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A. L. CUSTÓDIO ∗ AND J. F. A. MADEIRA †

Abstract. Locating and identifying points as global minimizers is, in general, a hard and time-
consuming task. Difficulties increase in the impossibility of using the derivatives of the functions
defining the problem. In this work, we propose a new class of methods suited for global derivative-free
constrained optimization. Using direct search of directional type, the algorithm alternates between
a search step, where potentially good regions are located, and a poll step where the previously
located promising regions are explored. This exploitation is made through the launching of several
instances of directional direct searches, one in each of the regions of interest. Differently from a
simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with
as many direct searches as the number of local minimizers, which would easily allow locating the
global extreme value. We describe the algorithmic structure considered, present the corresponding
convergence analysis and report numerical results, showing that the proposed method is competitive
with currently commonly used global derivative-free optimization solvers.
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1. Introduction. Let us consider the global minimization problem defined as:

min f(x)

s.t. x ∈ Ω ⊂ Rn,

where f : Rn → R ∪ {+∞} represents a real-extended value function and Ω ⊂ Rn a
compact set, defining the problem feasible region. GLODS (Global and Local Opti-
mization using Direct Search) class is designed for computing all the problem local
minima, from which the global minimum would be easily identified. For the applica-
tion of the method, no assumptions regarding the smoothness of the functions defining
the problem are required. Nevertheless, in order to guarantee the existence of a global
minimum, f should at least be lower-semicontinuous in Ω.

Solving global optimization problems is a challenging task, with additional diffi-
culties when derivatives are not available for use. Although, there is a large number of
practical real-world applications where global derivative-free optimization is required,
in domains that vary from electrical engineering (for example, in the design of hy-
brid electric vehicles [13] or for reinforcement learning in robotics [25]) to chemistry
(molecular conformal optimization problems [2]), acoustics [29] or multidisciplinary
design optimization [33].

Typical approaches of derivative-free optimization to global problems consider
a partition of the feasible region into subdomains, which are locally explored by a
derivative-free algorithm. This is the case of DIRECT [19] and MCS [16], in the latter
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with the use of quadratic polynomial interpolation to enhance the local optimization.
Convergence to global minimizers results from the density of the sample sets of points
considered.

Other strategies propose hybrid versions of common heuristics and derivative-
-free local algorithms, like is the case of simulated annealing, tabu search, evolution
strategies, particle swarm optimization or variable neighborhood search (see [14, 15,
32, 38, 3], respectively). Heuristics attempt to confer to the algorithms some global
behavior. Convergence results, when available [32, 38, 3], are a consequence of the
properties of the local optimization algorithms.

When practitioners are faced with the need of computing a global minimum, a
common approach consists in using a local optimization procedure coupled with a
multistart strategy. Pure multistart strategies are generally quite inefficient, since
several local searches will converge to the same minimizer. In a derivative-free opti-
mization setting, enhancements to multistart can include the use of response surface
models [34] or, in a directional direct search context, the assessment of variability to
dynamically adapt the number of poll directions [24].

GLODS, when the search step is defined by a deterministic procedure (like the 2n-
Centers strategy described in Section 2.1 or when using Sobol or Halton sequences),
intends to be a clever deterministic alternative to pure multistart. The algorithm will
consider a local search procedure based on direct search of directional type [10], where
each generated point will have associated a comparison radius. This comparison radius
is crucial for improving the efficiency of multistart, since it will allow the merging of
direct searches considered to be sufficiently close. Differently from Multilevel Single
Linkage [20, 21, 26], one well known stochastic algorithm also based in multistart,
the proposed comparison radius is related to the step size parameter used by the
algorithm, not depending on any probabilistic considerations.

For simplicity, and similarly to other derivative-free optimization algorithms, an
extreme barrier approach will be adopted, replacing f by the extreme barrier function
fΩ defined as:

fΩ(x) =

{
f(x) if x ∈ Ω,
+∞ otherwise.

(1.1)

Infeasible points will not be evaluated, being the corresponding objective function
value set equal to +∞. Other possibilities to deal with constraints could include filter
methods [5] or progressive barrier approaches [7].

Section 2 will describe the motivation behind the algorithmic design, also provi-
ding a rigorous description of GLODS. Using Clarke [9] nonsmooth analysis, Section 3
will establish the convergence properties of the method. Numerical experiments in
a set of bound constrained global optimization problems are reported in Section 4,
being numerical results detailed in Appendix A. The paper ends in Section 5 with
some remarks.

2. GLODS: Global and Local Optimization using Direct Search. Like
in a classical direct-search method of directional type, the algorithmic structure of
GLODS is organized around a search and a poll step. The main goal of the search
step is to explore the whole feasible region, in an attempt to locate good promising
subdomains, which would then be locally explored by the poll step of the algorithm.
The poll step is responsible for ensuring the convergence of the method, but the
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quality of the computed minimizers, as corresponding to local or global minima, will
depend on the search step.

A list Lk, storing feasible points in tuples of form (x;α; r; i), will be kept during
the optimization process. Points generated either at the search or poll steps, corres-
ponding to the sets Ak and Pk, respectively, could be added to this list. Each new
point, x, is stored jointly with the corresponding step size parameter, α, the compa-
rison radius, r, and its classification as active or inactive, corresponding to setting the
index i equal to 1 or 0, respectively. In a crude definition, a point is classified as active
when it presents the best objective function value among all the points sufficiently
close to it. Closeness will be measured by the comparison radius, r. During the
course of the optimization, an active point could change its status to inactive (never
the opposite). Only active points will be selected as poll centers.

Several methods could be considered for defining the search step in GLODS, and
consequently the trial list Ak: random sampling [35], Latin hypercube sampling [27],
Sobol sequences or Halton sequences [22]. All these strategies have in common the
fact of generating asymptotically dense sets of points in a compact set. We considered
an additional strategy entitled 2n-Centers, which will be detailed in Section 2.1.

The poll step starts by ordering the active points in the list, and selecting one
as the new poll center. A local exploitation of the region around this poll center
will be conducted by testing the directions belonging to a positive spanning set or a
positive basis [11], scaled by the step size parameter, α. In this procedure, complete
or opportunistic approaches could be taken.

A general schematic description of the method can be found in Algorithm 2.1.

Algorithm 2.1 (GLODS: Global and Local Optimization using Direct
Search).
Initialization

Let D be a (possibly infinite) set of positive spanning sets, such that ∀d ∈
D ∈ D, 0 < dmin ≤ ‖d‖ ≤ dmax. Choose r0 ≥ dmaxα0 > 0, 0 < β1 ≤ β2 < 1,
and γ ≥ 1. Set L0 = ∅.

For k = 0, 1, 2, . . .

1. Search step: Compute a finite set of distinct points Ak = {(xj ; 0; 0; 0) :
fΩ(xj) < +∞} (all xj ∈ Ak should be in a mesh if ρ̄(·) ≡ 0, see Sec-
tion 3.1). Call Lk = add(Lk,Ak) to possibly add some new points in
Ak to Lk. If k = 0, go to the poll step. Otherwise, if there is a new
active point in Lk then set Lk+1 = Lk, declare the iteration (and the
search step) as successful and skip the poll step.

2. Poll step: Order the list Lk and select an active point (x;αx; rx; 1) ∈ Lk

as the current iterate, corresponding step size parameter, and compari-
son radius (thus setting (xk;αk; rk; ik) = (x;αx; rx; 1)).
Choose a positive spanning set Dk from the set D. Compute the set of
poll points Pk = {(xk + αkd;αk;αk‖dk‖; 0) : d ∈ Dk ∧ fΩ(xk + αkd) <
+∞}. Call Lk+1 = add(Lk,Pk) to possibly add some new points in Pk

to Lk. If there is a new active point in Lk+1 declare the iteration (and
the poll step) as successful. If no new point was added to Lk declare
the iteration (and the poll step) as unsuccessful. Otherwise declare the
iteration (and the poll step) as merging.
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3. Step size parameter and radius update: If the iteration was suc-
cessful then maintain or increase the corresponding step size parameters:
αnew ∈ [α, γα] and replace all the new active points (x;αx; rx; 1) in Lk+1

by (x;αnew; dmaxαnew; 1), if dmaxαnew > rx, or by (x;αnew; rx; 1), when
dmaxαnew ≤ rx.
If the iteration was unsuccessful then decrease the corresponding step
size parameter: αnew ∈ [β1αk, β2αk] and replace the poll point (xk;αk; rk; 1)
in Lk+1 by (xk;αnew; rk; 1).

The description provided in Algorithm 2.1 is deliberately close to the one of a classical
direct-search method of directional type. However, since the main goal of the search
step is to identify promising subdomains, there is no need to perform it at every
iteration. Several strategies could be implemented regarding this decision, possibly
incorporating some user knowledge about the problem under analysis. For instance,
if the user has an idea about the minimum number of local minimizers, the search
step could be executed at each iteration where the number of active points in the list
is less or equal than this value.

Algorithm 2.2 manages the list of feasible points. A point is added to the list as
an active point under one of the two following conditions:

• its distance to any of the points already stored exceeds the corresponding
comparison radius, meaning that the new point belongs to a part of the
feasible region not yet explored (line numbered as 1 in Algorithm 2.2);

• the new point, xnew, is comparable with at least one active point, y, meaning
‖xnew − y‖ ≤ ry (line numbered as 3 in Algorithm 2.2), decreases the cor-
responding objective function value, meaning f(xnew) < f(y) − ρ̄(αy) (line
numbered as 4 in Algorithm 2.2, when idom is set equal to 1), and no point to
which it is comparable with equals or decreases the corresponding objective
function value, f(y) � f(xnew)− ρ̄(αy) (line numbered as 5 in Algorithm 2.2).

The function ρ̄(.) represents the constant zero function, if a simple decrease approach
is taken, or a forcing function ρ : (0,+∞) → (0,+∞), i.e., a continuous and non-
decreasing function, satisfying ρ(t)/t → 0 when t ↓ 0 (see [23]), when a sufficient
decrease strategy is adopted. Typical examples of forcing functions are ρ(t) = t1+a,
for a > 0.

Additionally, in a simple decrease approach, a point could be added to the list as
active if it decreases the objective function value of any point (not necessarily active)
to which it is comparable with (line numbered as 6 in Algorithm 2.2, when pdom = 0
and icomp = 1).

Inactive points can also be added to the list. This situation occurs when a new
point is comparable with an already stored active point, presenting a better objective
function value than it, meaning

f(xnew) < f(y)− ρ̄(αy), (2.1)

(line numbered as 4 in Algorithm 2.2, when idom is set equal to 1)

but another point already stored, comparable with the new one, equals or decreases
this value (line numbered as 5 in Algorithm 2.2).

When adding a new point to the list, the algorithm defines the corresponding
step size parameter and comparison radius. If the point is in a new subdomain of the
feasible region, meaning that its distance to any of the points already stored exceeds
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the corresponding comparison radius, these values will be the ones considered for ini-
tialization (line numbered as 2 in Algorithm 2.2). Otherwise, if generated at the poll
step, the step size parameter will be equal to the one of the poll center and the com-
parison radius to the step size of the poll center times the norm of the corresponding
poll direction (line numbered as 8 in Algorithm 2.2). When generated in the search
step, the new point inherits the parameters of the point presenting the largest step
size, comparable with it, for which equation (2.1) holds (line numbered as 7 in Al-
gorithm 2.2). A schematic description of these procedures is detailed in Algorithm 2.2.

Algorithm 2.2: [L1]=add(L1, L2)
Procedure for adding new points, stored in L2, to the current list, L1.

forall the (x;αx; rx; 0) ∈ L2 do
1 if min

y∈L1

(‖x− y‖ − ry) > 0 then

2 L1 = L1 ∪ {(x;α0; r0; 1)}
else

if x /∈ L1 then
set αa = 0, ra = 0, idom = 0, pdom = 0 and icomp = 0
forall the (y;αy; ry; iy) ∈ L1 do

3 if ‖x− y‖ − ry ≤ 0 then
4 if f(x) < f(y)− ρ̄(αy) then

icomp = 1
idom = idom + iy
iy = 0
if αy > αa then

αa = αy

ra = ry
end

else
5 if f(y) ≤ f(x)− ρ̄(αy) then

pdom = 1
end

end

end

end
if pdom = 0 then

ix = 1
end

6 if idom > 0 ∨ (ρ̄(.) ≡ 0 ∧ pdom = 0 ∧ icomp = 1) then
if αx = 0 then

7 L1 = L1 ∪ {(x;αa; ra; ix)}
else

8 L1 = L1 ∪ {(x;αx; rx; ix)}
end

end

end

end

end
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The procedure described in Algorithm 2.2 is responsible for the distinction bet-
ween GLODS and the use of a classical direct-search method of directional type
coupled with a multistart strategy. In GLODS, if two distinct points are sufficiently
close, meaning to a distance equal or inferior to the corresponding comparison radius,
only one of the two could remain active in the list (when ρ̄(.) ≡ 0). This procedure
allows the merging of direct searches with different initializations, when sufficiently
close to each other.

Also different from a classic direct-search method of directional type, GLODS
generates three types of iterations: successful, unsuccessful, and merging. A successful
iteration corresponds to at least one new active point added to the list. When no
points are added to the list, the iterate is named as unsuccessful. Merging iterations
occur when only adding inactive points.

At unsuccessful iterations, the step size parameter corresponding to the poll center
is obligatory decreased. At successful iterations the step sizes corresponding to the
new active points found could be increased (or kept constant). Merging iterations
do not imply changes in step sizes. In order to allow the comparison between the
poll points and the poll center, the comparison radius should at least be equal to the
step size parameter times the maximum norm of the poll directions. Thus, if after
a successful iteration the update of the step size parameter prevents the comparison
between the poll center and the poll points, the comparison radius will be increased
to an adequate value.

2.1. Search step based in 2n-Centers. In the previous section it was already
mentioned that the main purpose of the search step is to identify promising subdo-
mains of the feasible region, to be locally explored by the poll step of the algorithm.
Thus, when defining a strategy for the search step, ideally it should:

• generate a set of points asymptotically dense in the feasible region: ensuring
that asymptotically all the feasible region will be explored;

• cover the feasible region in a similar way: meaning that without evidence of
function decrease, no primacy should be given to some parts of the feasible
region;

• avoid randomness: guaranteeing equal algorithmic performance for different
runs, in the same problem.

The 2n-Centers strategy complies with these three requirements, being a possibility
for defining a deterministic search step in GLODS. It starts by enclosing the feasible
region in a box, which is going to be consecutively subdivided into smaller boxes,
defining different levels of search. At each level, the points to be selected for evaluating
the objective function correspond to the box centers. Exception occurs at level 0,
where all the vertices of the box are additionally considered. Figure 2.1 exemplifies
the procedure for a bound constrained problem of dimension n = 2.

At level ` > 0, the number of box centers is equal to 2n×`. For problems with
a large value of n, or for high levels of search, this could represent a considerable
computational effort, once that each of these box centers could remain active, after
application of Algorithm 2.2, thus corresponding to an initialization for a new direct
search. A possible strategy to partially circumvent this problem is, at each execution
of the search step, to select a subset of the box centers not yet considered, of dimension
2n, with one box center located in each of the new boxes generated in the current level.
Exception again occurs in level 0, where the 2n + 1 points are jointly considered. The
remaining box centers will be used in the following iterations where the search step
would be performed (each time by considering a subset of dimension 2n). Figure 2.2
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Fig. 2.1. Four different levels of the strategy 2n-Centers for a bound constrained problem of
dimension n = 2.

illustrates the procedure for n = 2 and l = 2.

3. Convergence analysis. In a classical direct-search method of directional
type there is always the guarantee that at the end of each iteration there will be a poll
center to proceed with the optimization. In GLODS, since poll centers are selected
from active points, the existence of merging iterations, where no active points are
added to the list and some active points change the corresponding status to inactive,
justifies the need of establishing the following proposition.

Proposition 3.1. At the end of each iteration of Algorithm 2.1, at least one
element z ∈ argminw∈Lf(w) is active.

Proof. Suppose not. Let z ∈ argminw∈Lf(w) be one element of the considered
set, computed at the end of the current iteration. The point z could have been added
to the list, during the current iteration, as inactive or, being an active point already
in the list, changed its status to inactive.

In the latter situation, there should have been a point x such that ‖x − z‖ ≤ rz
and f(x) < f(z) − ρ̄(αz) ≤ f(z). Since z was active, x will be added to the list,
leading to a contradiction.

In the former situation, there should have been y ∈ L, satisfying ‖z − y‖ ≤ ry,
f(z) ≥ f(y)− ρ̄(αy) and f(y) ≤ f(z)− ρ̄(αy). If f(y) < f(z) then we have arrived to
a contradiction. If f(y) = f(z) and y is active then we have contradicted the initial
assumption. When f(y) = f(z) and y is inactive, a recursive argument, following the
steps presented, will also allow us to arrive to a contradiction.

The convergence analysis of classical direct-search methods of directional type
starts by establishing the existence of a subsequence of step size parameters converging
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Fig. 2.2. Points generated at several executions of a search step defined by the 2n-Centers
strategy, for a bound constrained problem of dimension n = 2 and a search level l = 2.

to zero. Two major strategies can be considered to enforce this property: the use of
integer lattices (like is the case of Generalized Pattern Search (GPS) [4] or Mesh
Adaptive Direct Search (MADS) [6]) or by imposing a sufficient decrease condition,
through the definition of ρ̄(.) as a forcing function (similarly to what is done in
Generating Set Search [23]).

With this goal, let us consider the following assumptions.
Assumption 3.1. The set Ω ⊂ Rn is compact.
Assumption 3.2. The function f is lower bounded in Ω ⊂ Rn.

3.1. Using integer lattices. The level of smoothness present in the objective
function has implications in the type of positive spanning sets that could be considered
in the definition of the poll step of the algorithm. For continuously differentiable
functions, a finite set of directions which satisfies appropriate integrality requirements
is enough [4, 23].

Assumption 3.3. The set D = D of positive spanning sets is finite and the
elements of D are of the form Gz̄j, j = 1, . . . , |D|, where G ∈ Rn×n is a nonsingular
matrix and each z̄j is a vector in Zn.

In the presence of nondifferentiabilities, it is advisable to consider an infinite
set of positive spanning sets D, which should be dense (after normalization) in the
unit sphere. Additionally, some care must be taken when computing the set D, in
particular to guarantee that the points generated by the algorithm lie in an integer
lattice [6].

Assumption 3.4. Let D represent a finite set of positive spanning sets satisfying
Assumption 3.3.

The set D is so that the elements dk ∈ Dk ∈ D satisfy the following conditions:
1. dk is a nonnegative integer combination of the columns of D.
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2. The distance between xk and the point xk + αkdk tends to zero if and only if
αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K.
3. The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈ Dk} are

positive spanning sets for Rn.
The third requirement above is part of the MADS original presentation [6], but

is not used in the convergence analysis for nonsmooth objective functions.
Regarding the step size parameter updates, some form of rationality should also

be ensured.
Assumption 3.5. Let τ > 1 be a rational number and mmax ≥ 0 and mmin ≤ −1

integers. If the iteration is successful, then the step size parameter is maintained or
increased by considering αnew = τm

+

α, with m+ ∈ {0, . . . ,mmax}. If the iteration is

unsuccessful, then the step size parameter is decreased by setting αnew = τm
−
α, with

m− ∈ {mmin, . . . ,−1}.
The updating strategy described in Algorithm 2.1 conforms to the one of As-

sumption 3.5 by setting β1 = τm
min

, β2 = τ−1, and γ = τm
max

.
All the points generated by the algorithm, either in the search step or the poll

step, should lie in an implicitly defined mesh. Considering the mesh definition given in
Assumption 3.6 below, this condition is trivially satisfied for points generated during
the polling procedure.

Assumption 3.6. At iteration k, the search step in Algorithm 2.1 only evaluates
points in

Mk =
⋃

x∈Ek

{x+ αkDz : z ∈ N|D|0 },

where Ek represents the set of all the points evaluated by the algorithm previously to
iteration k.

The previous assumptions allow us to derive the first result, required for esta-
blishing the convergence of GLODS, namely the existence of a subsequence of step size
parameters converging to zero. This result was originally established by Torczon [37],
in the context of pattern search, and generalized by Audet and Dennis to GPS [4] and
MADS [6].

Theorem 3.2. Let Assumption 3.1 hold. Algorithm 2.1 under one of the As-
sumptions 3.3 or 3.4 combined with Assumptions 3.5–3.6 and ρ̄(·) ≡ 0 generates a
sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

Proof. Let us assume that there is α∗ such that αk > α∗ > 0,∀k. Assump-
tions 3.3 or 3.4 combined with Assumptions 3.5–3.6 ensure that all points generated
by Algorithm 2.1 lie in an integer lattice (see [4, 6]). The intersection of a compact
set with an integer lattice is finite. Since Ω is compact, there is only a finite number
of different points that could be generated by the algorithm. Successful or merging
iterations correspond to at least one new feasible point added to the list. Once a
point is added to this list it will always remain on it (possibly changing its status to
inactive). Thus, the number of successful and merging iterations must be finite, and
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consequently there is an infinite number of unsuccessful iterations. The step size at
unsuccessful iterations is reduced by at least β2 ∈]0, 1[, which contradicts the existence
of a lower bound for the step size parameter.

3.2. Imposing sufficient decrease. A different strategy, to achieve a similar
result to the one stated in Theorem 3.2, consists in defining a forcing function, ρ̄(·) =
ρ(·), requiring sufficient rather than simple decrease for accepting a new point. Let
us consider the additional assumption, part of Assumption 3.4.

Assumption 3.7. The distance between xk and the point xk +αkdk tends to zero
if and only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for all dk ∈ Dk and for any infinite subsequence K.
The following result was first derived by Kolda, Lewis and Torczon [23] in the

context of Generating Set Search.
Theorem 3.3. Let Assumptions 3.1–3.2 hold. Algorithm 2.1, when ρ̄(·) is a

forcing function and Assumption 3.7 holds, generates a sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

Proof. Assume that there is α∗ such that αk > α∗ > 0,∀k. Let us start by
showing that there is an infinite number of successful iterations.

Suppose not. Active points are added to the list only at successful iterations.
Thus, the number of active points in the list must be finite. Suppose there is an
infinite number of merging iterations. At each merging iteration at least one of the
active points in the list changes its status to inactive. This contradicts the fact of
having a finite number of active points in the list.

Let us now assume that there is a finite number of successful and merging ite-
rations, being infinite the number of unsuccessful iterations. At each unsuccessful
iteration the step size parameter of the corresponding active poll center is reduced by
at least β2 ∈]0, 1[, which contradicts the existence of the lower bound α∗ > 0 for the
step size parameter.

The previous arguments allow us to conclude that there is an infinite number of
successful iterations. Let x represent a new feasible active point added to the list Lk,
at iteration k. Then, miny∈Lk

(‖x− y‖ − ry) > 0 or there should have been an active
point y ∈ Lk such that ‖x− y‖ − ry ≤ 0 and f(x) < f(y)− ρ(αy).

Let us assume that for each successful iteration k there is always a new active
point, xk+1 ∈ Ω, to be added to Lk, such that miny∈Lk

(‖xk+1 − y‖ − ry) > 0. Thus,

∀y ∈ Lk, ‖xk+1 − y‖ > ry ≥ dmaxαy > dmaxα∗ > 0.

Once a point is added to the point list it will always remain in it (possibly be-
coming inactive). Thus, at each successful iteration the measure of

Ω \
⋃
k∈S

B(xk+1; dmaxα∗)

decreases by a strictly positive quantity. Here S represents the set of indexes corres-
ponding to successful iterations and B(xk+1; dmaxα∗) the open ball of radius dmaxα∗,
centered at xk+1. Since Ω is bounded there should have been k∗ ∈ N such that for
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each successful iteration k ≥ k∗ and for each new feasible active point x added to Lk,
there is an active point y ∈ Lk, such that ‖x−y‖− ry ≤ 0 and f(x) < f(y)−ρ(αy) ≤
f(y)− ρ(α∗), which changes the corresponding status to inactive.

Points are only added to the list at successful or merging iterations. For each
point x added to Lk at a merging iteration, there is also an active point y ∈ Lk,
which changes its status to inactive, and such that the previous inequalities apply:

‖x− y‖ − ry ≤ 0 and f(x) < f(y)− ρ(αy) ≤ f(y)− ρ(α∗).

Thus, for each successful or merging iteration k ≥ k∗, each time a point is added
to the list, the value of f would decrease by at least ρ(α∗) > 0, for at least one active
point y ∈ Lk. After a finite number of iterations, there should have been an effective
decrease of at least ρ(α∗) > 0 in the value of the objective function. Since there is an
infinite number of successful iterations, this contradicts Assumption 3.2.

3.3. Refining subsequences, refining directions and generalized direc-
tional derivatives. The convergence analysis of GLODS will rely on its behavior
in the so-called refining subsequences. This particular type of subsequences of unsuc-
cessful iterations was first defined by Audet and Dennis [4] in the context of GPS.

Definition 3.4. A subsequence {xk}k∈K of iterates corresponding to unsucces-
sful poll steps is said to be a refining subsequence if {αk}k∈K converges to zero.

The existence of at least one convergent refining subsequence is a direct con-
sequence of Theorems 3.2 and 3.3, jointly with Assumptions 3.1 and 3.2 (see, for
example [10]).

Theorem 3.5. Let the conditions required for establishing Theorem 3.2 or Theo-
rem 3.3 hold, additionally to Assumption 3.1 and, when ρ̄(.) is a forcing function,
Assumption 3.2. Algorithm 2.1 generates at least one refining subsequence {xk}k∈K ,
converging to x∗ ∈ Ω.

GLODS behavior will be analysed in limit points of convergent refining subse-
quences, along refining directions (again, a concept introduced by Audet and Den-
nis [6]).

Definition 3.6. Let x∗ be the limit point of a convergent refining subsequence
{xk}k∈K . If the limit limk∈K′ dk/‖dk‖ exists, where K ′ ⊆ K and dk ∈ Dk, and if
xk + αkdk ∈ Ω, for sufficiently large k ∈ K ′, then this limit is said to be a refining
direction for x∗.

Refining directions exist trivially in the unconstrained case Ω = Rn.
Since GLODS is intended for the minimization of nonsmooth functions, a possible

stationarity result would consist in establishing the nonnegativity of the Clarke-Jahn
generalized directional derivatives [18], computed for a limit point of the sequence of
iterates generated by the algorithm, for the whole set of directions belonging to the
Clarke generalized tangent cone to the feasible region [9].

Definition 3.7. Let f be Lipschitz continuous near a point x∗ ∈ Ω. We say that
x∗ is a Clarke critical point of f in Ω if, for all directions d ∈ TCl

Ω (x∗), f◦(x∗; d) ≥ 0.
Let us start by providing the appropriate definitions, namely of Clarke tangent

cone to the feasible region [9], TCl
Ω (x∗), and of Clarke-Jahn generalized directional

derivatives [18], f◦(x∗; d).
Definition 3.8. A vector d ∈ Rn is said to be a Clarke tangent vector to the set

Ω ⊂ Rn at the point x in the closure of Ω if for every sequence {yk} of elements of Ω
that converges to x and for every sequence of positive real numbers {tk} converging to
zero, there exists a sequence of vectors {wk} converging to d such that yk +tkwk ∈ Ω.
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The set TCl
Ω (x) of all Clarke tangent vectors to Ω at x is called the Clarke tangent

cone to Ω at x, and it is a generalization of the tangent cone commonly used in
Nonlinear Programming (see, e.g., [30, Definition 12.2 and Figure 12.8]).

The interior of the Clarke tangent cone defines the hypertangent cone, denoted
by TH

Ω (x), which is formed by the set of all the hypertangent vectors to Ω at x.

Definition 3.9. A vector d ∈ Rn is said to be a hypertangent vector to the set
Ω ⊂ Rn at the point x in Ω if there exists a scalar ε > 0 such that

y + tw ∈ Ω, ∀y ∈ Ω ∩B(x; ε), w ∈ B(d; ε), and 0 < t < ε.

Conversely, the Clarke tangent cone is the closure of the hypertangent cone.

Assuming the Lipschitz continuity of f near x, the Clarke-Jahn generalized deriva-
tives can be defined along directions d in the hypertangent cone to Ω at x,

f◦(x; d) = lim sup
x′ → x, x′ ∈ Ω
t ↓ 0, x′ + td ∈ Ω

f(x′ + td)− f(x′)

t
.

Considering limits, this definition was extended by Audet and Dennis [6, Propo-
sition 3.9] to directions v belonging to the tangent cone to Ω at x, but not in the
hypertangent cone:

f◦(x; v) = lim
d∈TH

Ω (x),d→v
f◦(x; d).

If the objective function f is strictly differentiable at x∗, meaning that the Clarke
generalized gradient is a singleton, namely ∇f(x∗), then the previous definition of
Clarke stationarity (Definition 3.7) can be restated using the gradient vector.

Definition 3.10. Let f be strictly differentiable at a point x∗ ∈ Ω. We say
that x∗ is a Clarke-KKT critical point of f in Ω if, for all directions d ∈ TCl

Ω (x∗),
∇f(x∗)

>d ≥ 0.

3.4. Convergence results. For obtaining the desired convergence result, we
start by establishing the nonnegativity of the Clarke-Jahn generalized directional
derivatives, computed at the limit point of a convergent refining subsequence, along
refining directions.

Theorem 3.11. Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω
and let d ∈ TH

Ω (x∗) be a refining direction for x∗. Assume that f is Lipschitz conti-
nuous near x∗. Then f◦(x∗; d) ≥ 0.

Proof. Let {xk}k∈K be a refining subsequence converging to x∗ ∈ Ω and

d = lim
k∈K′′

dk/‖dk‖ ∈ TH
Ω (x∗)

a refining direction for x∗, with dk ∈ Dk and xk + αkdk ∈ Ω, ∀k ∈ K ′′ ⊆ K.

Since f is Lipchitz continuous near x∗, the Clarke-Jahn generalized directional
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derivative is well defined for x∗ and we have:

f◦(x∗; d) = lim sup
x→ x∗, x ∈ Ω
t ↓ 0, x+ td ∈ Ω

f(x+ td)− f(x)

t

≥ lim sup
k∈K′′

f(xk + αk‖dk‖(dk/‖dk‖))− f(xk)

αk‖dk‖
+

+
f(xk + αk‖dk‖d)− f(xk + αk‖dk‖(dk/‖dk‖))

αk‖dk‖

= lim sup
k∈K′′

f(xk + αk‖dk‖(dk/‖dk‖))− f(xk)

αk‖dk‖
+ ek

= lim sup
k∈K′′

f(xk + αkdk)− f(xk) + ρ̄(αk)

αk‖dk‖
− ρ̄(αk)

αk‖dk‖
+ ek.

The first inequality follows from {xk}k∈K′′ being a feasible refining subsequence and
the fact that xk + αkdk is feasible for k ∈ K ′′. The term |ek| is bounded above by
ν||d − dk/‖dk‖‖, where ν is the Lipschitz constant of f near x∗. Also, note that the
limit limk∈K′′ ρ̄(αk)/(αk‖dk‖) is 0 for both globalization strategies (Subsections 3.1
and 3.2). In the case of using integer lattices (Subsection 3.1), one uses ρ̄(·) ≡ 0. When
imposing sufficient decrease (Subsection 3.2), this limit follows from the properties of
the forcing function and the existence of dmin, a strictly positive lower bound for the
norm of the poll directions.

Since xk +αkdk corresponds to a point evaluated at the unsuccessful iteration k,
it was necessarily compared with the active poll center xk. Thus

f(xk + αkdk) ≥ f(xk)− ρ̄(αk)⇔ f(xk + αkdk)− f(xk) + ρ̄(αk) ≥ 0.

The previous statements allow us to conclude that f◦(x∗; d) ≥ 0.
If we assume strict differentiability of f at the point x∗, the conclusion of the

above result will be ∇f(x∗)
>d ≥ 0.

Corollary 3.1. Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω
and let d ∈ TH

Ω (x∗) be a refining direction for x∗. Assume that f is strictly differen-
tiable at x∗. Then ∇f(x∗)

>d ≥ 0.
By assuming density of the set of refining directions associated with x∗, the pre-

vious results can be extended to the whole set of directions belonging to the Clarke
tangent cone.

Theorem 3.12. Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω.
Assume that TCl

Ω (x∗) 6= ∅. If f is Lipschitz continuous near x∗ and the set of refining
directions for x∗ is dense in TCl

Ω (x∗), then x∗ is a Clarke critical point.
In addition, if f is strictly differentiable at x∗, then this point is a Clarke-KKT

critical point.
Proof. Let v ∈ TCl

Ω (x∗). Since the set of refining directions for x∗ is dense in
TCl

Ω (x∗) then v = limr∈R dr with dr a refining direction for x∗ belonging to TH
Ω (x∗).

Thus (see [6])

f◦(x∗; v) = lim
d→ v

d ∈ TH
Ω (x∗)

f◦(x∗; d) = lim
r∈R

f◦(x∗; dr) ≥ 0.

The second statement of the theorem results trivially.
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Problem n l u loc glob
ackley [1] 10 -30 30 – 1
aluffi pentini [1] 2 -10 10 2 1
becker lago [1] 2 -10 10 4 4
bohachevsky [1] 2 -50 50 – 1
branin hoo [31, 17] 2 [−5 0]> [10 15]> 3 3
cauchy [8] 4 3 17 – –
cauchy [8] 10 2 26 – –
cosine mixture [8] 2 -1 1 – –
cosine mixture [8] 4 -1 1 – –
dekkers aarts [1] 2 -20 20 3 2
epistatic michalewicz [1] 5 0 π – 1
epistatic michalewicz [1] 10 0 π – 1
exponencial [8] 2 -1 1 – 1
exponencial [8] 4 -1 1 – 1
fifteenn local minima [8] 2 -10 10 152 1
fifteenn local minima [8] 4 -10 10 154 1
fifteenn local minima [8] 6 -10 10 156 1
fifteenn local minima [8] 8 -10 10 158 1
fifteenn local minima [8] 10 -10 10 1510 1
goldstein price [8] 2 -2 2 4 1
griewank [36, 16] 5 -600 600 – 1
griewank [36] 10 -400 400 – 1
gulf [1] 3 [0.1 0 0]> [100 25.6 5]> – 1
hartman 4 [8] 3 0 1 4 1
hartman 4 [8] 6 0 1 4 1
hosaki [1] 2 [0 0]> [5 6]> 2 1
kowalik [1] 4 0 0.42 – 1
langerman [1] 10 0 10 – 1
mccormick [1] 2 [−1.5 − 3]> [4 3]> 2 1
miele cantrell [8] 4 -10 10 – 1

Table 4.1
A description of the test set (first part). The variable n represents the dimension of the problem,

l and u, lower and upper bounds, respectively, on the problem variables, loc and glob, the number of
local and global minimizers, respectively, reported in the literature.

4. Numerical experiments. A basic version of the proposed algorithm was
implemented in MATLAB, and numerically tested in a set comprising 61 bound cons-
trained minimization problems collected from the global optimization literature, with
a number of variables between 2 and 10. Both the numerical implementation and the
test set considered are freely available (under a GNU Lesser General Public License)
at:

http://ferrari.dmat.fct.unl.pt/personal/alcustodio/GLODS.
Tables 4.1 and 4.2 provide additional information concerning the test set, namely the
number of problem variables (n), the lower (l) and upper (u) bounds suggested in the
literature, and the total number of known local (loc) and global (glob) minimizers.

A careful analysis of these tables allows us to conclude that the majority of the
problems presents a symmetric feasible region. In a considerable number of problems,
the global minimum will be located in the center of it. Since the inclusion of points
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Problem n l u loc glob
multi gaussian [1] 2 -2 2 5 1
neumaier2 [1] 4 0 4 – 1
neumaier3 [1] 10 -100 100 – 1
paviani [1] 10 2.001 9.999 – 1
periodic [1] 2 -10 10 50 1
poissonian [8] 2 [1 1]> [21 8]> – –
powell [1] 4 -10 10 1 1
rastrigin [1] 10 -5.12 5.12 – 1
rosenbrock [8, 17] 2 -5.12 5.12 1 1
salomon [1] 5 -100 100 – 1
salomon [1] 10 -100 100 – 1
schaffer1 [1] 2 -100 100 – 1
schaffer2 [1] 2 -100 100 – 1
schwefel [1] 10 -500 500 – 1
shekel 45 [8] 4 0 10 5 1
shekel 47 [8] 4 0 10 7 1
shekel 410 [8] 4 0 10 10 1
shekel foxholes [1] 5 0 10 – 1
shekel foxholes [1] 10 0 10 – 1
shubert [1] 2 -10 10 760 18
sinusoidal [1] 10 0 180 – 1
sixhumpcamel [8, 17] 2 [−3 − 2]> [3 2]> 6 2
sphere [36, 16] 3 -5.12 5.12 1 1
storn tchebychev [1] 9 -128 128 – 1
tenn local minima [8] 2 -10 10 102 1
tenn local minima [8] 4 -10 10 104 1
tenn local minima [8] 6 -10 10 106 1
tenn local minima [8] 8 -10 10 108 1
three hump camel [1] 2 -5 5 3 1
transistor [1] 9 -10 10 – 1
wood [8] 4 -10 10 – 1

Table 4.2
A description of the test set (second part). The variable n represents the dimension of the

problem, l and u, lower and upper bounds, respectively, on the problem variables, loc and glob, the
number of local and global minimizers, respectively, reported in the literature.

close to the center of the feasible region is a common practice for initializing solvers,
we decided to perturb the bounds considered for each problem. The modified global
optimization problems would then be defined as:

min f(x)

s.t. x ∈ Ω ≡ [l, u− 0.35(u− l)] ⊂ Rn,

where f : Rn → R ∪ {+∞} is a real-extended value function and l, u ∈ Rn are the
ones reported in Tables 4.1 and 4.2.

GLODS is initialized with n points, evenly spaced in a line joining the lower
and upper bounds of the modified problems. Additionally, the center of the feasible
region is also used for initialization. The algorithm performs opportunistic polling,

15



considering the positive basis [I − I], where I denotes the identity matrix. Before
selecting a new poll center, the list of feasible active points is ordered in a greedy
fashion: points not yet identified as local minimizers (meaning that the corresponding
step size parameter equals or exceeds 10−8), corresponding to the lower objective
function values would be moved to the top. Poll centers would be selected from
the active points in the top of the ordered list. Globalization is based in integer
lattices, like described in Section 3.1. The step size parameter and the comparison
radius were initialized as 1, being the step size halved at unsuccessful iterations and
doubled at successful ones. The algorithm would stop when a maximum of 20000
function evaluations is reached or when all the values for the step size parameter
corresponding to active points are smaller than 10−8.

As comparison tool we used data profiles, proposed by Moré and Wild [28] for
accessing the performance of derivative-free optimization solvers when there are cons-
traints on the computational budget. Let S and P represent the set of solvers and the
set of problems to be tested, respectively. In a data profile, the numerical performance
of each solver is represented by a curve, where each pair (σ, ds(σ)) represents the
percentage of problems, ds(σ), solved by algorithm s ∈ S for an equivalent budget
of σ simplex gradient estimates (recall that for a problem of dimension np, np + 1
function evaluations are required to compute such a simplex). If hp,s represents the
number of function evaluations required for algorithm s ∈ S to solve problem p ∈ P
(up to a certain accuracy), the data profile cumulative function is given by

ds(σ) =
1

|P|

∣∣∣∣{p ∈ P :
hp,s
np + 1

≤ σ
}∣∣∣∣ . (4.1)

With this purpose, a problem is considered to be solved to an accuracy level τ if the
decrease obtained from the initial objective function value (f(x0) − f(x)) is at least
1−τ of the best decrease obtained for all the solvers considered (f(x0)−fL), meaning:

f(x0)− f(x) ≥ (1− τ)[f(x0)− fL].

In the numerical experiments reported, the accuracy level was set equal to 10−5.

4.1. Comparing different versions of GLODS. The flexibility inherent to
the description of Algorithm 2.1 allows us to regard GLODS as a general class of
global derivative-free optimization methods, comprising several instances depending,
for example, on the definition of the search step. In the present numerical experiments,
different strategies were considered for its definition, namely:

• random sampling [35];
• Latin hypercube sampling [27];
• Sobol sequences [22];
• Halton sequences [22];
• 2n-Centers.

For the first four strategies, each time the search step was performed, 2n points were
generated. Strategy 2n-Centers was implemented as described in Section 2.1.

As mentioned before, the search step is responsible for the initialization of new
direct searches, allowing to explore the whole feasible region and possibly directing
search to an area of attraction of the global minimum of the problem. Thus, there
is no need to consider it at every iteration. When the current number of active
points not yet identified as local minimizers (meaning that the corresponding step
size parameter equals or exceeds 10−8) equals one, the search step will be performed,
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Fig. 4.1. Comparing different strategies for defining the search step in GLODS (worst runs).
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Fig. 4.2. Comparing different strategies for defining the search step in GLODS (best runs).

possibly initializing new direct searches in regions not yet explored. Other criteria
could have been implemented, again resulting in different algorithmic instances of
GLODS class.

Figures 4.1 and 4.2 report the results obtained when considering different types of
search steps. For strategies with random behavior, namely when the definition of the
search step is based in random or Latin hypercube sampling, 10 runs were performed
for each problem and the best and worst runs were selected. The best run was defined
as the one that achieves first the best final value. The worst run corresponded to the
one that achieves last the worst final value.
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Fig. 4.3. Comparing different strategies for defining the search step in GLODS, with random
initialization (worst runs).

From the analysis of the profiles, we can say that a search step defined using
2n-Centers provides a slight advantage over the remaining strategies. Nevertheless,
the corresponding gain is small, even when comparing it with a version which does
not consider any search step. These numerical results could be related with the
initialization of the algorithm (line sampling). Recall that we have perturbed the
upper bound of each problem, but that possibly was not enough to avoid the proximity
of the initialization from the global minimizers.

To better assess the impact of the implementation of different strategies in the
search step of the algorithm, the experiments were repeated, considering an initia-
lization based in n randomly generated points. The corresponding data profiles are
reported in Figures 4.3 and 4.4.

The advantage of defining a search step is now clearer. Strategies Halton and 2n-
Centers positively distinguish from the remaining ones. The remaining deterministic
strategy, based in the use of Sobol sequences, also presents a good performance. Thus,
in what follows, we will consider GLODS with three possibilities for defining the search
step: 2n-Centers, Halton, and Sobol.

4.2. Assessing performance with other solvers. GLODS selected versions
were compared against two other global derivative-free optimization solvers, namely:

1. DIRECT – DIviding RECTangles [12];
2. MCS – Global optimization by Multilevel Coordinate Search [16];

Both solvers proceed by dividing the feasible region in subdomains. The parti-
tioning is not uniform, and preference is given to regions not yet explored or to the
most promising ones, considering the corresponding objective functions values. In the
case of MCS, minimization of quadratic polynomial models is additionally used to
improve the local searches.

Solvers were run with default values, with exception to the maximum number
of function evaluations allowed, which was set equal to 20000. As mentioned before,
GLODS would also stop if the maximum value for the step size parameter correspon-
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Fig. 4.4. Comparing different strategies for defining the search step in GLODS, with random
initialization (best runs).
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Fig. 4.5. Comparing GLODS with other solvers.

ding to active points is smaller than 10−8.

Additionally, a basic implementation of a pure multistart directional direct-search
method was considered. Direct searches are initialized with random sampling and
coordinated search is used for local optimization. Again, a maximum budget of 20000
functions evaluations was considered and each local search would be ended when the
corresponding step size parameter was smaller than 10−8.

Results are reported in Figure 4.5. For multistart, we have selected the best run
from a total of 10 that were performed.
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The bad performance of the pure multistart strategy is not surprising. It is
clear the advantage of MCS and GLODS versions over DIRECT. For small budgets
of functions evaluations, for the test set and the level of accuracy considered, MCS
presents the best performance. Nevertheless, GLODS can be considered competitive,
presenting the best performance for budgets of moderate size.

Detailed numerical results for MCS, DIRECT and the three versions of GLODS
can be found in Appendix A, in Tables A.1 and A.2.

4.3. Global and local minimizers. Differently from MCS and DIRECT, GLODS
intends not only to compute the global minimum of a given problem, but also to pro-
vide the corresponding different global and local minimizers. In an attempt to evaluate
the ability of GLODS to reach the proposed goal, we have returned to the original
unperturbed global minimization problem:

min f(x)

s.t. x ∈ Ω ≡ [l, u] ⊂ Rn.

This formulation would allow us to use the minimum global values and the local
and global minimizers reported in the global optimization literature. Nevertheless,
only for 13 of the 61 problems previously considered we could get the complete infor-
mation. For each problem, Tables 4.3, 4.4, and 4.5 report the minimum global value
found in the literature (Global Minimum Reported), the best function value (fvalue)
computed by each solver, and the number of function evaluations required to compute
it (fevals). Problems periodic, powell, and sphere correspond to the situation where
the initialization provided is close to the global minimizer, which motivated the use
of a perturbed feasible region.

Global Minimum 2n-CENTERS SOBOL
Problem n Reported fvalue fevals fvalue fevals

aluffi pentini 2 -3.5230E-01 -3.5239E-01 97 -3.5239E-01 97
becker lago 2 0.0000E+00 0.0000E+00 22 0.0000E+00 22
branin hoo 2 3.9789E-01 3.9789E-01 228 3.9789E-01 228

dekkers aarts 2 -2.4777E+04 -2.4777E+04 66 -2.4777E+04 66
mccormick 2 -1.9133E+00 -1.9132E+00 122 -1.9132E+00 122

periodic 2 9.0000E-01 9.0000E-01 2 9.0000E-01 2
powell 4 0.0000E+00 0.0000E+00 4 0.0000E+00 4

rosenbrock 2 0.0000E+00 2.1510E-24 9107 2.1510E-24 9107
shekel 45 4 -1.0153E+01 -1.0153E+01 1956 -1.0153E+01 1956
shekel 47 4 -1.0403E+01 -5.1288E+00 3294 -5.0877E+00 2568

shekel 410 4 -1.0536E+01 -5.1756E+00 4099 -5.1285E+00 2452
sixhumpcamel 2 -1.0316E+00 -1.0316E+00 147 -1.0316E+00 147

sphere 3 0.0000E+00 0.0000E+00 1 0.0000E+00 1

Table 4.3
Numerical results for the unperturbed problems (first part). The variable fvalue represents the

minimum objective function value computed by the corresponding solver, and fevals, the number of
function evaluations required to achieve it.

With the exception in problems shekel 47 and shekel 410, where GLODS were
unable to compute the global minimum value, all the final solutions computed by
the different solvers present a quality similar to the global minima reported in the
literature. Although, there are differences in what concerns the number of function

20



Global Minimum HALTON MCS
Problem n Reported fvalue fevals fvalue fevals

aluffi pentini 2 -3.5230E-01 -3.5239E-01 97 -3.5239E-01 151
becker lago 2 0.0000E+00 0.0000E+00 22 0.0000E+00 22
branin hoo 2 3.9789E-01 3.9789E-01 228 3.9789E-01 80

dekkers aarts 2 -2.4777E+04 -2.4777E+04 66 -2.4777E+04 140
mccormick 2 -1.9133E+00 -1.9132E+00 122 -1.9132E+00 73

periodic 2 9.0000E-01 9.0000E-01 2 9.0000E-01 4
powell 4 0.0000E+00 0.0000E+00 4 0.0000E+00 8

rosenbrock 2 0.0000E+00 2.1510E-24 9107 5.7606E-21 342
shekel 45 4 -1.0153E+01 -1.0153E+01 1956 -1.0153E+01 159
shekel 47 4 -1.0403E+01 -5.1288E+00 3404 -1.0403E+01 224

shekel 410 4 -1.0536E+01 -5.1756E+00 3325 -1.0536E+01 189
sixhumpcamel 2 -1.0316E+00 -1.0316E+00 147 -1.0316E+00 103

sphere 3 0.0000E+00 0.0000E+00 1 0.0000E+00 6

Table 4.4
Numerical results for the unperturbed problems (second part). The variable fvalue represents

the minimum objective function value computed by the corresponding solver, and fevals, the number
of function evaluations required to achieve it.

Global Minimum DIRECT
Problem n Reported fvalue fevals

aluffi pentini 2 -3.5230E-01 -3.5239E-01 19614
becker lago 2 0.0000E+00 2.5386E-19 23056
branin hoo 2 3.9789E-01 3.9789E-01 8728

dekkers aarts 2 -2.4777E+04 -2.4777E+04 1120
mccormick 2 -1.9133E+00 -1.9132E+00 916

periodic 2 9.0000E-01 9.0000E-01 1
powell 4 0.0000E+00 0.0000E+00 1

rosenbrock 2 0.0000E+00 9.9944E-23 20344
shekel 45 4 -1.0153E+01 -1.0153E+01 254
shekel 47 4 -1.0403E+01 -1.0403E+01 4878

shekel 410 4 -1.0536E+01 -1.0536E+01 4938
sixhumpcamel 2 -1.0316E+00 -1.0316E+00 3008

sphere 3 0.0000E+00 0.0000E+00 1

Table 4.5
Numerical results for the unperturbed problems (third part). The variable fvalue represents the

minimum objective function value computed by the corresponding solver, and fevals, the number of
function evaluations required to achieve it.

evaluations required. In this last criterion, GLODS occupies a medium position, being
DIRECT the solver presenting the worst performance for the test set considered. We
recall that GLODS attempts to compute all the local minimizers of each problem,
which surely contributes for the observed performance. Table 4.6 records the number
of local minimizers reported in the literature and the final number of active points
computed by the different deterministic variants of GLODS. When the code stops
based on the value of the step size parameter, active points indicate local minimizers.

For problem rosenbrock, when the search step is based in the use of Halton se-
quences, GLODS ends the computation with four active points, but only one of them
presents a step size parameter lower than 10−8. In fact, in this situation, if we disable
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Number of 2n-CENTERS SOBOL HALTON
Problem n Local Min Local Min Local Min Local Min

aluffi pentini 2 2 1 1 1
becker lago 2 4 4 2 3
branin hoo 2 3 2 2 3

dekkers aarts 2 3 1 2 2
mccormick 2 2 2 2 2

periodic 2 50 6 8 6
powell 4 1 1 1 1

rosenbrock 2 1 1 1 4
shekel 45 4 5 4 4 5
shekel 47 4 7 4 4 6

shekel 410 4 10 5 3 7
sixhumpcamel 2 6 2 2 2

sphere 3 1 1 1 1

Table 4.6
Number of local minimizers.

the stopping criterion based in the budget of 20000 function evaluations, the code will
end with only one active point corresponding to the global minimizer.

5. Conclusions. We have proposed a new class of algorithms, based in direc-
tional direct search coupled with multistart strategies, to solve global derivative-free
optimization problems. The key idea, which could be imported to other algorith-
mic frameworks, is to explore the whole feasible region by initializing local searches
from different feasible points, but avoiding unnecessary computations by merging lo-
cal searches which are considered to be sufficiently close. A measure of closeness is
given by a comparison radius, directly related to the step size parameter.

Assuming locally Lipschitz continuity of the objective function defining the opti-
mization problem, the convergence of the algorithm was analysed. Results could be
further generalized for discontinuous objective functions following the steps in [39].

A basic numerical implementation of GLODS algorithm has shown to be com-
petitive with well-established global derivative-free optimization solvers, for a set of
global optimization problems. This numerical implementation presents the additional
feature of allowing to compute not only the global minimum, but different local mini-
mizers. There are several ways in which the numerical efficiency of the considered
implementation could be improved. In particular, the general structure of directional
direct search and multistart strategies strongly suggest that benefits could result from
parallelization.
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[28] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM J.
Optim., 20:172–191, http://www.mcs.anl.gov/~more/dfo, 2009.

[29] R. C. Morgans, C. Q. Howard, A. C. Zander, C. H. Hansen, and D. J. Murphy. Derivative
free optimisation in engineering and acoustics. In 14th International Congress on Sound
& Vibration, pages 1–8, 2007.

[30] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, Berlin, second edition,
2006.

23
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