k∈N and {αk}k∈N be the sequences of penalty parameters and stepsizes
generated by LOG-DS. Then,

lim
k→+∞

ρk = 0, (10)

lim
k→+∞

αk = 0. (11)
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Proof. We first prove (10). The algorithmic structure implies that {ρk}k∈N is a monotone
nonincreasing sequence of positive numbers. Hence, we have that

lim
k→+∞

ρk = ρ̄ ≥ 0.

By contradiction, let us assume that ρ̄ > 0. If this is the case, there must exist an integer k̄
such that

ρk+1 = ρk = ρ̄ > 0, ∀k ≥ k̄.

Again, the instructions of the algorithm imply that, for all k ≥ k̄,

αk+1 > min{ρ̄β, (gmin)
2
k} or αk+1 ≥ αk

and
Z(xk+1; ρ̄) ≤ Z(xk; ρ̄) ≤ Z(xk̄; ρ̄) = Z̄ < +∞. (12)

Since ρk = ρ̄, for all k ≥ k̄, by Lemma 3.1 we have limk→+∞ αk = 0. Then, there must exist
an infinite index set K such that αk+1 < αk, for all k ∈ K. Hence, for every k ∈ K, k ≥ k̄,
we also have that

αk+1 > min{ρ̄β, (gmin)
2
k} (13)

(otherwise, the algorithm would have updated ρ). Taking the limit in relation (13), we obtain

lim
k→+∞

(gmin)k = 0.

Thus, we have
lim

k→+∞
Z(xk; ρ̄) = +∞.

However, this limit is in contradiction with (12), thus proving (10).
Now, we prove (11). We proceed by contradiction and assume that a subset of iterations

K̄ exists such that, for all k ∈ K̄,
αk ≥ ᾱ > 0.

Since ρk → 0, we also have lim
k→+∞,
k∈K̄

ρk = 0. Then, since {ρk} is a monotone nonincreasing

sequence, a further subset K̃ ⊆ K̄ exists such that

lim
k→+∞,

k∈K̃

ρk = 0,

ρk+1 < ρk, for all k ∈ K̃.

If k ∈ K̃ is a successful iteration, then αk+1 = ϕαk ≥ ϕᾱ; otherwise, αk+1 = θααk ≥ θαᾱ.
Hence, for k ∈ K̃, we can write

αk+1 ≥ θαᾱ.

Thus, for all k ∈ K̃, we have

θαᾱ ≤ αk+1 ≤ min{ρβk , (gmin)
2
k} ≤ ρβk

which contradicts ρk → 0, thus concluding the proof.
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Let us define the index set

K = {k ∈ N : ρk+1 < ρk}, (14)

i.e., the set of iteration indices where the penalty parameter is updated. Note that, by the
instructions of the algorithm, αk+1 < αk for all k ∈ K, i.e., every iteration k ∈ K is an
unsuccessful iteration. Recall that, by Theorem 3.2, K is an infinite index set.

We use the following extended Mangasarian-Fromovitz constraint qualification (MFCQ).

Definition 3.3. The point x ∈ X is said to satisfy the MFCQ for Problem (1) if the two
following conditions are satisfied:

(a) There does not exist a nonzero vector α = (α1, . . . , αq) such that:(
q∑

i=1

αi∇hi(x)

)⊤

d ≥ 0, ∀d ∈ TX(x); (15)

(b) There exists a feasible direction d ∈ TX(x), such that:

∇gℓ(x)
⊤d < 0, ∀ℓ ∈ I+(x), ∇hj(x)

⊤d = 0, ∀j = 1, . . . , p (16)

where I+(x) = {ℓ | gℓ(x) ≥ 0}.

Consider the Lagrangian function L(x, λ, µ), associated with the nonlinear constraints of
Problem (1), defined by:

L(x, λ, µ) = f(x) + λ⊤g(x) + µ⊤h(x).

The following proposition is a well-known result (see [10, Prop. 3.3.8]), which states necessary
optimality conditions for Problem (1).

Proposition 3.4. Let x∗ ∈ F be a local minimum of Problem (1) that satisfies the MFCQ.
Then, there exist vectors λ∗ ∈ Rm, µ∗ ∈ Rp such that

∇xL(x
∗, λ∗, µ∗)⊤(x− x∗) ≥ 0, ∀x ∈ X (17)

(λ∗)⊤g(x∗) = 0, λ∗ ≥ 0. (18)

Therefore, we consider the following definition of stationarity.

Definition 3.5 (Stationary point). A point x∗ ∈ F is said to be a stationary point for Problem
(1) if vectors λ∗ ∈ Rm and µ∗ ∈ Rp exist such that (17) and (18) are satisfied.

Before proving the main convergence result, since the merit function is not defined in
Rn \ Ω̊log

G and the trial points corresponding to failures might not be feasible, we present the
following proposition that allows us to use the mean value theorem in the proof of Theorem
3.7.
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Proposition 3.6. Given any ρ̄ > 0, x ∈ X∩Ω̊Glog, d ∈ Rn, and ᾱ ∈ R+ such that x+ᾱd ∈ X
and x+ ᾱd /∈ Ω̊Glog, there exists α̂ < ᾱ such that:

x+ αd ∈ X ∩ Ω̊Glog for all α ∈ (0, α̂],

Z(x+ α̂d; ρ̄) > Z(x; ρ̄)− ξ(α̂).

Proof. By definition X is convex, then x+ αd ∈ X for all α ∈ [0, ᾱ].
Since x+ ᾱd /∈ Ω̊Glog there exists an index ℓ ∈ Glog such that

min
i∈Glog,gi(x+ᾱd)≥0

{gi(x+ ᾱd)} = gℓ(x+ ᾱd) ≥ 0.

The continuity of g and the fact that x ∈ Ω̊Glog allow us to conclude that there exists at least
one scalar α̃ ∈ (0, ᾱ] such that gℓ(x + α̃d) = 0. If such a scalar is not unique, let α̃ be the
smallest one. This implies that x+ αd ∈ Ω̊Glog for all α ∈ [0, α̃). Recall that, by definition of
Z(x; ρ), for all y ∈ ∂Ω̊Glog , it results

lim
x→y,

x∈Ω̊Glog

Z(x; ρ̄) = +∞.

Thus, there exists α̂ ∈ (0, α̃), sufficiently close to α̃, such that x + α̂d ∈ Ω̊Glog and Z(x; ρ̄) <
Z(x+ α̂d; ρ̄) + ξ(α̂), which conludes the proof.

We are now in conditions of stating the main convergence result.

Theorem 3.7. Let {xk}k∈N be the sequence of iterates generated by LOG-DS and recall def-
inition (14) of K. Assume that the sets of directions {Dk}k∈N, used by the algorithm, sat-
isfy Assumption 2.6 and define Jk = {i ∈ {1, 2, . . . , |Dk|} : di

k ∈ Dk ∩ TX(xk; ε)}, with
ε ∈ (0,min{ε̄, ε∗}] where ε∗ and ε̄ are the constants appearing in Proposition 2.5 and As-
sumption 2.6, respectively. Then, any limit point of {xk}k∈K that satisfies the MFCQ is a
stationary point of Problem (1).

Proof. First note that, by Theorem 3.2, we have

lim
k→+∞
k∈K

ρk = 0,

lim
k→+∞
k∈K

αk = 0.

Now, let x∗ be any limit point of {xk}k∈K . Then, there exists a set K̂ ⊆ K such that

lim
k→+∞
k∈K̂

ρk = 0,

lim
k→+∞
k∈K̂

αk = 0,

lim
k→+∞
k∈K̂

xk = x∗,
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with αk+1 < αk, for all k ∈ K̂. Recall that Dk = {d1
k,d

2
k, . . . ,d

rk
k }. Then, for all k ∈ K̂

sufficiently large, we know that xk +αkd
i
k ∈ X for all i ∈ Jk. For every i ∈ Jk, if xk +αkd

i
k ∈

Ω̊Glog , by the instructions of the algorithm we have

Z(xk + αkd
i
k; ρk) > Z(xk; ρk)− ξ(αk).

Otherwise, i.e. when xk + αkd
i
k ̸∈ Ω̊Glog , Proposition 3.6 allows us to ensure the existence of

a scalar α̂i
k ≤ αk such that

Z(xk + α̂i
kd

i
k; ρk) > Z(xk; ρk)− ξ(α̂i

k). (19)

Applying the mean value theorem to (19), we can write

−ξ(α̂i
k) ≤ Z(xk + α̂i

kd
i
k; ρk)− Z(xk; ρk) = α̂i

k∇Z(yi
k; ρk)

⊤di
k, (20)

for all k ∈ K̂ sufficiently large and all i ∈ Jk, where y
i
k = xk + tikα̂

i
kd

i
k, with tik ∈ (0, 1). Thus,

we have

∇Z(yi
k; ρk)

⊤di
k ≥ −ξ(α̂i

k)

α̂i
k

, ∀i ∈ Jk. (21)

By considering the expression of Z(x; ρk), we can write

∇Z(yi
k; ρk)

⊤di
k =

[
∇f(yi

k) +
∑
ℓ∈Glog

ρk
−gℓ(yi

k)
∇gℓ(y

i
k) + ν

(∑
ℓ∈Gext

(
max{gℓ(yi

k), 0}
ρk

)ν−1

∇gℓ(y
i
k)+

p∑
j=1

(
|hj(y

i
k)|

ρk

)ν−1

∇hj(y
i
k)

)]⊤
di
k ≥ −ξ(α̂i

k)

α̂i
k

, ∀i ∈ Jk and k ∈ K̂ sufficiently large.

(22)
By Assumption 2.6, we can extract a further subset of indices K̃ ⊆ K̂ such that, αk+1 < αk,
for all k ∈ K̃ and

lim
k→+∞
k∈K̃

ρk = 0

lim
k→+∞
k∈K̃

αk = 0,

lim
k→+∞
k∈K̃

xk = x∗,

Jk = J, ∀ k ∈ K̃,

di
k = d̄i, ∀ i ∈ J, k ∈ K̃,

and D∗ = {d̄i}i∈J . When k ∈ K̃ is sufficiently large, for all i ∈ J , with yi
k = xk + tikα̂

i
kd̄

i, and
tik ∈ (0, 1), since α̂i

k ≤ αk, by Theorem 3.2, we have that, lim
k→+∞
k∈K̃

yi
k = x∗.

Let us define the following approximations to the Lagrange multipliers of each constraint:

- for ℓ = 1, . . . ,m set λℓ(x; ρ) =


ρ

−gℓ(x)
, if ℓ ∈ Glog

ν

(
max{gℓ(x), 0}

ρ

)ν−1

, if ℓ ∈ Gext

12



- for j = 1, . . . , p set µj(x; ρ) = ν

(
|hj(x)|

ρ

)ν−1

.

The sequences {λℓ(xk; ρk)}k∈K and {µj(xk; ρk)}k∈K , are bounded (see Appendix B). Thus,
it is possible to consider K ′ ⊆ K̃, such that

lim
k→+∞
k∈K′

λℓ(xk; ρk) = λ∗
ℓ , ℓ = 1, . . . ,m (23)

lim
k→+∞
k∈K′

µj(xk; ρk) = µ∗
j , j = 1, . . . , p (24)

and define λ∗
ℓ = 0 for ℓ ̸∈ I+(x

∗).
Multiplying (22) by ρν−1

k and taking the limit for k → +∞, k ∈ K ′, recalling ν ∈ (1, 2], we
have that ρν−1

k → 0, so we obtain the following(∑
ℓ∈Gext

νmax{gℓ(x∗), 0}ν−1∇gℓ(x
∗) +

p∑
j=1

ν|hj(x
∗)|ν−1∇hj(x

∗)

)⊤

d̄i ≥ 0, ∀d̄i ∈ D∗.

From Proposition 2.5 and Assumption 2.6, we know that there is ε > 0 such that for all
k ∈ K ′ sufficiently large

TX(x
∗) = TX(xk; ε) = cone(Dk ∩ TX(xk; ε)) = cone(D∗).

Then, for every d ∈ TX(x
∗), there exist nonnegative numbers βi such that

d =
∑
i∈J

βid̄
i,with d̄i ∈ D∗. (25)

Let us recall that, by assumption, x∗ satisfies MFCQ conditions, and let d be the direction
satisfying (16) in point (b). Then we have,

0 ≤
∑
i∈J

βi

(∑
ℓ∈Gext

νmax{gℓ(x∗), 0}ν−1∇gℓ(x
∗) +

p∑
j=1

ν|hj(x
∗)|ν−1∇hj(x

∗)

)⊤

d̄i =

(∑
ℓ∈Gext

νmax{gℓ(x∗), 0}ν−1∇gℓ(x
∗) +

p∑
j=1

ν|hj(x
∗)|ν−1∇hj(x

∗)

)⊤

d =

 ∑
ℓ∈I+(x∗)∩Gext

νmax{gℓ(x∗), 0}ν−1∇gℓ(x
∗) +

p∑
j=1

ν|hj(x
∗)|ν−1∇hj(x

∗)

⊤

d.

Again by (16), ∇gℓ(x
∗)Td < 0, for all ℓ ∈ I+(x

∗), and ∇hj(x
∗)⊤d = 0, for all j. Then,

we get max{gℓ(x∗), 0} = 0 for all ℓ ∈ ℓ ∈ I+(x
∗) ∩ Gext, so that gℓ(x

∗) ≤ 0 for all ℓ ∈ Gext.

13



Furthermore, that implies(∑
ℓ∈Gext

νmax{gℓ(x∗), 0}ν−1∇gℓ(x
∗) +

p∑
j=1

ν|hj(x
∗)|ν−1∇hj(x

∗)

)⊤

d̄ =

(
p∑

j=1

ν|hj(x
∗)|ν−1∇hj(x

∗)

)⊤

d̄ ≥ 0, for all d̄ ∈ TX(x
∗).

Using (15), we get hj(x
∗) = 0 for all j = 1, . . . , p. Therefore, the point x∗ is feasible.

By simple manipulations, inequality (22) can be rewritten as(
∇f(yi

k) +
m∑
ℓ=1

∇gℓ(y
i
k)λℓ(xk; ρk)

+
m∑
ℓ=1

∇gℓ(y
i
k)(λℓ(y

i
k; ρk)− λℓ(xk; ρk)) +

p∑
j=1

∇hj(y
i
k)µj(xk; ρk)

+

p∑
j=1

∇hj(y
i
k)(µj(y

i
k; ρk)− µj(xk; ρk))

)⊤

d̄i ≥ −ξ(α̂i
k)

α̂i
k

, ∀i ∈ J

(26)

Taking limits for k → +∞, k ∈ K ′ and considering (48) and (49), we get:(
∇f(x∗) +

m∑
ℓ=1

∇gℓ(x
∗)λ∗

ℓ +

p∑
j=1

∇hj(x
∗)µ∗

j

)⊤

d̄i ≥ 0, ∀i ∈ J. (27)

Again, by (25) and (27), we have, for all d ∈ TX(x
∗),(

∇f(x∗) +
m∑
ℓ=1

∇gℓ(x
∗)λ∗

ℓ +

p∑
j=1

∇hj(x
∗)µ∗

j

)⊤

d =

∑
i∈J

βi

(
∇f(x∗) +

m∑
ℓ=1

∇gℓ(x
∗)λ∗

ℓ +

p∑
j=1

∇hj(x
∗)µ∗

j

)⊤

d̄i ≥ 0.

Since x∗ is feasible and considering the definition of λ∗
ℓ for ℓ ∈ I+(x

∗), λ∗
ℓ gℓ(x

∗) = 0, for all
ℓ = 1, . . . ,m, and the proof is concluded.

4 Implementation Details

In this section, we describe a practical implementation for LOG-DS, based on the original
implementation of SID-PSM [14, 15].
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4.1 LOG-DS vs SID-PSM

LOG-DS enhances SID-PSM with the capability of handling general constraints through a
mixed penalty log-barrier approach. Thus, the original structure and algorithmic options of
SID-PSM implementation are kept. In this subsection, we will provide a general overview of
the main features of SID-PMS, highlighting the differences with LOG-DS. For more details
on SID-PSM, the original references [14, 15] could be used.

The main difference between LOG-DS and SID-PSM is the use of a merit function to
address constraints, instead of an extreme barrier approach. In SID-PSM, only feasible points
are evaluated, being the function value set equal to +∞ for infeasible ones. LOG-DS allows
infeasibility regarding the nonlinear constraints. The merit function also replaces the original
objective function through the different algorithmic steps. So, at the Search step, quadratic
polynomial models are built for the objective and constraints functions and, after being ag-
gregated into the merit function, are minimized inside a ball with radius directly related to
the stepsize parameter.

The sets of points used in model computation do not require feasibility regarding the
nonlinear constraints, always resulting from previous evaluations of the merit function. No
function evaluations are spent solely for the purpose of model building. Depending on the
number of points available, minimum Frobenius norm models, quadratic interpolation, or
regression approaches can be used [14] to compute the model coefficients.

After the model minimization, LOG-DS needs to make a decision on accepting or rejecting
the new trial point. Differently from SID-PSM, where only simple decrease is required for
accepting new points, in LOG-DS points are accepted if they satisfy the sufficient decrease
condition

Z(xk+1; ρk) ≤ Z(xk; ρk)− γα2
k,

where γ = 10−9. The use of a sufficient decrease condition for the acceptance of new points
changes the type of globalization strategy used by the algorithm, which is no longer classified
as a Generalized Pattern Search method, being now a Generating Set Search (GSS) method.

The algorithm proceeds with an opportunistic Poll Step, accepting the first poll point that
satisfies the sufficient decrease condition. Before initiating the polling procedure, previously
evaluated points are again used to build a simplex gradient [11], which will be used as an
ascent indicator. Poll directions are reordered according to the largest angle made with this
ascent indicator, before initiating polling (see [15]). In LOG-DS, the simplex gradient is built
for the merit function, while in SID-PSM the original objective function is considered.

4.2 Penalty parameter details

In the initialization of LOG-DS, we define the two sets of indices Glog and Gext, considering
the values of the inequality constraints at the initial point x0 ∈ X:

Glog = {i | gℓ(x0) < 0} and Gext = {i | gℓ(x0) ≥ 0}.

Moreover, we define two penalty parameters, one corresponding to the logarithmic barrier
term (ρlog) and another one associated with the penalty exterior component (ρext), and we
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initialize them as ρlog0 = 10−1 and ρext0 = 1
max{|f(x0)|,10} . Note that we treat ρext as ρν−1 in

equation (2). Therefore, we can write the merit function as

Z(x; ρk) = f(x)−ρlogk

∑
ℓ∈Glog

log(−gℓ(x))+
1

ρextk

(∑
ℓ∈Gext

(max{0, gℓ(x)})ν +
p∑

j=1

|hj(x)|ν
)
. (28)

The penalty parameters are updated only at unsuccessful iterations, considering two different
criteria:

αk+1 ≤ min{(ρlogk )β, (gmin)
2
k}, for updating ρlogk ; (29)

αk+1 ≤ min{(ρlogk )β, (ρextk )β, (gmin)
2
k}, when updating ρextk . (30)

Recall that (gmin)k is the minimum absolute value for the constraints in Glog at iterate xk. In
the implementation, we have considered β = 1 + 10−9 and ν = 2. Thus, ρν−1 = ρ in equation
(2).

If inequality (29) holds, LOG-DS uses the following rule

ρlogk+1 = ζρlogk , (31)

whereas if inequality (30) holds, LOG-DS performs the following update

ρextk+1 = ζρextk , (32)

in both cases with ζ = 10−2.
The use of two different penalty parameters, for the two different terms of penalization,

is a practical need to be able to properly scale the constraints and the different ways they
are handled. In particular, in our numerical experience, the logarithmic term seemed not to
suffer with the different scales of the objective function, while the exterior penalty seemed
to be very sensitive to it. In practice, if the exterior penalty parameter is set too high, the
algorithm might be slow at reaching feasible solutions. If it is set too low, the algorithm might
not be good at reaching solutions with the best objective function value, even though it might
be very capable of attaining feasibility. While scaling the initial exterior penalty parameter
with respect to the initial value of the objective function improved the numerical results, it
is possible that it might not work for specific problems. Indeed, we are implicitly assuming
that the gradient of the objective function is closely related to the objective function value,
which might be true for many real problems, but it is certainly not true in general. Scaling the
objective function and the constraints for general nonlinear optimization problems is currently
an active field of research.

Furthermore, to keep our method aligned with the theoretical framework proposed, in
Appendix C we provide some results related to our choices.

5 Numerical Experiments

This section is dedicated to the numerical experiments and performance evaluation of the
proposed mixed penalty-logarithmic barrier derivative-free optimization algorithm, LOG-DS,
on a collection of test problems available in the literature.
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We considered the test set used in [12], part of the CUTEst collection [19]. Specifically,
we included problems where the number of variables does not exceed 50 and at least one
inequality constraint is strictly satisfied by the initialization provided, ensuring x0 ∈ Ω̊Glog .

Table 1 details the test set, providing the name, the number of variables, np, the number
of inequality constraints, mp = |Glog ∪ Gext|, the number of inequality constraints treated by
the logarithmic barrier m̄p = |Glog|, and the number of nonlinear equalities, meqp, for each
problem. Additional information can be found in [12, 19].

5.1 Performance and data profiles

Numerical experiments will be analyzed using performance [16] and data [30] profiles. To
provide a brief overview of these tools, consider a set of solvers S and a set of problems
P . Let tp,s represent the number of function evaluations required by solver s to satisfy the
convergence test adopted for problem p.

For an accuracy τ = 10−k, where k ∈ {1, 3, 5}, we adopted the convergence test:

fM − f(x) ≥ (1− τ)(fM − fL), (33)

where fM represents the objective function value of the worst feasible point determined by
all solvers for problem p, and fL is the best objective function value obtained by all solvers,
corresponding to a feasible point of problem p.

The convergence test given by (33) requires a significant reduction in the objective function
value by comparison with the worst feasible point fM . We assign an infinite value to the
objective function at points that violate the feasibility conditions, defined by c(x) > 10−4,
where

c(x) =
m∑
i=1

max{0, gi(x)}+
p∑

j=1

|hj(x)|.

The performance of solver s ∈ S is measured by the fraction of problems in which the
performance ratio is at most α, given by:

ρs(α) =
1

|P |

∣∣∣∣{p ∈ P | tp,s
min {tp,s′ : s′ ∈ S}

≤ α

}∣∣∣∣ .
A performance profile provides an overview of how well a solver performs across a set of
optimization problems. Particularly relevant is the value ρs(1), that reflects the efficiency
of the solver, i.e., the percentage of problems for which the algorithm performs the best.
Robustness, as the percentage of problems that the algorithm is able to solve, can be perceived
for high values of α.

Data profiles focus on the behavior of the algorithm during the optimization process. A
data profile measures the percentage of problems that can be solved (given the tolerance τ)
with κ estimates of simplex gradients and is defined by:

ds(κ) =
1

|P |
|{p ∈ P | tp,s ≤ κ (np + 1)}| ,

where np represents the dimension of problem p.
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Problem np mp m̄p meqp

ANTWERP 27 10 2 8

DEMBO7 16 21 16 0

ERRINBAR 18 9 1 8

HS117 15 5 5 0

HS118 15 29 28 0

LAUNCH 25 29 20 9

LOADBAL 31 31 20 11

MAKELA4 21 40 20 0

MESH 33 48 17 24

OPTPRLOC 30 30 28 0

RES 20 14 2 12

SYNTHES2 11 15 1 1

SYNTHES3 17 23 1 2

TENBARS1 18 9 1 8

TENBARS4 18 9 1 8

TRUSPYR1 11 4 1 3

TRUSPYR2 11 11 8 3

HS12 2 1 1 0

HS13 2 1 1 0

HS16 2 2 2 0

HS19 2 2 1 0

HS20 2 3 3 0

HS21 2 1 1 0

HS23 2 5 4 0

HS30 3 1 1 0

HS43 4 3 3 0

HS65 3 1 1 0

HS74 4 5 2 3

HS75 4 5 2 3

HS83 5 6 5 0

HS95 6 4 3 0

HS96 6 4 3 0

HS97 6 4 2 0

HS98 6 4 2 0

HS100 7 4 4 0

HS101 7 6 2 0

HS104 8 6 3 0

HS105 8 1 1 0

HS113 10 8 8 0

HS114 10 11 8 3

HS116 13 15 10 0

S365 7 5 2 0

ALLINQP 24 18 9 3

BLOCKQP1 35 16 1 15

BLOCKQP2 35 16 1 15

BLOCKQP3 35 16 1 15

BLOCKQP4 35 16 1 15

BLOCKQP5 35 16 1 15

Problem np mp m̄p meqp

CAMSHAPE 30 94 90 0

CAR2 21 21 5 16

CHARDIS1 28 14 13 0

EG3 31 90 60 1

GAUSSELM 29 36 11 14

GPP 30 58 58 0

HADAMARD 37 93 36 21

HANGING 15 12 8 0

JANNSON3 30 3 2 1

JANNSON4 30 2 2 0

KISSING 37 78 32 12

KISSING1 33 144 113 0

KISSING2 33 144 113 0

LIPPERT1 41 80 64 16

LIPPERT2 41 80 64 16

LUKVLI1 30 28 28 0

LUKVLI10 30 28 14 0

LUKVLI11 30 18 3 0

LUKVLI12 30 21 6 0

LUKVLI13 30 18 3 0

LUKVLI14 30 18 18 0

LUKVLI15 30 21 7 0

LUKVLI16 30 21 13 0

LUKVLI17 30 21 21 0

LUKVLI18 30 21 21 0

LUKVLI2 30 14 7 0

LUKVLI3 30 2 2 0

LUKVLI4 30 14 4 0

LUKVLI6 31 15 15 0

LUKVLI8 30 28 14 0

LUKVLI9 30 6 6 0

MANNE 29 20 10 0

MOSARQP1 36 10 10 0

MOSARQP2 36 10 10 0

NGONE 29 134 106 0

NUFFIELD 38 138 28 0

OPTMASS 36 30 6 24

POLYGON 28 119 94 0

POWELL20 30 30 15 0

READING4 30 60 30 0

SINROSNB 30 58 29 0

SVANBERG 30 30 30 0

VANDERM1 30 59 29 30

VANDERM2 30 59 29 30

VANDERM3 30 59 29 30

VANDERM4 30 59 29 30

YAO 30 30 1 0

ZIGZAG 28 30 5 20

Table 1: Test set selected from the CUTEst collection. Parameters np, mp, m̄p, and meqp de-
note, respectively, the number of variables, of inequality constraints, of inequality constraints
treated by the logarithmic barrier, and of equality constraints for the given problem.
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5.2 Results and comparison

This subsection aims to demonstrate the good numerical performance of the LOG-DS algo-
rithm.

5.2.1 Comparison between strategies for linear constraints

In this subsection, our focus lies on evaluating the performance of LOG-DS using two distinct
approaches for managing linear inequality constraints, other than bounds. The first approach
addresses each linear inequality constraint as a general nonlinear inequalitiy, i.e. through the
penalty approach discussed previously. The second approach entails addressing the linear
inequality constraints via an extreme barrier method, adjusting the directions in accordance
with the geometry of the feasible region.

The works by Lucidi et al. [28] and Lewis and Torczon [24] propose methods for com-
puting directions conforming to linear inequality constraints but do not consider degeneracy.
Abramson et al. [1] provide a detailed algorithm for generating the set of desired directions,
regardless of whether the constraints are degenerate or not.

In order to use Definition 2.4, of ε-active constraints, we assume a preliminary scaling of
the constraints. For this purpose, we multiply each ith constraint by ∥ai∥−1, since the vectors
ai, i ∈ IX , are not null (we have that ∥ai∥ ≠ 0 for all i ∈ IX). Therefore, we consider

ai =
ai

∥ai∥
, bi =

bi
∥ai∥

, i ∈ IX . (34)

The ε-active index set is computed using the matrix A, a scaled version of the matrix A, and
the vector b. Consequently, we have that ∥ai∥ = 1 for all i ∈ IX and X = {x ∈ Rn | Ax ≤
b} ≃ {x ∈ Rn | aix ≤ bi, i ∈ IX} = {x ∈ Rn | Ax ≤ b}.

To compute the set of directions Dk that conform to the geometry of the nearby constraints,
we use the algorithm proposed in [1, Alg. 4.4.2]. The latter is divided into two parts: the first
constructs the index set corresponding to ε-active non-redundant constraints, and the second
the set of directions Dk, which include the generators of the cone TX(xk, ε).

It is important to understand why we are comparing the two strategies. First, linear con-
straints might not be explicitly given for a black-box type problem, making it impossible to
conform the directions to the linear constraints. In such cases, we would be forced to treat
the linear inequalities with a mixed penalty. Furthermore, the logarithmic barrier approach is
well-known for handling linear constraints very efficiently, especially in the presence of a large
number of constraints. Finally, conforming the directions to the nearby linear constraints
might affect the geometry of the generated points, impacting the quality of the surrogate
models built to improve the performance of the algorithm. Using the penalty approach al-
lows us to keep using the coordinate directions, which are known to have good geometry for
building linear models. Any other orthonormal basis could be used, though the coordinate
directions additionally conform to bound constraints on the variables, so that we can treat
them separately from the penalty approach.

For identifying a constraint as being ε-active, we considered ε = 10−5 and we used Dk =
[1 −1 In −In] as the default set of directions, for every k. Figure 1 depicts the performance
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of LOG-DS using the two strategies described before, considering a maximum number of 2000
function evaluations and a minimum stepsize tolerance equal to 10−8.

Figure 1: Performance (on top) and data (on bottom) profiles comparing LOG-DS using two
different approaches to address linear inequality constraints.

As we can see, the performance of the LOG-DS algorithm when addressing the linear
inequality constraints within the penalty approach outperforms the competing strategy, ad-
dressing the linear constraints directly. Therefore, in the rest of the work, the experiments
will be carried out using the winning strategy. Note that the significant difference in the
performance might be due to the specific choice of the tested problems and/or the specific
strategy used to conform the directions to the linear constraints, rather than to a flaw in the
approach by itself.
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5.2.2 Comparison with the original Extreme Barrier

We are proposing an alternative strategy to address constraints within the SID-PSM algo-
rithm. Thus, we start by illustrating that the use of a mixed penalty-logarithmic barrier is
competitive against the extreme barrier approach. The latter can only be adopted for problems
without equality constraints and for which a strictly feasible point is given as initialization,
so we selected a subset of problems satisfying these conditions. The subset consists of a total
of 28 problems, highlighted in Table 1.

Figure 2 presents the comparison between LOG-DS, which exploits the mixed penalty-
logarithmic barrier, and the original SID-PSM, which employs an extreme barrier approach.
The default values of SID-PSM were considered for both algorithms, allowing a maximum
number of 2000 function evaluations and a minimum stepsize tolerance equal to 10−8.

Figure 2: Performance (on top) and data (on bottom) profiles comparing LOG-DS and SID-
PSM.

As Figure 2 shows, LOG-DS presents a better performance than SID-PSM, especially
when a higher precision is considered. Furthermore, the possibility of initializing LOG-DS
with infeasible points allows to handle a wider class of practical problems.

5.2.3 Comparison with state-of-the-art solvers

This subsection focuses on comparing LOG-DS against state-of-the-art derivative-free opti-
mization solvers that are able to address general nonlinear constraints. Comparisons were
made with MADS [7], implemented in the well-known NOMAD package (version 4), which
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can be freely obtained at https://www.gerad.ca/en/software/nomad [8]. Additionally, the
X-LOG-DFL algorithm [12], available through the DFL library as the LOGDFL package at
https://github.com/DerivativeFreeLibrary/LOGDFL, was also tested. Comparison with
LOG-DFL [12] is particularly relevant since it uses the same merit function of LOG-DS. De-
fault settings were considered for all codes and results, reported in Figure 3, were obtained
for a budget of 2000 function evaluations.

Figure 3: Performance (on top) and data (on bottom) comparing LOG-DS, NOMAD, and
X-LOG-DFL, on the complete problem collection.

It can be observed that LOG-DS presents the best performance, for any of the three
precision levels considered, both in terms of efficiency and robustness, across the different
computational budgets.

Figure 4 compares the different solvers considering the subset of problems with only in-
equality constraints (61 out of 96 problems), again allowing a maximum of 2000 function
evaluations. Once more, LOG-DS is clearly the solver with the best performance.

In summary, considering the outcomes of the different numerical experiments, we can
conclude that LOG-DS is the most efficient and robust solver across different scenarios, making
it the top-performing choice.
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Figure 4: Performance (on top) and data (on bottom) profiles comparing LOG-DS, NOMAD,
and LOG-DFL, on the subset of problems with only inequality constraints.

6 Conclusions

The primary objective of this work was to extend the approach introduced in [12] to generalized
pattern search, allowing to efficiently address nonlinear constraints.

To accomplish it, we adapted the SID-PSM algorithm, a generalized pattern search method,
where polynomial models are used both at the search and at the poll steps to improve the
numerical performance. We proposed a new algorithm, LOG-DS, that keeps the basic algo-
rithmic features of SID-PSM but uses a mixed penalty-logarithmic barrier merit function to
address general nonlinear and linear constraints.

Under standard assumptions, not requiring convexity of the functions defining the problem,
convergence was established towards stationary points. Furthermore, an extensive numerical
experimentation allowed to compare the performance of LOG-DS with several state-of-art
solvers on a large set of test problems from the CUTEst collection. The numerical results
indicate the robustness, efficiency, and overall effectiveness of the proposed algorithm.

A Appendix

Lemma A.1. Let a ∈ R+, b ∈ R+, a+ b > 0 and p ∈ [0, 1]. It results

(a+ b)p ≤ ap + bp.
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Proof. We have
a

a+ b
≤ 1 and

b

a+ b
≤ 1, so

(a+ b)p =
(a+ b)

(a+ b)1−p
=

a

(a+ b)1−p
+

b

(a+ b)1−p

= ap
(

a

a+ b

)1−p

+ bp
(

b

a+ b

)1−p

≤ ap + bp.

Lemma A.2. Let a ∈ R, b ∈ R and p ∈ [0, 1]. The following inequalities hold

||a|p − |b|p| ≤ |a− b|p, (35)

and
|max{a, 0}p −max{b, 0}p| ≤ |a− b|p. (36)

Proof. To prove (35) consider

|a|p = |a− b+ b|p

(Triangular inequality ) ≤ (|a− b|+ |b|)p

(Lemma A.1) ≤ |a− b|p + |b|p (37)

On the other hand,

|b|p = |b− a+ a|p

(Triangular inequality ) ≤ (|b− a|+ |a|)p

(Lemma A.1) ≤ |a− b|p + |a|p (38)

Then, from inequalities (37) and (38) we derive inequality (35).
Now, to prove (36), we will analyze four different cases:

i) If a ≤ 0 and b ≤ 0, the result holds trivially.

ii) If a ≤ 0 and b > 0, then | − bp| = bp ≤ |b− a|p = |a− b|p.

iii) If a > 0 and b ≤ 0, then |a|p = ap ≤ |a− b|p.

iv) If a > 0 and b > 0, using (35) we conclude that:

|max{a, 0}p −max{b, 0}p| = |ap − bp| = ||a|p − |b|p| ≤ |a− b|p.
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B Appendix

Lemma B.1. Let {aik}k∈N, i = 1, . . . , ℓ, be sequences of scalars. Two cases can occur:

(i) It results lim
k→+∞

aik = 0, i = 1, . . . , ℓ. In particular, all the sequences are bounded;

(ii) An index j ∈ {1, . . . , ℓ}, an infinite index set Kj ⊆ {0, 1, . . . } and a positive scalar āj
exist such that

|ajk| > āj > 0, ∀k ∈ Kj,

i.e., at least one sequence is not convergent to zero. Then, there exists an index s ∈
{1, . . . , ℓ} and an infinite subset K ⊆ N such that:

lim
k→+∞,
k∈K

aik
|ask|

= zi, |zi| < +∞, i = 1, . . . , ℓ, (39)

i.e., all the sequences

{
aik
|ask|

}
k∈K

are bounded.

Proof. Point (i) directly follows from the properties of convergent sequences.
Then, let us now assume that at least a sequence is not convergent to zero. If this is the

case, we can reorder the sequences in such a way that:

• lim
k→+∞

a1k = lim
k→+∞

a2k = · · · = lim
k→+∞

ar−1
k = 0;

• {aik}, i = r, . . . , ℓ, are not convergent to zero.

We now prove that an index s ∈ {r, . . . , ℓ} and an infinite index set K̂ exist such that

lim
k→+∞,

k∈K̂

aik
|ask|

= zi, |zi| < +∞, i = r, . . . , ℓ.

This is (obviously) true when ℓ = r. Indeed, when ℓ = r, there is Kr such that

lim
k→+∞,
k∈Kr

ark
|ark|

= ±1.

Furthermore, we have

lim
k→+∞,
k∈Kr

aik
|ark|

= 0, i = 1, . . . , r − 1.

The thesis follows by choosing s = r and K̂ = Kr.
Now, we prove the thesis by induction on ℓ. Then, we have sequences {aik}, i = 1, . . . , ℓ−1

such that:

• lim
k→+∞

a1k = lim
k→+∞

a2k = · · · = lim
k→+∞

ar−1
k = 0;
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• {aik}, i = r, . . . , ℓ− 1, are not convergent to zero,

and an index ı̂ ∈ {r, . . . , ℓ− 1} and an infinite index set K̂ exist such that

lim
k→+∞,

k∈K̂

aik
|aı̂k|

= zi, |zi| < +∞, i = r, . . . , ℓ− 1.

1. If lim
k→+∞

aℓk = 0, then we have

lim
k→+∞,

k∈K̂

ajk
|aı̂k|

= zj, j = 1, . . . , ℓ− 1

lim
k→+∞,

k∈K̂

aℓk
|aı̂k|

= 0;

and the thesis follows by choosing s = ı̂ and K = K̂.

2. Suppose now that {aℓk} is not convergent to zero. In this situation, two subcases can
occur:

(a) the sequence
{

aℓk
aı̂k

}
k∈K̂

is bounded;

(b) an infinite index set K1 ⊆ K̂ exists such that
{

aℓk
aı̂k

}
k∈K1

is unbounded.

In the first case, an infinite index set K2 ⊆ K̂ exists such that
{

aℓk
aı̂k

}
k∈K2

is convergent.

Then, the thesis follows by taking s = ı̂ and K = K2.

In the second case, we have

lim
k→+∞,
k∈K1

aı̂k
aℓk

= 0.

Furthermore, for every i = 1, . . . , ℓ− 1, we have

lim
k→+∞,
k∈K1

aik
aℓk

= lim
k→+∞,
k∈K1

aik
aı̂k

aı̂k
aℓk

= 0,

and again the thesis is proved with s = ℓ and K = K1.

Thus, the proof is concluded.

Theorem B.2. In the conditions of Theorem 3.7,

λℓ(x; ρ) =


ρ

−gℓ(x)
, if ℓ ∈ Glog

ν

(
max{gℓ(x), 0}

ρ

)ν−1

, if ℓ ∈ Gext

µj(x; ρ) = ν

(
|hj(x)|

ρ

)ν−1

, j = 1, . . . , p,

the subsequences {λℓ(xk; ρk)}k∈K̂, ℓ = 1, . . . ,m and {µj(xk; ρk)}k∈K̂, j = 1, . . . , p are bounded.
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Proof. Recalling the expressions of λℓ(x; ρ), ℓ = 1, . . . ,m, and of µj(x; ρ), j = 1, . . . , p, we can
rewrite inequality (22) as(

∇f(yi
k) +

m∑
ℓ=1

λℓ(y
i
k; ρk)∇gℓ(y

i
k)+

p∑
j=1

µj(y
i
k; ρ)∇hj(y

i
k)

)⊤

dk ≥ −ξ(α̂i
k)

α̂i
k

, ∀ i ∈ Jk and k ∈ K̂,

(40)

where yi
k = xk + tikα̂dk

di
k, with tik ∈ (0, 1) and α̂i

k ≤ αk.
We will start by establishing that

lim
k→+∞
k∈K̂

|λℓ(xk; ρk)− λℓ(y
i
k; ρk)| = 0, ℓ ∈ Glog, ∀ i ∈ Jk (41)

In fact, ∣∣∣∣ ρk
−gℓ(xk)

− ρk
−gℓ(yi

k)

∣∣∣∣ = ρk

∣∣∣∣ gℓ(xk)− gℓ(y
i
k)

(−gℓ(yi
k))(−gℓ(xk))

∣∣∣∣ (42)

= ρk

∣∣∣∇gℓ (u
i
k)

⊤
(xk − yi

k)
∣∣∣

|gℓ (yi
k) ||gℓ (xk) |

≤ ρk
∥∇gℓ (u

i
k)∥ ∥yi

k − xk∥
|gℓ (yi

k) ∥gℓ (xk)|
,

where ui
k = xk + t̃ik(y

i
k − xk) with t̃ik ∈ (0, 1).

Then, there is c1 > 0 such that

ρk
∥∥∇gℓ

(
ui
k

)∥∥ ∥yi
k − xk∥

|gℓ (yi
k) ∥gℓ (xk)|

≤ ρkc1
∥yi

k − xk∥
|gℓ(yi

k)||gℓ(xk)|
(43)

= ρkc1
∥xk + tikα̂

i
kd

i
k − xk∥

|gℓ(yi
k)||gℓ(xk)|

= ρkc1
∥tikα̂i

kd
i
k∥

|gℓ(yi
k)||gℓ(xk)|

= ρkc1
tikα̂

i
k∥di

k∥
|gℓ(yi

k)||gℓ(xk)|
.

Now, we will prove that there is another constant c2 > 0 such that

1

|gℓ(yi
k)|

≤ c2
1

|gℓ(xk)|
. (44)

Suppose, in order to arrive to a contradiction, that c2 does not exist. This would imply that
there exists K ′ ⊆ K̂ ⊆ K such that

lim
k→+∞
k∈K′

1
|gℓ(yi

k)|
1

|gℓ(xk)|
= lim

k→+∞
k∈K′

|gℓ(xk)|
|gℓ(yi

k)|
= +∞. (45)
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Let us consider the case where
lim

k→+∞
k∈K′

|gℓ(xk)| = 0.

Since gℓ(xk) < 0 and gℓ(y
i
k) < 0 for all k ∈ K ′, by (45) there exists k ∈ N such that, for all

k ≥ k, k ∈ K ′, we have

−gℓ(xk) > −gℓ(y
i
k) = −gℓ(xk + tikα̂

i
kd

i
k).

Using the Lipschitz continuity of gℓ, ℓ = 1, . . . ,m and the fact that ∥di
k∥ = 1 for all i ∈ Jk,

we get
−gℓ(xk + tikα̂

i
kd

i
k) ≥ −gℓ(xk)− Lgℓ∥tikα̂i

kd
i
k∥ = −gℓ(xk)− Lgℓt

i
kα̂

i
k.

The definition of K guarantees that

αk+1 ≤ min{ρβk , (gmin)
2
k}, αk+1 = θααk,

so that

αk ≤
min{ρβk , (gmin)2k}

θα
(46)

Hence, since α̂i
k ≤ αk, we have

−gℓ(xk)− Lgℓt
i
kα̂

i
k ≥ −gℓ(xk)− Lgℓt

i
k

1

θα
(gℓ(xk))

2, ∀k ≥ k, k ∈ K ′

Thus,

lim
k→+∞
k∈K′

−gℓ(xk)

−gℓ(yi
k)

= lim
k→+∞
k∈K′

−gℓ(xk)

−gℓ(xk + tikα̂
i
kd

i
k)

≤ lim
k→+∞
k∈K′

−gℓ(xk)

−gℓ(xk)− Lgℓt
i
k

1
θα
(gℓ(xk))2

= 1,

which leads to a contradiction, proving (44).
Now, by considering the other case

lim
k→+∞
k∈K′

|gℓ(xk)| = c < +∞,

we have

lim
k→+∞
k∈K′

−gℓ(xk)

−gℓ(yi
k)

= lim
k→+∞
k∈K′

−gℓ(xk)

−gℓ(xk + tikα̂
i
kd

i
k)

< +∞.

Again, this leads to a contradiction, proving (44).
Hence, the existence of the constant c2 > 0, (44), and recalling that α̂i

k ≤ αk, allow us to
write

ρkc1t
i
kα̂

i
k

|gℓ(yi
k)||gℓ(xk)|

≤ ρkc1c2t
i
kαk

|gℓ(xk)|2
.
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The instructions of Step 3 imply that xk+1 = xk, so that (gmin)k = min
ℓ∈Glog

{|gℓ(xk+1)|} =

min
ℓ∈Glog

{|gℓ(xk)|}. Recalling (46), we get

ρkαk

(gmin)2k
≤ ρk

θα
.

Then, recalling Theorem 3.2, (41) is proved. Furthermore, we will establish

lim
k→+∞
k∈K̂

|λℓ(xk; ρk)− λℓ(y
i
k; ρk)| = 0, ℓ ∈ Gext, ∀ i ∈ Jk (47)

∣∣∣∣∣ ν

ρν−1
k

(max{gℓ(xk), 0})ν−1 − ν

ρν−1
k

(
max{gℓ(yi

k), 0}
)ν−1

∣∣∣∣∣ =
=

ν

ρν−1
k

∣∣∣max{gℓ(xk), 0}ν−1 −max{gℓ(xk) +∇gℓ(u
i
k)

⊤(xk − yi
k), 0}ν−1

∣∣∣
(Lemma A.2 – (36) ) ≤ ν

ρν−1
k

∣∣∣gℓ(xk)− gℓ(xk)−∇gℓ(u
i
k)

⊤(xk − yi
k)
∣∣∣ν−1

=
ν

ρν−1
k

|∇gℓ(u
i
k)

⊤(xk − yi
k)|ν−1 ≤ ν

ρν−1
k

∥∥∇gℓ(u
i
k)
∥∥ν−1 ∥∥xk − yi

k

∥∥ν−1

≤ c3
ν

ρν−1
k

∥∥(xk − (xk + tikα̂
i
kd

i
k)
)∥∥ν−1

= c3
ν

ρν−1
k

(tikα̂
i
k)

ν−1
∥∥di

k

∥∥ν−1

≤ c3
ν

ρν−1
k

(α̂i
k)

ν−1
∥∥di

k

∥∥ν−1 ≤ c3ν

(
αk

ρk

)ν−1 ∥∥di
k

∥∥ν−1

≤ c3ν

(
ρβ−1
k

θα

)ν−1 ∥∥di
k

∥∥ν−1
= c3νθ

1−ν
α ρ

(β−1)(ν−1)
k

∥∥di
k

∥∥ν−1
,

where ui
k = xk + t̃ik(y

i
k − xk) with t̃ik ∈ (0, 1), and c3 > 0. Thus, using β > 1, ν ∈ (1, 2],

∥di
k∥ = 1 for all i ∈ Jk, and recalling Theorem 3.2, (47) is proved. Therefore, we have that

lim
k→+∞
k∈K̂

|λℓ(xk; ρk)− λℓ(y
i
k; ρk)| = 0, ℓ = 1, . . . ,m, ∀ i ∈ Jk (48)

We will now establish that

lim
k→+∞
k∈K̂

|µj(xk; ρk)− µj(y
i
k; ρk)| = 0, j = 1, . . . , p, ∀i ∈ Jk (49)
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In fact, recalling that ν ∈ (1, 2] so that ν − 1 ∈ (0, 1], we have∣∣∣∣∣ν
∣∣∣∣hj(xk)

ρk

∣∣∣∣ν−1

− ν

∣∣∣∣hj(y
i
k)

ρk

∣∣∣∣ν−1
∣∣∣∣∣ =

ν

ρν−1
k

∣∣∣∣|hj (xk)|ν−1 −
∣∣∣hj(xk) +∇hj

(
uj
k

)⊤
(yi

k − xk)
∣∣∣ν−1

∣∣∣∣
(Lemma A.2 – (35)) ≤ ν

ρν−1
k

∣∣∣hj (xk)− hj(xk)−∇hj

(
uj
k

)⊤
(yi

k − xk)
∣∣∣ν−1

=
ν

ρν−1
k

∣∣∇hj(u
j
k)

⊤(yi
k − xk)

∣∣ν−1

≤ ν

ρν−1
k

∥∥∇hj(u
j
k)
∥∥ν−1 ∥∥(yi

k − xk)
∥∥ν−1

, (50)

where uj
k = xk + t̃ik(y

i
k − xk), with t̃ik ∈ (0, 1) Now, recalling that hj, j = 1, . . . , p are

continuously differentiable functions and yi
k = xk + tikα̂

i
kd

i
k, with tik ∈ (0, 1) and ∥di

k∥ = 1,
from (50) and the fact that α̂i

k ≤ αk we can write∣∣∣∣∣ν
∣∣∣∣hj(xk)

ρk

∣∣∣∣ν−1

− ν

∣∣∣∣hj(y
i
k)

ρk

∣∣∣∣ν−1
∣∣∣∣∣ ≤ ν

ρν−1
k

c3
(
tikα̂

i
k

)ν−1

≤ c3
ν

ρν−1
k

(
tikαk

)ν−1 ≤ c3ν

(
αk

ρk

)ν−1

≤ c3ν

(
ρβ−1
k

θα

)ν−1

= c3νθ
1−ν
α ρ

(β−1)(ν−1)
k .

Given that β > 1, ν ∈ (1, 2], and recalling Theorem 3.2, we can conclude that (49) holds.

Now, we are able to prove the boundness of the sequences {λℓ(xk; ρk)}k∈K̂ , ℓ = 1, . . . ,m
and {µj(xk; ρk)}k∈K̂ , j = 1, . . . , p.

In fact, we can rewrite (40) as(
∇f(yi

k) +
m∑
ℓ=1

∇gℓ(y
i
k)λℓ(xk; ρk)+

+
m∑
ℓ=1

∇gℓ(y
i
k)(λℓ(y

i
k; ρk, )− λℓ(xk; ρk)) +

p∑
j=1

∇hj(y
i
k)µj(xk; ρk)+

+

p∑
j=1

∇hj(y
i
k)(µj(y

i
k; ρk)− µj(xk; ρk))

)⊤

dk ≥ −ξ(α̂i
k)

α̂i
k

, ∀i ∈ Jk and k ∈ K̂.

(51)

Let

{a1k, . . . , amk } = {λ1(xk; ρk), . . . , λm(xk; ρk)},
{am+1

k , . . . , am+p
k } = {µ1(xk; ρk), . . . , µp(xk; ρk)}.
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Assume, by contradiction, that there exists at least one index l ∈ {1, . . . ,m+ p} such that

lim
k→+∞
k∈K

|alk| = +∞. (52)

Hence, the sequence {aik}, i = 1, . . . ,m + p, cannot be all convergent to zero. Then, from
Lemma B.1, there exists an infinite subset K ′ ⊆ K̂ and an index s ∈ {1, . . . ,m+p} such that,

lim
k→+∞
k∈K′

aik
|ask|

= zi, |zi| < +∞, i = 1, . . . ,m+ p (53)

If there is an unique index l that satisfies (52), then s = l. If we have more than one index
satisfying the equation, then s is selected as one of the indexes such that {ask}k∈K′ tends to
+∞ faster than the others. Note also that

zs = 1, and |ask| → +∞. (54)

Dividing the relation (51) by |ask|, we have(
∇f(yi

k)

|ask|
+

m∑
ℓ=1

∇gℓ(y
i
k)a

ℓ
k

|ask|

+
m∑
ℓ=1

∇gℓ(y
i
k)
λℓ(y

i
k; ρk)− λℓ(xk; ρk)

|ask|
+

p∑
j=1

∇hj(y
i
k)a

m+j
k

|ask|

+

p∑
j=1

∇hj(y
i
k)
µj(y

i
k; ρk)− µj(xk; ρk)

|ask|

)⊤

dk ≥ − ξ(α̂i
k)

α̂i
k|ask|

, ∀i ∈ Jk and k ∈ K̂.

(55)

Since lim
k→+∞
k∈K̂

xk = x∗, Assumption 2.6 and Proposition 2.5 ensure the existence of ε > 0 such

that for k ∈ K̃ ⊆ K̂ sufficiently large, TX(x
∗) = TX(xk, ε) = cone(Dk∩TX(xk, ε)) = cone(D∗).

Taking the limit for k → +∞ and k ∈ K̃, and using (48), (49), and (53), we obtain(
m∑
ℓ=1

zℓ∇gℓ(x
∗) +

p∑
j=1

zm+j∇hj(x
∗)

)⊤

d∗ ≥ 0, ∀d∗ ∈ D∗. (56)

We recall that x∗ satisfies the MFCQ conditions. Let d be the direction satisfying condition
(b) of Definition 3.3. For every d ∈ TX(x

∗), there exist nonnegative numbers βi such that

d =
∑

d∗i∈D∗

βid
∗i. (57)

31



Thus, from (56) and (57), we obtain(
m∑
ℓ=1

zℓ∇gℓ(x
∗) +

p∑
j=1

zm+j∇hj(x
∗)

)⊤

d = (58)

=
∑

d∗i∈D∗

βi

(
m∑
ℓ=1

zℓ∇gℓ(x
∗) +

p∑
j=1

zm+j∇hj(x
∗)

)⊤

d∗i

=
∑

d∗i∈D∗

βi

m∑
ℓ=1

zℓ∇gℓ(x
∗)⊤d∗i +

∑
d∗i∈D∗

βi

p∑
j=1

zm+j∇hj(x
∗)⊤d∗i ≥ 0.

Considering Definition 3.3, the relation (58) becomes

m∑
ℓ=1

zℓ∇gℓ(x
∗)⊤d ≥ 0. (59)

Theorem 3.2 and the definition of zℓ for ℓ ∈ {1, . . . ,m}, guarantee

zℓ = 0, for all ℓ /∈ I+(x
∗). (60)

Since x∗ satisfies the MFCQ conditions, (59) implies

zℓ = 0, for all ℓ ∈ I+(x
∗). (61)

Therefore equation (56) becomes(
p∑

j=1

zm+j∇hj(x
∗)

)⊤

d∗ ≥ 0, for all d∗ ∈ D∗, (62)

using again Definition 3.3 and (62), we obtain

zm+j = 0, for all j ∈ {1, . . . , p}. (63)

In conclusion, we get (60), (61), and (63), contradicting (54) and this concludes the proof.

C Appendix

In the following we provide three lemmas to support our implementation choices. In partic-
ular the first two results are the equivalent of Lemma 3.1 and Theorem 3.2, which are the
fundamental results the theoretical analysis is based on. Furthermore, since the analysis in
Section 3 is carried out by exploiting the subsequence of iterates where the penalty parameter
is updated, we state one additional result to prove that the subsequence where both penalty
parameters are simultaneously updated is infinite.
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Lemma C.1. Let {ρlogk }k∈N, {ρextk }k∈N, and {αk}k∈N be the sequences of penalty parameters
and stepsizes respectively, generated by algorithm LOG-DS. Assume that

lim
k→+∞

ρlogk = ρ̄1 > 0

lim
k→+∞

ρextk = ρ̄2 > 0

Then,
lim

k→+∞
αk = 0. (64)

Proof. Using similar arguments to Lemma 3.1.

Lemma C.2. Let {ρlogk }k∈N, {ρextk }k∈N, and {αk}k∈N be the sequences of penalty parameters
and stepsizes generated by LOG-DS. Then,

lim
k→+∞

ρlogk = 0, (65)

lim
k→+∞

ρextk = 0, (66)

lim
k→+∞

αk = 0. (67)

Proof. By (30) we have that ρextk → 0 only if ρlogk → 0, so we can use the same arguments of
Theorem 3.2 to prove (65). Now, by (29) and (30) it is clear that (65) implies (66) Finally, we
can use similar arguments of Theorem 3.2 to prove (67), using Lemma C.1 instead of Lemma
3.1.

Lemma C.3. Let {ρlogk }k∈N, {ρextk }k∈N, and {αk}k∈N be the sequences of penalty parameters
and stepsizes generated by LOG-DS. Let Klog = {k ∈ N : ρlogk+1 < ρlogk } and Kext = {k ∈ N :
ρextk+1 < ρextk }. Then |Klog ∩Kext| = +∞.

Proof. Using (66) and (32), we get |Kext| = +∞. Let k ∈ Kext. From (30), we have

αk+1 ≤ min{(ρlogk )β, (ρextk )β, (gmin)
2
k} ≤ min{(ρlogk )β, (gmin)

2
k},

so that for all k ∈ Kext we also have k ∈ Klog, and |Klog ∩Kext| = |Kext| = +∞, concluding
the proof.

References

[1] M. A. Abramson, O. A. Brezhneva, J. E. Dennis Jr., and R. L. Pingel. “Pattern search
in the presence of degenerate linear constraints”. In: Optim. Methods Softw. 23 (2008),
pp. 297–319.

[2] C. Audet, S. Le Digabel, and M. Peyrega. “Linear equalities in blackbox optimization”.
In: Comput. Optim. Appl. 61 (2015), pp. 1–23.

33



[3] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Cham, Switzerland:
Springer, 2017.

[4] C. Audet and J. E. Dennis Jr. “A pattern search filter method for nonlinear programming
without derivatives”. In: SIAM J. Optim. 14 (2004), pp. 980–1010.

[5] C. Audet and J. E. Dennis Jr. “A progressive barrier for derivative-free nonlinear pro-
gramming”. In: SIAM J. Optim. 20 (2009), pp. 445–472.

[6] C. Audet and J. E. Dennis Jr. “Analysis of generalized pattern searches”. In: SIAM J.
Optim. 13 (2003), pp. 889–903.

[7] C. Audet and J. E. Dennis Jr. “Mesh adaptive direct search algorithms for constrained
optimization”. In: SIAM J. Optim. 17 (2006), pp. 188–217.

[8] C. Audet, S. Le Digabel, V. Rochon Montplaisir, and C. Tribes. The NOMAD project.
url: https://www.gerad.ca/nomad.

[9] A. Benchakroun, J. Dussault, and A. Mansouri. “A two parameter mixed interior-
exterior penalty algorithm”. In: ZOR - Meth. and Models of Oper. Res. 41 (1995),
pp. 25–55.

[10] D. P. Bertsekas. Nonlinear Programming. Belmont, Massachusetts: Athena Scientific,
1999.

[11] D. M. Bortz and C. T. Kelley. “The simplex gradient and noisy optimization problems”.
In: Computational Methods in Optimal Design and Control, Progress in Systems and
Control Theory. Ed. by J. T. Borggaard, J. Burns, E. Cliff, and S. Schreck. Vol. 24.
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