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Abstract

The purpose of this paper is the development of Pareto optimality conditions and con-
straint qualifications (CQs) for Multiobjective Programs with Cardinality Constraints (MOP-
CaC). In general, such problems are difficult to deal with, not only because they involve a
cardinality constraint that is neither continuous nor convex, but also because there is conflict
between the various objective functions. Thus, we reformulate the MOPCaC based on the
problem with continuous variables, namely relaxed problem. Furthermore, we consider dif-
ferent notions of optimality (weak/strong Pareto optimal solutions). Thereby, we define new
stationarity conditions that extend the classical Karush-Kuhn-Tucker (KKT) conditions of
the scalar case. Moreover, we also introduce new CQs, based on a definition of multiobjective
normal cone, to ensure compliance with such stationarity conditions. Important statements
are illustrated by examples.
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Sparse solutions, Constraint qualifications, Stationarity.

AMS Subject Classification: 90C30, 90C33, 90C46, 90C29

1 Introduction

In this paper, we study optimization problems that can be formulated as multiobjective opti-
mization problems (MOPs) with the requirement that the desired solutions have a small or a
bounded number of nonzero components, namely sparse solutions. One way to obtain sparse so-
lutions is imposing explicitly a cardinality constraint to the problem, as the pioneering work [5].
This approach has successfully used in many applications of optimization such as sampling sig-
nals, machine learning, subset selections and portfolio problems [3, 7, 12, 16, 22, 23, 24, 26, 27],
but restricted to one single objective function, the scalar case. So, we will focus on the de-
velopment of optimality conditions and constraints qualifications for MOPs with cardinality
constraints (MOPCaC).

*Department of Mathematics, FCT-UNL-CMA, Campus de Caparica, 2829-516, Portugal
(r.garmanjani@fct.unl.pt)

�Department of Mathematics, FCT-UNL-CMA, Campus de Caparica, 2829-516, Portugal
(e.krulikovski@fct.unl.pt).
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To deal with the potentially problematic cardinality constraint in MOPCaC, we reformulated
it as a MOP with continuous variables, following the ideas of [10] for the scalar case. Compared
with scalar optimization problem with cardinality constraints, MOPCaC offers new difficulties.
The possible conflicting nature of the many objective functions, forces us to consider different
notions of optimality (weak/strong Pareto optimal solutions) and as a consequence new sta-
tionarity conditions which extend the classical Karush-Kuhn-Tucker (KKT) conditions of the
scalar case. Furthermore, since standard constraint qualifications (CQs) may not be sufficient
to ensure the fulfillment of the new stationarity conditions at the optimal solutions, we also
introduce new CQs useful for our purpose.

The paper is organized as follows: In Section 2, we present the reformulation of MOPCaC
and discuss in detail the relation between Pareto optimal solutions. In addition, we recall
some background material of variational analysis concerning MOPs. In Section 3, we propose
new stationarity conditions for MOPCaC, which extend the classical stationarity conditions for
optimization problems with cardinality constraints (CaC-M-stationarity and CaC-S-stationarity
[11, Definition 4.1]) to MOPs, and comment their main properties. We devote Section 4 to the
study of new CQs to obtain weak CaC-S-stationarity condition (see Definition 3.1) at local
weak/strong Pareto optimal solution. Different to other approaches, our CQs rely on the r-
multiobjective normal cone defined in Section 3. We end Section 4, by showing that if the
constraints h and g in (1) are linear mappings, then the weak CaC-S-stationarity conditions holds
at every local weak Pareto optimal solution. In Section 5, we propose a unified framework of the
stationarity conditions for MOPCaC, which encodes different levels of stationarity depending
on certain set of indices of I. In addition, we present in this section some applications. Finally,
in Section 6, we close with some remarks.
Notation. We denote by Rn the n-dimensional Euclidean space. Throughout this paper, ‖ · ‖0
is the so-called l0-norm, that is, ‖x‖0 is the number of nonzero components of x ∈ Rn. The
Hadamard product x ∗ y of two vectors x, y ∈ Rn is the vector obtained by the componentwise
product of x and y. We denote the set of non-negative number with R+. We use (vi)

r
i=1 to

denote a n× r matrix whose columns are the vectors v1, v2, . . . , vr in Rn.
We also consider the following index sets: I00(x, y) = {i | xi = 0, yi = 0}, I±0(x, y) =

{i | xi 6= 0, yi = 0}, I01(x, y) = {i | xi = 0, yi = 1}, I0±(x, y) = {i | xi = 0, yi ∈ (0, 1]},
I0(x) = {i | xi = 0} and I±(x) = {i | xi 6= 0}.

For a function g : Rn → Rr, denote Ig(x) = {i | gi(x) = 0}, the set of active indices, and
∇gT = (∇g1, . . . ,∇gr) the transpose of the Jacobian of g.

2 Problem statement

Consider Multiobjective Programs with Cardinality Constraints (MOPCaC) of the form:

minimize
x

F (x)≡ (f1(x), f2(x), . . . , fr(x))T

subject to g(x) ≤ 0, h(x) = 0,
‖x‖0 ≤ α,

(1)

where F : Rn → Rr(r ≥ 1), g : Rn → Rm and h : Rn → Rp are continuously differentiable
mappings, 0 < α < n is a given non-negative integer (which we assume α < n, otherwise
the cardinality constraint would be redundant), and ‖x‖0 stands for the number of all nonzero
components of x.
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Due to the wide range of applications, scalar optimization problems with cardinality con-
straints have attracted the attention of many researchers, see [3, 8, 10, 11, 14, 18]. The cardinality
constraint, ‖x‖0 ≤ α, makes (1) a very difficult optimization problem. To overcome this dif-
ficulty we follow the approach of [14] which introduces a new variable y and obtain a relaxed
multiobjective optimization problem:

minimize
x,y

F (x) ≡ (f1(x), f2(x), . . . , fr(x))T

subject to g(x) ≤ 0, h(x) = 0,
n− eT y ≤ α,
0 ≤ y ≤ e,
x ∗ y = 0,

(2)

where e = (1, . . . , 1)T ∈ Rn. This approach was successfully used to study optimality conditions
and CQs in scalar optimization problems but, to the best of our knowledge, it has not been
studied within the context of MOPs. Many issues arise when we consider MOPs. Then, in view
of the possibility of conflict among the objective functions fi’s, several notions of optimality for
MOPs are considered in such context.

Definition 2.1 Consider the problem of minimizing F (x) = (f1(x), . . . , fr(x))T subject to x ∈
X and let x̄ be a feasible point in X . Then,

1. We say that x̄ is a local weak Pareto optimal (or local weak efficient) solution if there is a
δ > 0 such that there is no x ∈ X ∩B(x̄, δ) with fi(x) < fi(x̄) for all i = 1, . . . , r.

2. We say that x̄ is a local strong Pareto optimal (or local efficient) solution if there is a
δ > 0 such that there is no x ∈ X ∩ B(x̄, δ) with fi(x) ≤ fi(x̄), for all i = 1, . . . , r and
F (x) 6= F (x̄).

3. We say that x̄ is a weak Pareto optimal (or weak efficient) solution if there is no other
feasible point x ∈ X such that fi(x) < fi(x̄), for all i = 1, . . . , r.

4. We say that x̄ is a strong Pareto optimal (or efficient) solution if there is no other feasible
point x ∈ X such that F (x) ≤ F (x̄) and F (x) 6= F (x̄).

As in the scalar case, (1) and its relaxed formulation (2) share many characteristics. Indeed,
Theorem 2.1 states that the MOPCaC problem has a weak/strong Pareto optimal solution if
and only if the relaxed problem has it too. To prove this, we need two preliminaries lemmas:

Lemma 2.1 [20, Lemma 3] Let (x̄, ȳ) be a feasible point of the relaxed problem (2) such that
‖x̄‖0 = α. Then, eT ȳ = n− α, ȳi = 0 for i /∈ I0(x̄), ȳi = 1 for i ∈ I0(x̄) and I00(x̄, ȳ) = ∅.

Lemma 2.2 [20, Lemma 4] Let x̄ ∈ Rn be a feasible point of (1), then there exists ȳ ∈ Rn such
that (x̄, ȳ) is feasible of (2). If, in addition, ‖x̄‖0 = α, then ȳ is unique; Conversely, if (x̄, ȳ) is
feasible for (2), then x̄ is feasible for (1).

Theorem 2.1 Consider a point x∗ ∈ Rn.

1. If x∗ is a weak/strong Pareto optimal solution of the problem (1), there exists y∗ ∈ Rn such
that (x∗, y∗) is a weak/strong Pareto optimal solution of (2). Moreover, for the relaxed
problem, every feasible pair of the form (x∗, ȳ) is a weak/strong Pareto optimal solution;
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2. If (x∗, y∗) is a weak/strong Pareto optimal solution of (2), then x∗ is a weak/strong Pareto
optimal solution of (1).

Proof.

1. Let x∗ be a strong Pareto optimal solution of (1). By Lemma 2.2 there exists y∗ ∈ Rn
such that (x∗, y∗) is feasible for (2). Take a feasible point (x, y) for (2). By Lemma 2.2, x
is feasible for (1). So, as there is no other feasible point x for (1) such that fi(x) ≤ fi(x∗),
∀i with F (x) 6= F (x∗), then (x∗, y∗) is a strong Pareto optimal solution of (2). Since this
argument does not depend on y, we have the second statement.

2. Let (x∗, y∗) be a strong Pareto optimal solution of (2), by Lemma 2.2, x∗ is feasible for
(1). Now, given a feasible point x of (1), there exists y ∈ Rn such that (x, y) is feasible for
(2). So, as there is no other feasible point (x, y) for (2) such that fi(x) ≤ fi(x

∗), ∀i with
F (x) 6= F (x∗), then x∗ is a strong Pareto optimal solution of (1).

The proof is analogous for weak Pareto optimal solution.

Theorem 2.1 shows the equivalence between weak/strong Pareto optimal solutions of (1) and
(2), but the situation is different for local solutions.

Theorem 2.2 Let x∗ ∈ Rn be a local weak/strong Pareto optimal solution of (1). Then there
exists a vector y∗ ∈ Rn such that (x∗, y∗) is a local weak/strong Pareto optimal solution of (2).

Proof. Suppose that x∗ is local strong Pareto optimal solution of (1). Define y∗ by y∗i = 1
if i ∈ I0(x∗) and y∗i = 0 otherwise. Clearly, y∗i = 1 if and only if x∗i = 0 and hence eT y∗ =
n − ‖x∗‖0 ≥ n − α. It is easy to see that (x∗, y∗) is feasible for (2). We claim that (x∗, y∗) is
a local strong Pareto optimal solution of (2). Indeed, by definition, there exists a δ1 > 0 such
that there is no a feasible point x ∈ B(x∗, δ1) with fi(x) < fi(x

∗), ∀i and ‖x‖0 ≤ α, due to
the assumed local optimality of x∗ for (1). Now, choose δ2 = 1/2. Then we have yi > 0 for all
y ∈ B(y∗, δ2) and all i such that y∗i > 0. So,

{i | yi = 0} ⊆ {i | y∗i = 0} for all y ∈ B(y∗, δ2). (3)

Now, take δ = min{δ1, δ2}. Let (x, y) ∈ B(x∗, δ) × B(y∗, δ) be a feasible point of (2). Then, x
satisfies g(x) ≤ 0 and h(x) = 0. Moreover, (3) implies xi 6= 0⇒ yi = 0⇒ y∗i = 0⇒ x∗i 6= 0 and
therefore ‖x‖0 ≤ ‖x∗‖0. Hence, x is feasible for (1). Since x ∈ B(x∗, δ1), we obtain from the
local weak Pareto optimality of x∗ for (1) that there is no x ∈ Ω∩B(x∗, δ1) with fi(x) < fi(x

∗),
∀i. Consequently, (x∗, y∗) is a local strong Pareto optimal solution of the relaxed problem (2).
A similar proof when x∗ is a local weak Pareto optimal solution of (1). The next example

shows that the converse of the theorem is not valid.

Example 2.1 Consider the MOPCaC and the corresponding relaxed problem

minimize
x∈R3

F (x) ≡
(
(x3 − 1)2,−x3

)T
subject to x1 ≤ 0,

‖x‖0 ≤ 2,

minimize
x,y∈R3

F (x) ≡
(
(x3 − 1)2,−x3

)T
subject to x1 ≤ 0,

y1 + y2 + y3 ≥ 1,
xiyi = 0, i = 1, 2, 3,
0 ≤ yi ≤ 1, i = 1, 2, 3.
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Set x∗ = (0, 1, 0). Fix t ∈ (0, 1) and put y∗ := (1 − t, 0, t). We claim that (x∗, y∗) is a local
weak Pareto optimal solution of the relaxed problem. Indeed, for every (x, y) sufficiently close
to (x∗, y∗), y3 6= 0 which implies that x3 = 0. Thus, in this case, f1(x) = f1(x∗) = 1 and
f2(x) = f2(x∗) = 0, proving the claim. On the other hand, x∗ is not a local weak Pareto
optimal solution of the MOPCaC. Indeed, for every xδ = (0, 1, δ) (δ 6= 0) sufficiently close to
x∗ = (0, 1, 0), we have f1(xδ) = (δ − 1)2 < f1(x∗) = 1 and f2(xδ) = −δ < f2(x∗) = 0.

Under some assumption, we have the converse of Theorem 2.2.

Theorem 2.3 Let (x∗, y∗) be a local weak Pareto optimal solution of (2). Then ‖x∗‖0 = α if
and only if y∗ is unique, that is, there is exactly one y∗ such that (x∗, y∗) is a local weak Pareto
optimal solution of (2). In this case, the components of y∗ are binary and x∗ is a local weak
efficient solution of (1).

Proof. The proof follows [11, Proposition 3.5]. The “only if” part and the claim that y∗ is a
binary vector follow directly from Lemma 2.1. For the “if” part, assume that x∗ is a local weak
Pareto optimal solution of (1) with ‖x∗‖0 < α. Then, ‖x∗‖0 ≤ n − 2, and we can find k1 6= k2

such that x∗k1 = x∗k2 = 0. Now, define ȳ ∈ Rn as ȳi = 1 for i ∈ I0(x∗) and ȳi = 0 otherwise, and
ỹ ∈ Rn as

ỹi =


1/2 if i ∈ {k1, k2}
1 if x∗i = 0, i /∈ {k1, k2}
0 if i /∈ I0(x∗)

.

Then, we can prove as in Theorem 2.2 that (x∗, ȳ) and (x∗, ỹ) are both local weak Pareto optimal
solution of (2) contradicting the uniqueness of y∗.

Summarizing, (1) and its relaxed problem (2) are equivalent in terms of feasible points and
weak/strong Pareto optimal solution, whereas for local weak/strong Pareto optimal solutions
we require an additional assumption which says that the cardinality constraint must be active.

Now, we recall some standard notations from optimization and variational analysis. Given
a cone K ⊂ Rn, K◦ := {v ∈ Rn | vTk ≤ 0 ∀k ∈ K} is the polar set of K. For a given set-valued
mapping F : Rs ⇒ Rn, the sequential Painlevé-Kuratowski outer/upper limit of F(z) as z → z∗

is defined as the set

lim sup
z→z∗

F(z) = {y∗ ∈ Rn | ∃ (zk, yk)→ (z∗, y∗) with yk ∈ F(zk),∀k ∈ N}.

We continue with some definitions and useful results of variational analysis regarding MOPs.
Given a nonempty set Ω, the tangent cone to Ω at x̄ ∈ Ω is the set

TΩ(x̄) =

{
d ∈ Rn | ∃(xk, tk) ⊂ Ω× R+ with tk → 0 and

xk − x̄
tk

→ d

}
.

The (Fréchet) regular normal cone to Ω at x̄ ∈ Ω is defined as

N̂Ω(x̄) =

{
w ∈ Rn | lim sup

x→x̄, x∈Ω

wT (x− x̄)

‖x− x̄‖
≤ 0

}
,

and the (Murdokhovich) limiting normal cone to Ω at x̄ ∈ Ω is defined byNΩ(x̄) = lim supx→x̄, x∈Ω N̂Ω(x).

When x̄ /∈ Ω, we set TΩ(x̄) = ∅, N̂Ω(x̄) = ∅ and NΩ(x̄) = ∅. We always have N̂Ω(x̄) = TΩ(x̄)◦

and N̂Ω(x̄) ⊂ NΩ(x̄). When Ω is convex, N̂Ω(x̄) = NΩ(x̄) = {ζ ∈ Rn | ζT (x− x̄) ≤ 0, ∀x ∈ Ω}.
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The normal and tangent cones are important objects in variational analysis, and they are
useful for obtaining verifiable necessary optimality conditions. In the scalar case (r = 1), they
are also used to define CQs, i.e., assumptions on the feasible set which guarantee the fulfillment
of the KKT conditions at local minimizers. In the multiobjective case, besides the tangent and
normal cone, we follow the approach [17] and we mention the multiobjective normal cone defined
in [17], which is a suitable tool for studying CQs for MOPs.

Definition 2.2 Let Ω be a closed subset of Rn, x̄ ∈ Ω and r ∈ N, the regular r-multiobjective
normal cone to Ω at x̄ is the cone defined as

N̂Ω(x̄; r) =

{
V = (vi)

r
i=1 ∈ Rn×r | lim sup

x→x̄, x∈Ω
min

i=1,...,r

vTi (x− x̄)

‖x− x̄‖
≤ 0

}
, (4)

and the limiting r-multiobjective normal cone to Ω at x̄ ∈ Ω is defined by

NΩ(x̄; r) = lim sup
x→x̄, x∈Ω

N̂Ω(x; r).

When Ω is convex, N̂Ω(x̄; r) = NΩ(x̄; r). Furthermore, we have

NΩ(x̄; r) = {(vi)ri=1 ∈ Rn×r | min
`=1,...,r

vT` (x− x̄) ≤ 0,∀x ∈ Ω}.

For more details and properties of the r-multiobjective normal cone, see [17].

3 Stationary concepts for MOPCaC

From now on, consider the feasible set of (2) denoted by

Ω =

(x, y) ∈ Rn × Rn |
g(x) ≤ 0, h(x) = 0,
eT y ≥ n− α, 0 ≤ y ≤ e,
x ∗ y = 0

 . (5)

Multiobjective optimization problems have many stationarity concepts such as weak/strong
Karush-Kuhn-Tucker (KKT) conditions which consider non-negative multipliers associated to
each objective functions, see [9]. In our optimization problem, in addition to considering mul-
tipliers associated to the objective functions, we also need to consider the different type of
multipliers associated to the cardinality constraint. This observation leads us to propose the
next tailored stationary conditions:

Definition 3.1 Consider (x̄, ȳ) be a feasible point of (2). Suppose that there exists a vector
0 6= (λf , λg, λh, γ) ∈ Rr+ × Rm+ × Rp × Rn such that

∇F (x̄)Tλf +∇g(x̄)Tλg +∇h(x̄)Tλh + γ = 0. (6)

λgi gi(x̄) = 0 for all i = 1, . . . ,m. (7)

Then, we say that (x̄, ȳ) is a:

1. weak CaC-M-stationary point, if (6) and (7) hold with λf 6= 0 and γi = 0 for all i ∈ I±(x̄).
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2. strong CaC-M-stationary point, if (6) and (7) hold with λfi > 0 for all i = 1, . . . , r and
γi = 0 for all i ∈ I±(x̄).

Moreover, (x̄, ȳ) is a

1. weak CaC-S-stationary point, if (x̄, ȳ) is a weak CaC-M-stationary point with γi = 0 for
all i ∈ I0(ȳ);

2. strong CaC-S-stationary point, if (x̄, ȳ) is a strong CaC-M-stationary point with γi = 0
for all i ∈ I0(ȳ);

From the definition above, a weak/strong CaC-M-stationary point does not depend on
the point ȳ, and every weak/strong CaC-S-stationary point is weak/strong CaC-M-stationary.
Clearly, if in (6), r = 1 such concepts reduce to CaC-M-stationarity and CaC-S-stationarity con-
ditions, discussed in [10]. Following the same arguments in [18], we see that given a weak/strong
CaC-M-stationary point (x̄, ȳ), it is possible to find another variable z̄ such that (x̄, z̄) is a
weak/strong CaC-S-stationary point. See also Proposition 5.2. Furthermore, adapting the ar-
guments in [11, Theorem 4.7] (see also Theorem 5.1), we have:

Theorem 3.1 A point (x̄, z̄) is a weak/strong CaC-S-stationary point if and only (x̄, z̄) is a
weak/strong KKT point (see [17, Definition 2.2]) of the relaxed MOPCaC problem (2).

In the scalar case, since the standard CQs for nonlinear optimization are not sufficient to
ensure that local minimizers are CaC-M-stationary and/or CaC-S-stationary points, several
tailored CQs have been proposed and which exploit the special structure of the cardinality
constraint. To define such CQs we need more definitions. For the feasible Ω defined in (5), we
consider the linearized cone to Ω at (x̄, ȳ) defined as

DΩ(x̄, ȳ) =


d = (u, v) |

∇gi(x̄)Tu ≤ 0 for all i ∈ Ig(x̄),
∇hi(x̄)Tu = 0 for all i = 1, . . . , p,
eT v ≥ 0 if eT ȳ = n− α,
vi ≥ 0 for all i ∈ I00(x̄, ȳ),
vi ≤ 0 for all i ∈ I01(x̄, ȳ),
ui = 0 for all i ∈ I0±(x̄, ȳ),
vi = 0 for all i ∈ I±0(x̄, ȳ).


. (8)

As in [14], we consider the CaC-linearized cone to Ω at (x̄, ȳ) defined by

DCaC
Ω (x̄, ȳ) = DΩ(x̄, ȳ) ∩ {d = (u, v) | uivi = 0 for all i ∈ I00(x̄, ȳ)} . (9)

The difference between DCaC
Ω (x̄, ȳ) and DΩ(x̄, ȳ) rely on in the inclusion of the relations uivi =

0 for all i ∈ I00(x̄, ȳ). Clearly, DCaC
Ω (x̄, ȳ) ⊆ DΩ(x̄, ȳ). We use the linearized cones to define

very well-known CQs for cardinality constrained optimization problems.

Definition 3.2 Let (x̄, ȳ) be feasible of (2). Then, we say that (x̄, ȳ) satisfies

1. Abadie CQ (ACQ) if TΩ(x̄, ȳ) = DΩ(x̄, ȳ).

2. Guignard CQ (GCQ) if TΩ(x̄, ȳ)◦ = DΩ(x̄, ȳ)◦.

3. CaC-Abadie CQ (CaC-ACQ) if TΩ(x̄, ȳ) = DCaC
Ω (x̄, ȳ).
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4. CaC-Guignard CQ (CaC-GCQ) if TΩ(x̄, ȳ)◦ = DCaC
Ω (x̄, ȳ)◦.

By [14, Proposition 3.4 and Theorem 3.7], TΩ(x̄, ȳ) ⊆ DCaC
Ω (x̄, ȳ) ⊆ DΩ(x̄, ȳ) and DΩ(x̄, ȳ)◦ =

DCaC
Ω (x̄, ȳ)◦. So, from the definitions presented above, ACQ implies CaC-ACQ and CaC-ACQ

implies CaC-GCQ. Moreover, the implications are strict [14] and GCQ is equivalent to CaC-
GCQ. We mention that in the scalar case, by [14, Theorem 4.2], we see that CaC-GCQ is
sufficient to ensure that every local minimizer (x̄, ȳ) of (2) is a CaC-S-stationary point. Finally,
we mention that in the linear case (i.e., when g and h are affine mappings), CaC-ACQ always
holds, but ACQ may fail which motivates the study of the CaC-linearized cone, [14]. For more
relations between others CaC-CQs stated in the literature, see Fig. 2.

4 New Constraint Qualifications for CaC-S-stationary points

In this section, we will use the r-multiobjective normal cone to define CQs for characterizing
different types of stationary concepts. Here, we focus on weak/strong CaC-S-stationarity con-
ditions, we will discuss CQs for weak/strong CaC-M-stationarity conditions in the next section.
We mention that our CQs depend only on the feasible set and do not require any information
of the objective functions, which differs from the regularity conditions for MOPs, see [6, 9] and
the references therein.

4.1 Constraint Qualifications for weak CaC-S-stationary points

Here, we start by giving the weakest CQ for the fulfillment of weak CaC-S-stationarity condi-
tion at local weak Pareto optimal solution. In [17, Theorem 4.2] for nonlinear multiobjective
optimization problems, the authors proposed the weakest CQ that guarantees that a local weak
Pareto optimal solution is a weak KKT point. Due to the equivalence between weak CaC-S-
stationary point and the weak KKT conditions for (2), we get the next result:

Theorem 4.1 Let (x̄, ȳ) be a feasible point of (2). The weakest property, namely MOP-WCQ,
under which every local weak Pareto optimal solution is a weak CaC-S-stationary point for every
continuously differentiable mapping, F (x) ≡ (f1(x), . . . , fr(x))T is

DΩ(x̄, ȳ) ⊂ LΩ(x̄, ȳ; r) (10)

where LΩ(x̄, ȳ; r) = {d ∈ R2n | min
i=1,...,r

vTi d ≤ 0, for all (vi)
r
i=1 ∈ N̂Ω(x̄, ȳ; r)}.

As it stated in [17], when r = 1, (10) is the inclusion DΩ(x̄, ȳ) ⊂ TΩ(x̄, ȳ)◦◦, which it turns is
equivalent to GCQ, DΩ(x̄, ȳ)◦ = TΩ(x̄, ȳ)◦. In MOP, we have a gap in scalar and multiobjective
optimization, see [1, 13], which states that ACQ is sufficient for the fulfillment of the weak KKT
point at every local weak Pareto optimal solution, but GCQ is not. Since ACQ implies CaC-
ACQ and both implies GCQ, it is natural to ask if CaC-ACQ is sufficient from the fulfillment
of the weak CaC-S-stationary point at local weak Pareto optimal solution. Another related
question is if in (10) we can replace DΩ(x̄, ȳ) by DCaC

Ω (x̄, ȳ) and still has a CQ for the fulfillment
of weak CaC-S-stationarity conditions, since in the scalar case, (10) is equivalent to GCQ and
hence to CaC-GCQ. The next example provides negative answers to both questions.

Example 4.1 (CaC-ACQ and DCaC
Ω (x̄, ȳ) ⊂ LΩ(x̄, ȳ; r) hold, but (10) fails).
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Consider the MOPCaC and the corresponding relaxed problem,

minimize
x∈R2

F (x) ≡ (x1, x2)T

subject to x1x2 = 0,
‖x‖0 ≤ 1,

minimize
x,y∈R2

F (x) ≡ (x1, x2)T

subject to x1x2 = 0,
y1 + y2 ≥ 1,
xiyi = 0, i = 1, 2,
0 ≤ yi ≤ 1, i = 1, 2.

Here, x∗ = (0, 0) is the Pareto optimal solution of the cardinality problem. Set y∗ = (1, 0), in
this case, (x∗, y∗) is a Pareto optimal solution of the relaxed problem which it is not a weak KKT
point. This, MOP-WCQ fails at (x∗, y∗).

After some calculations, TΩ(x̄, ȳ) = DCaC
Ω (x̄, ȳ), that is, CaC-ACQ holds at (x̄, ȳ). Further-

more, by [17, Proposition 4.1 (17)], TΩ(x̄, ȳ) ⊂ LΩ(x̄, ȳ; r) and since CaC-ACQ holds, we have
DCaC

Ω (x̄, ȳ) = TΩ(x̄, ȳ) ⊂ LΩ(x̄, ȳ; r).

ACQ

CaC-ACQ

MOP-WCQ (10)

GCQ=CaC-GCQ

Figure 1: Relationships between the CQs for the fulfillment of MOP-WCQ.

4.2 Constraint Qualifications for weak CaC-S-stationary points: Linear case

Here, we investigate whether the CaC-S-stationarity conditions are necessary optimality condi-
tions for (2) where h and g are affine mappings. In the scalar case, it is known that CaC-ACQ
holds at every feasible point in Ω and hence GCQ, but ACQ may fails without further assump-
tions, see [14, Corollary 3.10]. Due to the gap between scalar and multiobjective optimization,
[1, 13], GCQ does not imply (10), and by Example 4.1, CaC-ACQ may not imply (10). Thus,
we cannot use the previously results to ensure (10) in the linear case. In order to be able to
ensure the fulfillment of (10) when h and g are affine, we proceed as follows: First, we start
with Lemma 4.1 that guarantees some kind of outer continuity of the polar sets associated with
linearized cones (8). Then, using this lemma, we get the result in Theorem 4.2

We state Lemma 4.1 in a more abstract setting, indeed, we consider a general polyhedral X
which includes Ω as a particular case. Given aj , bj ∈ Rn, cj ∈ R, j ∈ K := {1, . . . ,m}, set

X :=

{
(x, y) ∈ Rn × Rn | aTj x+ bTj y ≤ cj , ∀j ∈ K = {1, . . . ,m}

xiyi = 0, ∀i ∈ J = {1, . . . , n}

}
. (11)

Clearly, Ω is a particular case of X for a proper choice of constraints. The next lemma ensures
the outer continuity of the linearized cone mapping z ⇒ DX (z), z ∈ X at z∗, as z approaches
z∗ but restricted to X .

Lemma 4.1 Let z∗ = (x∗, y∗) be a feasible point within X . Then

lim sup
z→z∗, z∈X

DX (z)◦ ⊂ DX (z∗)◦.

9



Proof. Let z∗ = (x∗, y∗) be a point in X and take (v, w) ∈ lim sup
z→z∗, z∈X

DX (z)◦. By definition

of outer limits, there exist sequences zk := (xk, yk) ∈ X and vk ∈ DX (zk)◦ such that zk → z∗

and vk → v. Since (vk, wk) ∈ DX (zk)◦ and using the analytical form of X , we find multipliers

{λki } ⊂ R|K|+ and µkj such that

(vk, wk)T =
∑
j∈Kk

λkj (aj , bj)
T +

∑
i∈J

µki (y
k
i ei, x

k
i ei)

T , (12)

with ei the ith canonical vector in Rn and Kk := {j | aTj xk + bTj y
k = cj}. After taking an

adequate subsequence, we assume that K := Kk, Î±0 = I±0(xk, yk), Î0± = I0±(xk, yk) and
Î00 = I00(xk, yk) are constant. Certainly,

I±0 = I±0(x∗, y∗) ⊂ Î±0, I0± = I0±(x∗, y∗) ⊂ Î0± and Î00 ⊂ I00 = I00(x∗, y∗).

From (12) and setting I∗00 := (Î±0 \ I±0) ∪ (Î0± \ I0±), we get

vk =
∑
i∈K

λki ai +
∑
j∈I±0

µkj y
k
j ej +

∑
j∈I0±

µkj y
k
j ej +

∑
j∈I∗00

µkj y
k
j ej (13)

wk =
∑
i∈K

λki bi +
∑
j∈I±0

µkjx
k
j ej +

∑
j∈I0±

µkjx
k
j ej +

∑
j∈I∗00

µkjx
k
j ej .

Notice that I∗00 ⊂ Î±0 ∪ Î0± and that (ykj ej , x
k
j ej)

T , j ∈ Î±0 ∪ Î0± are linearly independent

vectors. By applying Carathéodory theorem [2, Lemma 1] to (13), we find subset K̂k ⊂ K and
multipliers λ̂ki with λ̂ki > 0, ∀j ∈ K̂k such that

vk =
∑
i∈K̂k

λ̂ki ai +
∑
j∈I±0

µkj y
k
j ej +

∑
j∈I0±

µkj y
k
j ej +

∑
j∈I∗00

µkj y
k
j ej , (14)

wk =
∑
i∈K̂k

λ̂ki bi +
∑
j∈I±0

µkjx
k
j ej +

∑
j∈I0±

µkjx
k
j ej +

∑
j∈I∗00

µkjx
k
j ej

and {(ai, bi)T , (ykj ej , xkj ej)T | j ∈ Î±0 ∪ Î0±, i ∈ K̂k} are linearly independent vectors. Moreover,

we will take a subsequence that K̂k is constant, and we will denote this set by K̂.
Set Mk = max{λ̂ki , |µkj | i ∈ K̂, j ∈ Î±0 ∪ Î0±}. Now, let us suppose that Mk is unbounded,

Mk → ∞. Then, dividing (14) by Mk and assuming M−1
k (λ̂k, µk) → (λ, µ) with ‖(λ, µ)‖ 6= 0,

we get

0 =
∑
i∈K̂

λ̂i(ai, bi)
T +

∑
j∈I±0

µj(y
∗
j ej , x

∗
jej)

T +
∑
j∈I0±

µj(y
∗
j ej , x

∗
jej)

T , (15)

where we use that (ykj ej , x
k
j ej)

T → (0, 0) as k →∞ for every j ∈ I∗00 ⊂ I00. Note that (15) and

‖(λ, µ)‖ 6= 0 imply that {(ai, bi)T , (y∗j ej , x∗jej)T | j ∈ I±0 ∪ I0±, i ∈ K̂} are linearly dependent

vectors, which is a contradiction with the fact that {(ai, bi)T , (ykj ej , xkj ej)T | j ∈ Î±0∪ Î0±, i ∈ K̂}
are linearly independent, since for every j ∈ I±0 ∪ I0±, the vector (y∗j ej , x

∗
jej)

T is parallel to

10



(ykj ej , x
k
j ej)

T . Indeed, this follow from the next observation: Take j ∈ I0±, then x∗j = 0 and

y∗j 6= 0. From, I0± ⊂ Î0±, we also get xkj = 0 and ykj 6= 0. Thus, we get

(y∗j ej , x
∗
jej)

T = (y∗j ej , 0)T =
y∗j

ykj
(ykj ej , 0)T =

y∗j

ykj
(ykj ej , x

k
j ej)

T .

Similarly, for every j ∈ I±0, (y∗j ej , x
∗
jej)

T is parallel to (ykj ej , x
k
j ej)

T .

Thus, Mk must be bounded. Taking an adequate subsequence, we assume that (λ̂k, µk) →
(λ̂, µ). Taking limit in (14),

(v, w)T =
∑
i∈K̂

λ̂i

(
ai
bi

)
+
∑
j∈I±0

µj

(
y∗j ej
x∗jej

)
+
∑
j∈I0±

µj

(
y∗j ej
x∗jej

)
, (16)

with λ̂i ≥ 0,∀i ∈ Î. Clearly, K̂ ⊂ {j | aTj x∗ + bTj y
∗ = cj}. Thus, (16) implies that (v, w) ∈

DX (z∗)◦.

We continue with the main result of this section, which ensures the validity of DΩ(x̄, ȳ) ⊂
LΩ(x̄, ȳ; r) when h and g are affine mappings.

Theorem 4.2 Consider the feasible set Ω when h and g are affine mappings. Then, DΩ(x̄, ȳ) ⊂
LΩ(x̄, ȳ; r) holds for every feasible point (x̄, ȳ) ∈ Ω.

In particular, if (x̄, ȳ) is a weak local Pareto optimal solution for some smooth mapping F .
Then, (x̄, ȳ) is a weak CaC-S-stationary point.

Proof. Let z̄ = (x̄, ȳ) be a feasible point of Ω. By using the equivalence in Theorem 4.1, we
assume that z̄ = (x̄, ȳ) is a weak local Pareto optimal solution of (2). Since, z̄ is a weak local
Pareto optimal solution, there exists δ > 0 such that z̄ is the unique solution of

min
w

max
i=1,...,r

{fi(w)− fi(z̄)}+
1

2
‖w − z̄‖2 subject to ‖w − z̄‖ ≤ δ, w ∈ Ω. (17)

Following the proof of [17], we consider a smoothing function approximating max{fi(z)−fi(z̄)},
namely, for η > 0, consider the smoothing function approximation gη(z) defined as

gη(z) := η ln

{
r∑
i=1

exp

(
fi(z)− fi(z̄)

η

)}
− η ln r, for every z ∈ R2n. (18)

Note for each z ∈ R2n, we get gη(z)→ max
i=1,...,r

{fi(z)− fi(z̄)} as η → 0 and

∇gη(z) =
r∑
i=1

θi(z)∇fi(z) with θi(z) =
exp((fi(z)− fi(z̄))/η)
r∑
i=1

exp((fi(z)− fi(z̄))/η)

. (19)

From (19), ‖θ(w) = (θ1(z), . . . , θr(z))‖1 = 1. Now, consider the smooth optimization problem

Minimize gη(w) +
1

2
‖w − z̄‖2 subject to ‖w − z̄‖ ≤ δ, w ∈ Ω. (20)

11



Let {ηk} be a sequence of positive parameters converging to 0 and denote by zk ∈ Ω the global
minimizer of (20) with η = ηk. From the proof of [17], zk → z̄ and thus, for k large enough
‖zk − z̄‖ < δ. So, by optimality of zk and applying the Fermat’s rule, we get

vk := −∇gηk(zk)− (zk − z̄) = −
r∑
i=1

θi(z
k)∇fi(zk)− (zk − z̄) ∈ N̂Ω(zk) = TΩ(zk)◦ (21)

Without loss of generality (after the possibility of taking an additional subsequence) we assume
that θk converges to θ with ‖θ‖1 = 1 and θ ∈ Rr+. Taking limit in (21), since zk → z̄, we get

vk → v := −
r∑
i=1

θi∇fi(z̄).

By [14, Corollary 3.10], GCQ holds at zk for Ω, so TΩ(zk)◦ = DΩ(zk)◦. From (21), {vk} is
a sequence in DΩ(zk)◦ converging to v ∈ lim sup

z→z̄, z∈Ω
DΩ(z)◦. By Lemma 4.1, lim sup

z→z̄, z∈Ω
DΩ(z)◦ ⊂

DΩ(z̄)◦, so v = −
r∑
i=1

θi∇fi(z̄) ∈ DΩ(z̄)◦, which in turn implies that z̄ is a weak CaC-S-stationary

point.

4.3 Constraint Qualifications for strong CaC-S-stationary points

Here, we focus on CQs for the fulfillment of strong CaC-S-stationary point. By [17, Theorem
4.2] and the equivalence of strong CaC-S-stationary point with strong KKT points, we establish
the following theorem.

Theorem 4.3 Let (x̄, ȳ) be a feasible point of the problem (2). The weakest property, namely
MOP-SCQ, under which every local weak Pareto optimal solution is a strong CaC-S-stationary
point for every continuously differentiable mapping, F (x) ≡ (f1(x), . . . , fr(x))T is

DΩ(x̄, ȳ) ⊂ LSΩ(x̄, ȳ; r) (22)

where

LSΩ(x̄, ȳ; r) = {d ∈ R2n | ∀(vi)ri=1 ∈ N̂Ω(x̄, ȳ; r), vTi d = 0,∀i or min
i=1,...,r

vTi d < 0}.

Clearly, when r = 1, (22) reduces to DΩ(x̄, ȳ) ⊂ N̂Ω(x̄, ȳ)◦ = TΩ(x̄, ȳ)◦◦ which it is equivalent
to GCQ. Regrettably, inclusion (22) is too restrictive, and it may fail even in very well-behaved
constrained systems where Linear Independence CQ (LICQ) holds, [17, Examples 4.2, 4.3]. In
our case, inclusion (22) fails even if the constraints h and g are linear mappings with linearly
independent gradients, as the next example shows.

Example 4.2 Consider the MOPCaC and the corresponding relaxed problem

minimize
x∈R2

F (x) ≡
(
x2

1, x
2
1 + x2

)T
subject to x1 + x2 ≤ 0,

‖x‖0 ≤ 1,

minimize
x,y∈R2

F (x) ≡
(
x2

1, x
2
1 + x2

)T
subject to x1 + x2 ≤ 0,

y1 + y2 ≥ 1,
xiyi = 0, i = 1, 2,
0 ≤ yi ≤ 1, i = 1, 2.
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Set x∗ = (0, 0) and y∗ = (1, 0). Here, (x∗, y∗) is a Pareto optimal solution of the relaxed
problem which it is not a strong CaC-S-stationary point. However, the inequality constraint
g(x1, x2) := x1 + x2 ≤ 0 is linear with non-null gradient ∇g(x1, x2) = (1, 1) 6= (0, 0) for every
(x1, x2).

We close this section with the Fig. 2 establishing the relations among some CQs discussed
here. See [14] for the corresponding definitions and relations.

CaC-LICQ

CaC-
CRCQ

CaC-ACQ CaC-GCQ

ACQ GCQ

CaC-
MFCQ CaC-

CPLD

MFCQ

LICQMOP-SCQ MOP-WCQ

Figure 2: Relationships between the CQs discussed in this work apply to the constrained system
Ω. An arrow indicates a strict implication between two conditions.

5 Unifying the stationarity conditions for multiobjective prob-
lems with cardinality constraints

In this section, for MOP, we discuss the possibility of describing the concepts of CaC-M-
stationarity in a unified way. Here, we follow the approach of [20] which defines different levels
of stationarity depending on how the continuous parameter y determines the cardinality of the
variable x.

Definition 5.1 Let (x̄, ȳ) be a feasible point of the problem (2) and I be an index set such that

I±(x̄) ⊂ I ⊂ I0(ȳ). (23)

Suppose that there exists a vector 0 6= (λf , λg, λh, γ) ∈ Rr+ × Rm+ × Rp × Rn such that

∇F (x̄)Tλf +∇g(x̄)Tλg +∇h(x̄)Tλh + γ = 0. (24)

λgi gi(x̄) = 0 for all i = 1, . . . ,m. (25)

Then, we say that (x̄, ȳ) is a:

1. weak CaC-MI -stationary point, if (24) and (25) hold with λf 6= 0 and γi = 0 for all i ∈ I.
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2. strong CaC-MI -stationary point, if (24) and (25) hold with λfi > 0 for all i = 1, . . . , r and
γi = 0 for all i ∈ I.

Clearly, if I = I±(x̄), then weak/strong CaC-MI -stationarity conditions coincide with the
weak/strong CaC-M-stationarity conditions, and if I = I0(ȳ) they coincide with weak/strong
CaC-S-stationarity conditions. As we see, there are different levels of stationarity, corresponding
to the set I in (23). As a direct consequence of the definitions, we get Proposition 5.1, see Fig.
3.

Proposition 5.1 Let (x̄, ȳ) be feasible of (2). Let I1 and I2 be two sets of indexes such that
I±(x̄) ⊂ I1 ⊂ I2 ⊂ I0(ȳ). Then, weak/strong CaC-MI2-stationarity implies weak/strong CaC-
MI1-stationarity.

In particular, a weak/strong CaC-S-stationary point is a CaC-MI-stationary point for every
I such that I±(x̄) ⊂ I ⊂ I0(ȳ).

CaC-S-stationary
(weak/strong)

CaC-MI -
stationary

(weak/strong)

CaC-M-stationary
(weak/strong)

Figure 3: Relationships between different stationary concepts in MOP with cardinality con-
straints, for a fixed feasible point (x̄, ȳ) and an index set I with I±(x̄) ⊂ I ⊂ I0(ȳ).

When I00(x̄, ȳ) = ∅, we say that (x̄, ȳ) satisfies the strict complementarity and in this case,
all weak/strong CaC-MI -stationarity conditions collapse to the weak/strong CaC-S-stationarity
condition. Similarly to the scalar case [20], we can characterize the different forms of weak/strong
MI -stationarity with the weak/strong KKT stationarity of a certain MOPCaC. For this purpose,
for every feasible point (x̄, ȳ) of (2) and for every I satisfying (23), we define the Tight Nonlinear
Problem at (x̄, ȳ) with respect to the index I by

minimize
x,y

F (x) ≡ (f1(x), f2(x), . . . , fr(x))T

subject to g(x) ≤ 0, h(x) = 0,
n− eT y ≤ α,
0 ≤ y ≤ e,
yi = 0, i ∈ I0(ȳ) \ I
xiyi = 0, i ∈ I ∪ I±(ȳ).

(26)

We denote this problem by TNLPI(x̄, ȳ) and its feasible set is denoted by ΩI(x̄, ȳ). Clearly,
(x̄, ȳ) ∈ ΩI(x̄, ȳ). Furthermore, as a direct consequence of the definition of TNLPI(x̄, ȳ), we
have the next lemma:

Lemma 5.1 Consider the problem TNLPI(x̄, ȳ) given by (26). Then,

1. Every feasible point of (26) is feasible for (2);

2. Every local weak/strong Pareto optimal solution of the problem (2) is also a local weak/strong
Pareto optimal solution of (26).
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The constrained system given by the constraints, yi = 0, i ∈ I0(ȳ) \ I; xiyi = 0, i ∈ I ∪ I±(ȳ),
near to (x̄, ȳ) is locally the same as yi = 0, i ∈ I0(ȳ); xi = 0, i ∈ I±(ȳ). This is the reason why
we call TNLPI as the tightened problem.

Theorem 5.1 Let (x̄, ȳ) be feasible of (2) and I be an index set satisfying I±(x̄) ⊂ I ⊂ I0(ȳ).
Then, (x̄, ȳ) is a weak/strong MI-stationary point, if and only if, it is a weak/strong KKT point
for the tightened problem (26).

Proof. Suppose that (x̄, ȳ) is a weak KKT point of ΩI(x̄, ȳ). From the definition of weak KKT
condition, there are multipliers λf , λg, λh, θ, ν+, ν−, γξ with λf ∈ Rr+, λf 6= 0 such that

∇F (x̄)Tλf +∇g(x̄)Tλg +∇h(x̄)Tλh +
∑

i∈I∪I±(ȳ)

γξi ȳiei = 0,

−θe+
∑

i∈I0(ȳ)\I

ηiei + (ν+ − ν−) +
∑

i∈I∪I±(ȳ)

γξi x̄iei = 0,

λgj ≥ 0, λgjgj(x̄) = 0,∀j,

θ ≥ 0, θ(ȳT e− n+ α) = 0,

ν+ ≥ 0, ν+
i (ȳi − 1) = 0, ∀i,

ν− ≥ 0, ν−i ȳi = 0, ∀i.

Now, set γ ∈ Rn as γi := γξi ȳi, if i ∈ I ∪ I±(ȳ), and γi := 0, otherwise. It is clear from the
definition that γi = 0 for every i ∈ I0(ȳ), since I ⊂ I0(ȳ) and I0(ȳ) ∩ I±(ȳ) = ∅. Thus, (x̄, ȳ) is
a weak CaC-MI -stationary point.

Now, for the other inclusion, assume that (x̄, ȳ) is a weak CaC-MI -stationary point for some

λf ∈ Rr+, λf 6= 0 , λg, λh and γ. Clearly, γi = 0, i ∈ I. Define γξ as γξi = γi/ȳi, i ∈ I±(ȳ) and

γξi = 0, otherwise. It is easy to see that γξi ȳi = γi, i ∈ I ∪ I±(ȳ). Furthermore, γξi x̄i = 0 for
i ∈ I ∪ I±(ȳ) since (x̄, ȳ) is feasible. Thus, putting θ := 0, ν+ := 0, ν− := 0 and η := 0, we see
that (x̄, ȳ) is a weak KKT point. The same conclusions follow if (x̄, ȳ) is a strong KKT point.

Proposition 5.2 Let (x̄, ȳ) be feasible for (2) and I be an index set satisfying (23). If (x̄, ȳ)
is a weak/strong CaC-MI-stationary point, then there exists z̄ such that (x̄, z̄) is weak/strong
CaC-S-stationary point.

Proof. We suppose that (x̄, ȳ) is a weak CaC-MI -stationary point. The proof when (x̄, ȳ) is
a strong CaC-MI -stationary point is similar. Now, from the definition, there exists a vector
0 6= (λf , λg, λh, γ) ∈ Rr+ × Rm+ × Rp × Rn with λf 6= 0, λgi gi(x̄) = 0, ∀i such that

∇F (x̄)Tλf +∇g(x̄)Tλg +∇h(x̄)Tλh + γ = 0 and γi = 0 ∀i ∈ I.

Now, define z̄ as z̄i = 0, if i ∈ I and z̄i = 1, if i /∈ I. Note that I = I0(z̄). Since I±(x̄) ⊂ I, we
get xi = 0, i /∈ I and so xizi = 0,∀i. With this choice of z̄, it is not difficult to see that (x̄, z̄) is
a weak CaC-S-stationary point.

Remark 5.1 Proposition 5.2 says that if x̄ is a point such that (x̄, ȳ) is a CaC-MI-stationary
point for some ȳ and I satisfying (23), then, there exists z̄ such that (x̄, z̄) is a CaC-MI-
stationary point for every I with I±(x̄) ⊂ I ⊂ I0(z̄). Thus, from the point of view of the variable
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x, the only relevant stationarity concept is the weak/strong CaC-M-stationarity since the others
can be achieved with a proper choice of the companion variable y. But this does not make the
parameter y irrelevant, indeed, for the scalar case, several numerical methods for solving (1)
use the parameter y in its formulation. Furthermore, it is possible that some CQ holds at some
(x, y) but fail if we change y by another value, as the Example 5.1 shows.

Example 5.1 Consider the problem of minimizing F (x) = (x1 +x2, x1 +x2)T subject to −x1 +
x2

2 ≤ 0, and ‖x‖0 ≤ 1. Here, x∗ = (0, 0) is its Pareto optimal solution. Set y∗ = (1, 0) and
I = I0(x∗). Now, consider the associated relaxed problem and the corresponding TNLPI(x̄, ȳ).

minimize
x,y∈R2

F (x) ≡ (x1 + x2, x1 + x2)T

subject to −x1 + x2
2 ≤ 0,

y1 + y2 ≥ 1,
xiyi = 0, i = 1, 2,
0 ≤ yi ≤ 1, i = 1, 2.

minimize
x,y∈R2

F (x) ≡ (x1 + x2, x1 + x2)T

subject to −x1 + x2
2 ≤ 0,

y1 + y2 ≥ 1,
x2 = 0, y1 = 0,
0 ≤ yi ≤ 1, i = 1, 2.

Here, (x∗, y∗) is a local Pareto optimal solution of the relaxed problem, but it is not a weak
CaC-S-stationary point. On the other hand, (x∗, y∗) is a CaC-MI-stationary point and ΩI(x̄, ȳ)
satisfies ACQ at this point.

Example 5.1 leads us to consider CQs for the fulfillment of the CaC-MI -stationarity con-
dition at local minimizer for a given I. Using the equivalence given in Theorem 5.1 and the
characterizations of the weak CQ for weak/strong KKT in [17, Theorem 4.1, Theorem 4.2], we
have

Theorem 5.2 Let (x̄, ȳ) be a feasible point of (2) and I be an index set such that I±(x̄) ⊂ I ⊂
I0(ȳ). Set ΩI := ΩI(x̄, ȳ). Then,

(a) The weakest property such that every local weak Pareto optimal solution is a weak CaC-
S-stationary point for every continuously differentiable mapping, F (x) ≡ (f1(x), . . . , fr(x))T is

DΩI
(x̄, ȳ) ⊂ LΩI

(x̄, ȳ; r), (27)

where LΩI
(x̄, ȳ; r) = {d ∈ R2n | min

i=1,...,r
vTi d ≤ 0, for all (vi)

r
i=1 ∈ N̂ΩI

(x̄, ȳ; r)}.

(b) The weakest property under which every local weak Pareto optimal solution is a strong
CaC-MI-stationary point for every continuously differentiable mapping, F (x) ≡ (f1(x), . . . , fr(x))T

is
DΩI

(x̄, ȳ) ⊂ LSΩI
(x̄, ȳ; r), (28)

where

LSΩI
(x̄, ȳ; r)={d ∈ R2n | ∀(vi)ri=1 ∈ N̂ΩI

(x̄, ȳ; r), vTi d = 0,∀i or min
i=1,...,r

vTi d < 0}.

We know that ACQ is enough to ensure that every local weak Pareto optimal solution satisfies
the weak KKT conditions then let (x̄, ȳ) be a feasible point of (2) and I be an index set with
I±(x̄) ⊂ I ⊂ I0(ȳ), a sufficient CQ to ensure the fulfillment of (27) is that ACQ holds for
the constraint set ΩI(x̄, ȳ) at (x̄, ȳ). In this case, we say that ACQ(I) holds at (x̄, ȳ). Using
an argument similar to [20, Theorem 5], it is not difficult to see ACQ(I) holds at (x̄, ȳ) if
I00(x̄, ȳ) ∩ (I ∪ I±(ȳ)) = I00(x̄, ȳ) ∩ I = ∅.
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Before wrapping up this section, to show the relevance of MOPCaC, we present some appli-
cations in which it appears. The first application is portfolio selection, which originally proposed
by H. Markowitz [22] (see [19] for a recent survey on the subject). Motivated by a multiobjective
formulation of the portfolio selection [15, 21], we present a MOPCaC formulation of it which
imposes a bound on the number of assets in the portfolio:

minimize
x∈Rn

F (x) ≡ (f1(x), . . . , fr(x))T

subject to eTx = 1, 0 ≤ x ≤ e, ‖x‖0 ≤ α.
(29)

The variable x is the investment portfolio, where xi represents a fraction of the investment
allocated to an asset i and α represents the bound on the number of assets in the portfo-
lio. A mean-variance version of the problem, which is resulted from minimizing the risk and
the negative return, is derived by setting r = 2 in (29), and choosing f1(x) =

∑n
i,j=1 σijxixj

and f2(x) = −
∑n

i=1 µixi, where µi is the expected return of the asset i, σij represents the covari-
ance between the return on asset i and j. A mean-variance-skewness version of the problem is
derived by setting r = 3 in (29) and choosing f3(x) =

∑n
i,j,k=1 sijkxixjxk, where sijk represents

the skewness [15, 21].
Other important problem is the elastic net [25] regularized version of logistic regression [4].

Due to the conflict between obtaining a good fit to the data set and the need for avoiding
overfitting the data, and also the necessity for selecting a set of the most important features, it
can be formulated as the following MOPCaC:

minimize
β∈Rn

F (β) ≡

(
1

M

M∑
i=1

log
(
1 + exp(−qiβT pi)

)
, ‖β‖2

)T
subject to ‖β‖0 ≤ α,

(30)

where {p1, . . . , pM} is the set of sample data with n features, and {q1, . . . , qM} with qi ∈ {−1, 1},
represents their corresponding labels.

6 Conclusions and Final Remarks

In this paper, we proposed and analyzed Pareto optimality conditions and constraint qualifica-
tions for Multiobjective Programs with Cardinality Constraints (MOPCaC). For this purpose,
we take advantage of the approach for the scalar case in [20], which uses a recently developed
continuous formulation. In view of the possibility of conflict among the objective functions, we
consider different notions of optimality (weak/strong Pareto optimal solutions).

Several theoretical results were proposed. First, we proved the equivalence between weak/strong
Pareto optimal solution of the MOPCaC problem and its relaxed problem. We emphasize that
for local solutions, we guarantee the equivalence if cardinality constraint is active.

We defined tailored stationarity conditions, namely weak/strong CaC-M-stationarity and
weak/strong CaC-S-stationarity, considering multipliers associated with objective functions and
cardinality constraint. Furthermore, we obtained the equivalence between weak/strong CaC-S-
stationary and weak/strong KKT point of the relaxed MOPCaC problem.

In addition, we used the r-multiobjective normal cone defined in [17] to study CQs for
MOPCaC to characterize the stationarity concepts presented here. In addition, we compared
these CQs with other well-known CQs for cardinality constrained optimization problems. Thus,
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we established the weakest CQ, namely MOP-WCQ, to guarantee the fulfillment of the weak
CaC-S-stationarity condition at local weak Pareto optimal solution. In particular, we proved
that in the linear case, this CQ holds for all feasible points. Moreover, we proposed the weakest
CQ, namely MOP-SCQ, to guarantee the fulfillment of strong CaC-S-stationarity condition at
local weak Pareto optimal solution. We also proposed weak/strong CaC-M-stationarity in a
unified way.
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[7] M Branda, M Bucher, M Červinka, and A Schwartz. Convergence of a Scholtes-type regu-
larization method for cardinality-constrained optimization problems with an application in
sparse robust portfolio optimization. Comput. Optim. Appl., 70(2):503–530, 2018.

[8] M Bucher and A Schwartz. Second-order optimality conditions and improved convergence
results for regularization methods for cardinality-constrained optimization problems. J.
Optim. Theory Appl., 178:383–410, 2018.

[9] R. S. Burachick and M. M. Rizvi. On weak and strong kuhn-tucker conditions for smooth
multiobjective optimization. Journal of Optimization Theory and Applications, 155:477–
491, 2012.

18



[10] O Burdakov, C Kanzow, and A Schwartz. On a reformulation of mathematical programs
with cardinality constraints. In D Gao, N Ruan, and W Xing, editors, Advances in Global
Optimization. Springer Proceedings in Mathematics and Statistics, 2015.

[11] O Burdakov, C Kanzow, and A Schwartz. Mathematical programs with cardinality con-
straints: reformulation by complementarity-type conditions and a regularization method.
SIAM J. Optim., 26(1):397–425, 2016.

[12] E J Candès and M B Wakin. An introduction to compressive sampling. IEEE Signal
Process. Mag., 25(2):21–30, 2008.

[13] M Castellani and M Pappalardo. About a gap between multiobjective optimization and
scalar optimization. Journal of optimization theory and applications, 109(2):437–439, 2001.
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