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Abstract. In practical applications of optimization it is common to have several conflicting
objective functions to optimize. Frequently, these functions are subject to noise or can be of black-
box type, preventing the use of derivative-based techniques.

We propose a novel multiobjective derivative-free methodology, calling it direct multisearch
(DMS), which does not aggregate any of the objective functions. Our framework is inspired by
the search/poll paradigm of direct-search methods of directional type and uses the concept of Pareto
dominance to maintain a list of nondominated points (from which the new iterates or poll centers
are chosen). The aim of our method is to generate as many points in the Pareto front as possible
from the polling procedure itself, while keeping the whole framework general enough to accommodate
other disseminating strategies, in particular when using the (here also) optional search step. DMS
generalizes to multiobjective optimization (MOO) all direct-search methods of directional type.

We prove under the common assumptions used in direct search for single objective optimization
that at least one limit point of the sequence of iterates generated by DMS lies in (a stationary form
of) the Pareto front. However, extensive computational experience has shown that our methodology
has an impressive capability of generating the whole Pareto front, even without using a search step.

Two by-products of this paper are (i) the development of a collection of test problems for MOO
and (ii) the extension of performance and data profiles to MOO, allowing a comparison of several
solvers on a large set of test problems, in terms of their efficiency and robustness to determine Pareto
fronts.
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1. Introduction. Many optimization problems involve the simultaneous opti-
mization of different objectives or goals, often conflictual. In this paper, we are
interested in the development of derivative-free methods (see [9]) for Multiobjective
optimization (MOO). Such methods are appropriated when computing the derivatives
of the functions involved is expensive, unreliable, or even impossible. Frequently, the
term black-box is used to describe objective and/or constraint functions for which,
given a point, the value of the function is (hopefully) returned and no further in-
formation is provided. The significant increase of computational power and software
sophistication observed in the last decades opened the possibility of simulating large
and complex systems, leading to the optimization of expensive black-box functions.
Such type of black-box functions also appear frequently in MOO problems (see, for
instance, [23]).
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In the classical literature of MOO, solution techniques are typically classified de-
pending on the moment where the decision maker is able to establish preferences re-
lating the different objectives (see [34]). Solution techniques with a prior articulation
of preferences require an aggregation criterion before starting the optimization, com-
bining the different objective functions into a single one. In the context of derivative-
free optimization, this approach has been followed in [3, 32]. Different approaches
can be considered when aggregating objectives, among which min-max formulations,
weighted sums and nonlinear approaches (see, for instance, [42]), and goal program-
ming [28]. In any case, the decision maker must associate weights or/and goals with
each objective function. Since the original MOO problem is then reduced to a single
objective problem, a typical output will consist of a single nondominated point. If the
preferences of the decision maker change, the whole optimization procedure needs to
be reapplied.

Posteriori articulation of preferences solution techniques circumvent these diffi-
culties, by trying to capture the whole Pareto front for the MOO problem. Weighted-
sum approaches can also be part of these techniques, considering the weights as pa-
rameters and varying them in order to capture the whole Pareto front. However, such
methods might be time consuming and might not guarantee an even distribution of
points, specially when the Pareto front is nonconvex (see [13]). The normal boundary
intersection method [14] was proposed to address these difficulties, but it may pro-
vide dominated points as part of the final output. The class of posteriori articulation
of preferences techniques also includes heuristics such as genetic algorithms [41] and
simulated annealing [43].

The herein proposed algorithmic framework is a member of this latter class of
techniques, since it does not aggregate any of the objective functions. Instead, it
directly extends, from single to multiobjective optimization, a popular class of di-
rectional derivative-free methods, called direct search [9, Chapter 7]. Each iteration
of these methods can be organized around a search step and a poll step. Given a
current iterate (a poll center), the poll step in single objective optimization evaluates
the objective function at some neighbor points defined by a positive spanning set and
a step size parameter. We do the same for MOO but change the acceptance criterion
of new iterates using Pareto dominance, which then requires the updating of a list
of (feasible) nondominated points. At each iteration, polling is performed at a point
selected from this list and its success is dictated by changes in the list. Our frame-
work encompasses a search step too, whose main purpose is to further disseminate
the search process of all the Pareto front.

We coined this new methodology direct multisearch (DMS) — as it reduces to
direct search when there is only a single objective function. DMS extends to MOO
all types of direct-search methods of directional type such as pattern search and
generalized pattern search (GPS) [1, 30], generating set search (GSS) [30], and mesh
adaptive direct search (MADS) [2].

Our paper is divided as follows. Section 2 describes the proposed DMS algorithmic
framework. An example illustrating how DMS works is described in Section 3. The
convergence analysis can be found in Section 4 (and in an Appendix for the more
technical details), where we prove, using Clarke’s nonsmooth calculus, that at least
a limit point of the sequence of iterates generated by DMS lies in (a stationary form
of) the Pareto front.

Section 5 of this paper provides information about how our extensive numerical
experiments were performed, in particular we describe the set of test problems, the
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solvers selected for comparison, the metrics used to assess the ability to compute
Pareto fronts, and the use of performance and data profiles in MOO. In Section 6
we report a summary of our computational findings, showing the effectiveness and
robustness of DMS to compute a relatively accurate approximated Pareto front (even
when the initial list of nondominated points is initialized with a singleton and no
search step is used). The paper ends with some final comments and discussion of
future work in Section 7.

In the remaining of the Introduction, we present concepts and terminology from
MOO used in our paper (see [36] for a more complete treatment). We pose a con-
strained nonlinear MOO problem in the form:

min F (x) ≡ (f1(x), f2(x), . . . , fm(x))
⊤

s.t. x ∈ Ω ⊆ Rn,

where we consider m (≥ 1) real-extended value objective functions or objective func-
tion components fi : Rn → R ∪ {+∞}, i = 1, . . . ,m (forming the objective func-
tion F (x)), and Ω represents the feasible region.

When several objective function components are present, given a point, it may
be impossible to find another one which simultaneously improves the value of all the
functions at the given one. The concept of Pareto dominance is crucial for comparing
any two points, and to describe it we will make use of the strict partial order induced
by the cone

Rm
+ = {z ∈ Rm : z ≥ 0},

defined by

F (x) ≺F F (y) ⇐⇒ F (y)− F (x) ∈ Rm
+ \ {0}.

Given two points x, y in Ω, we say that x ≺ y (x dominates y) when F (x) ≺F F (y).
We will also say that a set of points in Ω is nondominated (or indifferent) when no
point in the set is dominated by another one in the set.

As it is well known, the concept of minimization in single objective optimization
does not apply to MOO. In MOO problems it is common to have several conflicting
objective functions. Finding a point which corresponds to a minima for all the ob-
jectives considered, meaning an ideal point, may be an unrealistic task. The concept
of Pareto dominance is used to characterize global and local optimality, by defining a
Pareto front or frontier as the set of points in Ω nondominated by any other one in Ω.

Definition 1.1. A point x∗ ∈ Ω is said to be a global Pareto minimizer of F in
Ω if ∄y ∈ Ω such that y ≺ x∗. If there exists a neighborhood N (x∗) of x∗ such that
the previous property holds in Ω ∩ N (x∗), then x∗ is called a local Pareto minimizer
of F .

Rigorously speaking, the Pareto front is the set of global Pareto minimizers.
However, the convergence results established for DMS are derived in terms of necessary
conditions for local Pareto minimization.

2. Direct multisearch for multiobjective optimization. In derivative-free
optimization it is common to use an extreme barrier approach to deal with constraints.
We adapt the extreme barrier function to multiobjective optimization (MOO) by
setting

FΩ(x) =

{

F (x) if x ∈ Ω,
(+∞, . . . ,+∞)⊤ otherwise.

(2.1)
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When a point is infeasible, the components of the objective function F are not evalu-
ated, and the values of FΩ are set to +∞. This approach allows to deal with black-box
type constraints, where only a yes/no type of answer is returned.

We present a general description for direct multisearch (DMS), which encom-
passes algorithms using different globalization strategies, like those based on integer
lattices and only requiring simple decrease of the objective function values for ac-
cepting new iterates (see, for example, Generalized Pattern Search [1, 30] and Mesh
Adaptive Direct Search [2]), and also algorithms whose globalization strategy imposes
a sufficient decrease condition for accepting new iterates (like Generating Set Search
methods [30]).

Following the MOO terminology, described in the Introduction of the paper, the
proposed algorithmic framework keeps a list of previously evaluated feasible nondo-
minated points and corresponding step size parameters. This list plays an important
role since it is what is returned to the user at the end of a run and since new iterate
points (i.e., poll centers) are chosen from it. Also, as we will see later, success is
defined by a change in this list. Thus, we need to introduce the concept of iterate list
in addition to the concept of iterate point (used in direct-search methods of directional
type for single objective optimization).

As also happens for these methods in single objective optimization, each iteration
is organized around a search step and a poll step, being the latter one responsible for
the convergence results. In DMS, the search step is also optional and used to possi-
bly improve algorithmic performance. After having chosen one of the nondominated
points (stored in the current iterate list) as the iterate point (or poll center), each poll
step performs a local search around it.

In both the search and the poll steps, a temporary list of points is created first,
which stores all the points in the current iterate list and all the points evaluated
during the course of the step. This temporary list will then be filtered, removing all
the dominated points and keeping only the nondominated ones. Note that from (2.1),
as we will later see in the description of the algorithm, the infeasible points evaluated
during the course of the step are trivially removed.

The trial list is then extracted from this filtered list of feasible nondominated
points, and must necessarily include (for the purposes of the convergence theory) all
the nondominated points which belonged to the iterate list considered at the previous
iteration. Different criteria can then be chosen to determine the trial list. A natural
possibility is to define the trial list exactly as the filtered one. We will discuss this
issue in more detail after the presentation of the algorithmic framework. When the
trial list Ltrial is different from the current iterate list Lk, the new iterate list Lk+1

is set to Ltrial (successful search or poll step and iteration). Otherwise, Lk+1 = Lk

(unsuccessful poll step and iteration).

When using a sufficient decrease condition to achieve global convergence, one
makes use of a forcing function ρ : (0,+∞) → (0,+∞), i.e., a continuous and non-
decreasing function satisfying ρ(t)/t → 0 when t ↓ 0 (see [30]). Typical examples
of forcing functions are ρ(t) = t1+a, for a > 0. To write the algorithm in general
terms, we will use ρ̄(·) to either represent the forcing function ρ(·) or the constant,
zero function. Let D(L) be the set of points dominated by L and let D(L; a) ⊃ D(L)
be the set of points whose distance in the ℓ∞ norm to D(L) is no larger than a > 0.
For the purposes of the search step, we say that the point x is nondominated if
F (x) /∈ D(L; ρ̄(α)). When considering the poll step, the point x + αd is nondomi-
nated if F (x+αd) /∈ D(L; ρ̄(α‖d‖)) (where d is a direction used in polling around x).
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When ρ̄(·) is a forcing function requiring this improvement or decrease results in the
imposition of a sufficient decrease condition.

As we will see later in the convergence analysis, the set of directions to be used for
polling is not required to positively span Rn (although for coherence with the smooth
case we will write it so in the algorithm below), and it is not necessarily drawn from
a finite set of directions. In the following description of DMS, the elements of the
list are pairs of the form (x;α) but for simplicity we will continue to refer to those
elements as points since in the majority of the cases our only interest is to appeal to
dominancy or nondominancy in the x part.

Algorithm 2.1 (Direct Multisearch for MOO).

Initialization

Choose x0 ∈ Ω with fi(x0) < +∞, ∀i ∈ {1, . . . ,m}, α0 > 0, 0 < β1 ≤
β2 < 1, and γ ≥ 1. Let D be a (possibly infinite) set of positive spanning
sets. Initialize the list of nondominated points and corresponding step size
parameters L0 = {(x0;α0)}.

For k = 0, 1, 2, . . .

1. Selection of an iterate point: Order the list Lk in some way (some
possibilities are discussed later) and select the first item (x;α) ∈ Lk

as the current iterate and step size parameter (thus setting (xk;αk) =
(x;α)).

2. Search step: Compute a finite set of points {zs}s∈S (in a mesh if
ρ̄(·) = 0, see Section A.1) and evaluate FΩ at each element. Set Ladd =
{(zs;αk), s ∈ S}.
Call Lfiltered = filter(Lk,Ladd) to eliminate dominated points from
Lk ∪Ladd, using sufficient decrease to see if points in Ladd are nondom-
inated relatively to Lk. Call Ltrial = select(Lfiltered) to determine
Ltrial ⊆ Lfiltered. If Ltrial 6= Lk declare the iteration (and the search
step) successful, set Lk+1 = Ltrial, and skip the poll step.

3. Poll step: Choose a positive spanning set Dk from the set D. Eva-
luate FΩ at the set of poll points Pk = {xk + αkd : d ∈ Dk}. Set
Ladd = {(xk + αkd;αk), d ∈ Dk}.
Call Lfiltered = filter(Lk,Ladd) to eliminate dominated points from
Lk ∪Ladd, using sufficient decrease to see if points in Ladd are nondom-
inated relatively to Lk. Call Ltrial = select(Lfiltered) to determine
Ltrial ⊆ Lfiltered. If Ltrial 6= Lk declare the iteration (and the poll step)
as successful and set Lk+1 = Ltrial. Otherwise, declare the iteration
(and the poll step) unsuccessful and set Lk+1 = Lk.

4. Step size parameter update: If the iteration was successful then
maintain or increase the corresponding step size parameters: αk,new

∈ [αk, γαk] and replace all the new points (xk + αkd;αk) in Lk+1 by
(xk+αkd;αk,new), when success is coming from the poll step, or (zs;αk)
in Lk+1 by (zs;αk,new), when success is coming from the search; replace
also (xk;αk), if in Lk+1, by (xk;αk,new).
Otherwise decrease the step size parameter: αk,new ∈ [β1αk, β2αk] and
replace the poll pair (xk;αk) in Lk+1 by (xk;αk,new).

Next we address several issues left open during the discussion and presentation
of the DMS framework.

List initialization. For simplicity, the algorithmic description presented initia-
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lized the list with a single point, but different strategies, considering several feasible
previously evaluated points, can be used in this initialization, with the goal of im-
proving the algorithmic performance. In Section 6.1, we suggest and numerically test
three possible ways of initializing the list. Note that a list initialization can also be
regarded as a search step in iteration 0.

Ordering the iterate list. The number of elements stored in the list can vary
from one to several, depending on the problem characteristics and also on the criteria
implemented to determine the trial list. In a practical implementation, when the
iterate list stores several points, it may be crucial to order it before selecting a point
for polling, as a way of diversifying the search and explore different regions of Ω. A
crude ordering strategy could be, for instance, (i) to always add points to the end of
the list and (ii) to move a point already selected as a poll center to the end of the list
(doing it at the end of an iteration) for a better dissemination of the search of the
Pareto front. In Section 6.3 we will consider an ordering strategy defined by selecting
the poll centers using the values of a spread metric.

Search step and selection of the iterate point. The search step is optional
and, in the case of DMS (m > 1), it might act on the iterate list Lk rather than around
an individual point. For consistency with single objective optimization (m = 1), we
included the selection of the point iterate before the search step. If the search step is
skipped or if it fails, this iterate point will then be the poll center. Another reason
for this inclusion is to define a step size parameter for the search step.

Polling. As in single objective optimization, one either can have a complete poll
step, in which every poll point is evaluated, or an opportunistic poll step, in which
the points in the poll set are sampled in a given order and sampling is stopped as
soon as some form of improvement is found. In the algorithmic framework presented
above, we have used complete polling, which can be a wise choice if the goal is to
compute the complete Pareto front. Opportunistic polling may be more suitable to
deal with functions of considerably expensive evaluation. In this latter case, in order
to improve the algorithmic performance, the poll set should be appropriately ordered
before polling [10, 12]. Since the convergence results will rely on the analysis of the
algorithmic behavior at unsuccessful iterations, which is identical independently of
the polling strategy considered (opportunistic or complete), the results hold for both
variants without any further modifications.

Filtering dominated points. Note that the filtering process of the dominated
points does not require comparisons among all the stored points since the current
iterate list Lk is already formed by nondominated points. Instead, only each added
point will be compared to the others, and, in particular, (i) if any of the points in the
list Lk ∪ Ladd dominates a point in Ladd, this added point will be discarded; (ii) if
an added point dominates any of the remaining points in the list Lk ∪ Ladd, all such
dominated points will be discarded. An algorithmic description of the procedure used
for filtering the dominated points can be found in Figure 2.1.

Selecting the trial list. As we have pointed out before, a natural candidate for
the new iterate list is Ltrial = Lfiltered, in particular if our goal is to determine as
many points in the Pareto front as possible. However, other choices Ltrial ⊂ Lfiltered

can be considered. A more restrictive strategy, for instance, is to always consider
an iterate list formed by a single point. In such a case, success is achieved if the
new iterate point dominates the current one. This type of algorithm fits in our
framework since it suffices to initialize the list as a singleton and to only consider in
Ltrial the point that dominates the one in Lk when it exists, or the point already
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Algorithm 2.2: [L3]=filter(L1, L2)

Set L3 = L1 ∪ L2

for all x ∈ L2

do
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for all y ∈ L3, y 6= x

do

{

if y ≺ x
then

{

L3 = L3\{x}
if x ∈ L3

then


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for all y ∈ L3, y 6= x

do















if x ≺ y

then







L3 = L3\{y}
if y ∈ L2

then
{

L2 = L2\{y}

Fig. 2.1. Procedure for filtering the dominated points from L1 ∪ L2 (the set union should not
allow element repetition), assuming that L1 is already formed by nondominated points.

Algorithm 2.3: [Ltrial]=select(Lfiltered)

Set Ltrial = Lfiltered

Algorithm 2.4: [Ltrial]=select(Lfiltered)

if Lk = {xk} * Lfiltered

then

{

Choose a x ∈ Lfiltered which dominated xk

Set Ltrial = {x}
else

{

Set Ltrial = Lk

Fig. 2.2. Two procedures for selecting the trial list Ltrial from the list of filtered nondominated
points Lfiltered. The list Lk represents the iterate list considered at the current iteration. Note
that in both algorithms all the nondominated points in Lk are included in Ltrial, as required for the
convergence theory.

in Lk, otherwise. An algorithmic description of these two procedures can be found in
Figure 2.2.

3. A worked example. To illustrate how Algorithm 2.1 works, we will now
describe in detail its application to problem SP1 [25], defined by:

min F (x) ≡
(

(x1 − 1)2 + (x1 − x2)
2, (x1 − x2)

2 + (x2 − 3)2
)⊤

s.t. − 1 ≤ x1 ≤ 5,

− 1 ≤ x2 ≤ 5.

As we will do later in Section 6.1 for the numerical experimentations, we will
select, here for the purposes of this example, the trial list from the filtered one as in
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Algorithm 2.3 (setting Ltrial = Lfiltered). We will order the list by always adding
points to the end of it and by moving a point already selected as a poll center to the
end of the list (at the end of an iteration). No search step will be performed.

Initialization. Let us set the initial point x0 = (1.5, 1.5), corresponding to (f1(x0),
f2(x0)) = (0.25, 2.25), and initialize the step size parameter as α0 = 1. The step
size will be maintained at successful iterations and halved at unsuccessful ones, which
corresponds to setting γ = 1 and β1 = β2 = 1

2 . Set D = D = [I2 −I2], where I2 stands
for the identity matrix of dimension 2. Initialize the iterate list of nondominated points
as L0 = {(x0; 1)}.

Iteration 0. The algorithm starts by selecting a point from L0, in this case the only
available, (x0;α0). Since no search step is performed, the feasible points in the poll
set P0 = {(1.5, 1.5) + (1, 0), (1.5, 1.5) + (0, 1), (1.5, 1.5) + (−1, 0), (1.5, 1.5) + (0,−1)}
are evaluated (the filled diamonds plotted in Iteration 0 of Figure 3.1 represent the
corresponding function values). In this case, all the poll points were feasible, thus

Ladd = {((2.5, 1.5); 1), ((1.5, 2.5); 1), ((0.5, 1.5); 1), ((1.5, 0.5); 1)}.

The nondominated points are filtered from L0 ∪ Ladd, resulting in Lfiltered =
{((1.5, 1.5); 1), ((1.5, 2.5); 1)}. Only one of the evaluated poll points remained un-
filtered (the circle in Iteration 0 of Figure 3.1 represents its corresponding function
value). According to Algorithm 2.3, Ltrial will coincide with Lfiltered. Since there
were changes in L0, the iteration is declared successful, and L1 = Ltrial = Lfiltered,
being the step size maintained. The function values corresponding to the points in L1

are represented by squares in Iteration 0 of Figure 3.1. Note that we move the poll
point to the end of the list, yielding the new order L1 = {((1.5, 2.5); 1), ((1.5, 1.5); 1)}.

Iteration 1. At the beginning of the new iteration, the algorithm selects a point from
the two stored in L1. Suppose the point (x1;α1) = ((1.5, 2.5); 1) was selected. In this
case, the poll set P1 = {(2.5, 2.5), (1.5, 3.5), (0.5, 2.5), (1.5, 1.5)} is evaluated (again,
the corresponding function values are represented by filled diamonds in Iteration 1 of
Figure 3.1). Note that, by coincidence, two of the poll points share the same function
values. The list

Ladd = {((2.5, 2.5); 1), ((1.5, 3.5); 1), ((0.5, 2.5); 1), ((1.5, 1.5); 1)}

is formed and L1 ∪ Ladd is filtered. Again, only one of the poll points was nondo-
minated (the corresponding function value is represented by a circle in Iteration 1 of
Figure 3.1). Thus, the iteration was successful, the step size was maintained, and the
new list is

L2 = Ltrial = Lfiltered = {((1.5, 2.5); 1), ((1.5, 1.5); 1), ((2.5, 2.5); 1)}

(the corresponding function values are represented by the squares in Iteration 1 of
Figure 3.1). Again, we move the poll point (in this case, ((1.5, 2.5); 1)) to the end of
the list.

Iteration 2. The next iteration begins by selecting (x2;α2) = ((1.5, 1.5); 1) from the
list L2 (a previous poll center). After evaluating the corresponding poll points (the
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Fig. 3.1. First three iterations of one instance of Algorithm 2.1, when applied to the MOO
problem SP1. The empty diamonds represent the function values corresponding to all the evaluated
points since the beginning of the optimization process. The filled diamonds represent the function
values corresponding to the poll points evaluated at the current iteration. In circles are represented
the nondominated points which were evaluated at the current iteration, and in squares the current
iterate list of feasible nondominated points.

filled diamonds), all of them are dominated, thus Ltrial = L2, the iteration is declared
as unsuccessful, the corresponding step size is halved, and L3 = {((1.5, 1.5); 0.5),
((2.5, 2.5); 1), ((1.5, 2.5); 1)} (the corresponding function values are represented by the
squares in Iteration 2 of Figure 3.1).

In Figure 3.2 we can observe the evolution of the optimization process after 10,
20, and 100 iterations. The number of points in the Pareto front is steadily increasing
and, after 100 iterations, the corresponding curve is well defined.

4. Convergence analysis. One of the key ingredients in stating global conver-
gence (i.e., convergence from arbitrary starting points) for direct-search methods of
directional type is to establish the existence of a subsequence of step size parameters
converging to zero. There are two main strategies which can be used to enforce this
property in this class of methods: (i) to ensure that all new iterates lie in an integer
lattice when the step size is bounded away from zero or (ii) to impose a sufficient
decrease condition in the objective function values when accepting new iterates. To
derive this result for direct multisearch (DMS), we need the iterates to lie in a com-
pact set in the former case, and the objective functions must be bounded below in
the latter situation.

Assumption 4.1. The level set L(x0) =
⋃m

i=1 Li(x0) is compact, where Li(x0) =
{x ∈ Ω : fi(x) ≤ fi(x0)}, i = 1, . . . ,m. The objective function components of F are
bounded below and above in L(x0).

Proving that a subsequence of step size parameters converges to zero may require
significant detail but the core intuition is relatively simple. We will give this intuition
now and relegate the rigorous definitions and proofs to the Appendix of the paper.
Note that in both variants (i) and (ii) a successful iteration has necessarily produced
at least one new feasible nondominated point.
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Fig. 3.2. Iterations 10, 20, and 100 of one instance of Algorithm 2.1, when applied to the MOO
problem SP1. See the caption of Figure 3.1 for details.

In the first variant (i) one restricts the directions used by the algorithm and the
scheme for updating the step size so that all potential iterates lie on an integer lattice
when the step size is bounded away from zero, see Figure 4.1. Intuitively, if the step
size does not go to zero, points in this integer lattice would be separated by a finite
and positive distance, and it would therefore be impossible to fit an infinity of iterates
inside a bounded level set. So, the only way to have an infinity of new iterates is for
the step size to go to zero.

The second variant (ii) is to declare an iteration successful only if it produces a
nondominated point that has strictly decreased one of the components of the objective
function relatively to at least a point in the list. Recall that ρ(α) is a forcing function,
and thus a monotonically increasing function of the step size α. Intuitively, insisting on
strict decrease of one of the objective function components via a forcing function will
make it harder to have a successful step and therefore will generate more unsuccessful
poll steps. As we show in the Appendix, we can prove that there must be, in fact, an
infinite number of unsuccessful poll steps. Since each unsuccessful poll step reduces
the step size by a factor of β2 < 1, the step size would have to go to zero. Again, fully
rigorous versions of these intuitive arguments can be found in the Appendix.

4.1. Refining subsequences and directions. The convergence analysis of
direct-search methods of directional type for single objective optimization relies on
the analysis of the behavior of the algorithm at limit points of sequences of unsuc-
cessful iterates, denoted by refining subsequences (a concept formalized in [1]). The
same applies to DMS.

Definition 4.1. A subsequence {xk}k∈K of iterates corresponding to unsuccess-
ful poll steps is said to be a refining subsequence if {αk}k∈K converges to zero.

Assumption 4.1, Theorems A.1 or A.2, and the updating strategy of the step
size parameter allow us to establish the existence of at least a convergent refining
subsequence (see, e.g., [9, Section 7.3]).

Theorem 4.2. Let Assumption 4.1 hold. Consider a sequence of iterates gene-

10



x0

Fig. 4.1. An example of an integer lattice where all potential iterates must lie when the step
size is bounded away from zero. The example corresponds to coordinate or compass search where
Dk = [In − In] (In is the identity matrix of order n). The figure depicts a finite portion of that

integer lattice, which is given by {x0 +α02r
−

z : z ∈ Zn}, where r− is some negative integer (see [9,
Line 5 of Page 130]).

rated by Algorithm 2.1 under the scenarios of either Subsection A.1 (integer lattices)
or Subsection A.2 (sufficient decrease). Then there is at least one convergent refining
subsequence {xk}k∈K .

The first stationarity result in our paper will establish appropriate nonnegativity
of generalized directional derivatives (see Definition 4.6) computed along certain limit
directions, designated as refining directions (a notion formalized in [2]).

Definition 4.3. Let x∗ be the limit point of a convergent refining subsequence.
If the limit limk∈K′ dk/‖dk‖ exists, where K ′ ⊆ K and dk ∈ Dk, and if xk+αkdk ∈ Ω,
for sufficiently large k ∈ K ′, then this limit is said to be a refining direction for x∗.

Note that refining directions exist trivially in the unconstrained case Ω = Rn.

4.2. Tangent cones and generalized derivatives. The main theoretical re-
sult of this paper states that a limit point of the sequence of iterates generated by
a DMS method is Pareto-Clarke stationary. In this subsection we introduce this de-
finition of stationarity as well as other concepts related to nonsmooth calculus [7],
required for the presentation and analysis of the DMS framework.

In single objective constrained optimization, a critical point has the property that
if one moves slightly away from it in any ‘feasible direction’, the objective function
does not improve. For multiobjective constrained optimization, the notion of critical
point changes somewhat. Essentially, a critical point will be a point on the local Pareto
front (see Definition 1.1). As a result, it will have the property that moving slightly
away from this point in any ‘feasible direction’ will not yield a better, dominating
point. This, in turn, means that as one moves away in a ‘feasible direction’, at least
one of the multiple objectives gets worse. We can formalize these intuitive ideas using
the concept of Clarke tangent vector for the notion of ‘feasible direction’ and the
concept of Pareto-Clarke critical point for the notion of a ‘critical point on the Pareto
front’. The definitions of these quantities are as follows.

We start by defining the Clarke tangent cone, which we will use to state Pareto-
Clarke first-order stationarity. The Clarke tangent cone is a generalization of the
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commonly used tangent cone in Nonlinear Programming (NLP) (see, e.g., [38, Defi-
nition 12.2 and Figure 12.8]). Such generalization is convenient for our analysis, but
should not confuse a reader used to the basic definition of tangent cones in NLP. The
definition and notation are taken from [2].

Definition 4.4. A vector d ∈ Rn is said to be a Clarke tangent vector to the set
Ω ⊆ Rn at the point x in the closure of Ω if for every sequence {yk} of elements of Ω
that converges to x and for every sequence of positive real numbers {tk} converging to
zero, there exists a sequence of vectors {wk} converging to d such that yk+ tkwk ∈ Ω.

The set TCl
Ω (x) of all Clarke tangent vectors to Ω at x is called the Clarke tangent

cone to Ω at x.
We will also need the definition of hypertangent cone since it is strongly related

to the type of iterates generated by a direct-search method of directional type. The
hypertangent cone is the interior of the Clarke tangent cone (when such interior is
nonempty). Again we will follow the notation in [2].

Definition 4.5. A vector d ∈ Rn is said to be a hypertangent vector to the set
Ω ⊆ Rn at the point x in Ω if there exists a scalar ǫ > 0 such that

y + tw ∈ Ω, ∀y ∈ Ω ∩B(x; ǫ), w ∈ B(d; ǫ), and 0 < t < ǫ.

The set of all hypertangent vectors to Ω at x is called the hypertangent cone to
Ω at x and is denoted by TH

Ω (x). Note that the Clarke tangent cone is the closure of
the hypertangent one.

If we assume that F (x) is Lipschitz continuous near x (meaning that each fi(x),
i = 1, . . . ,m, is Lipschitz continuous in a neighborhood of x), we can define the
Clarke-Jahn generalized derivatives of the individual functions along directions d in
the hypertangent cone to Ω at x,

f◦
i (x; d) = lim sup

x′ → x, x′ ∈ Ω
t ↓ 0, x′ + td ∈ Ω

fi(x
′ + td)− fi(x

′)

t
, i = 1, . . . ,m. (4.1)

These derivatives are essentially the Clarke generalized directional derivatives [7], ex-
tended by Jahn [27] to the constrained setting. The Clarke-Jahn generalized deriva-
tives along directions v in the tangent cone to Ω at x, are computed by taking a limit,
i.e., f◦

i (x; v) = limd∈TH
Ω

(x),d→v f
◦
i (x; d), for i = 1, . . . ,m (see [2]).

We are now able to introduce the definition of Pareto-Clarke stationarity which
will play a key role in our paper.

Definition 4.6. Let F be Lipschitz continuous near a point x∗ ∈ Ω. We say
that x∗ is a Pareto-Clarke critical point of F in Ω if, for all directions d ∈ TCl

Ω (x∗),
there exists a j = j(d) ∈ {1, . . . ,m} such that f◦

j (x∗; d) ≥ 0.
Definition 4.6 says essentially that there is no direction in the tangent cone that

is descent for all the objective functions. If a point is a Pareto minimizer (local or
global), then it is necessarily a Pareto-Clarke critical point.

By assuming strict differentiability for each component of the objective function
at x∗ (meaning that the corresponding Clarke generalized gradient is a singleton), the
previous definition of Pareto-Clarke stationarity can be restated using the gradient
vectors.

Definition 4.7. Let F be strictly differentiable at a point x∗ ∈ Ω. We say that
x∗ is a Pareto-Clarke-KKT critical point of F in Ω if, for all directions d ∈ TCl

Ω (x∗),
there exists a j = j(d) ∈ {1, . . . ,m} such that ∇fj(x∗)

⊤d ≥ 0.
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4.3. Convergence results. We are now in a position to state the main conver-
gence result of our paper. Recall that an unsuccessful poll step means that there is no
improving (or nondominating) point in the frame or stencil formed by the poll points.
If the step size is large, this does not preclude the possibility of a nearby improving
point. However, as the step size approaches zero, the poll points allow us to recover
the local sensitivities and this, together with some assumption of smoothness, imply
that there is no locally improving ‘feasible direction’.

Theorem 4.8. Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω
and a refining direction d for x∗ in TH

Ω (x∗). Assume that F is Lipschitz continuous
near x∗. Then, there exists a j = j(d) ∈ {1, . . . ,m} such that f◦

j (x∗; d) ≥ 0.
Proof. Let {xk}k∈K be a refining subsequence converging to x∗ ∈ Ω and d =

limk∈K′′ dk/‖dk‖ ∈ TH
Ω (x∗) a refining direction for x∗, with dk ∈ Dk and xk+αkdk ∈ Ω

for all k ∈ K ′′ ⊆ K.
For j ∈ {1, . . . ,m} we have

f◦
j (x∗; d) = lim sup

x′ → x∗, x
′ ∈ Ω

t ↓ 0, x′ + td ∈ Ω

fj(x
′ + td)− fj(x

′)

t

≥ lim sup
k∈K′′

fj(xk + αk‖dk‖(dk/‖dk‖))− fj(xk)

αk‖dk‖
− rk

= lim sup
k∈K′′

fj(xk + αkdk)− fj(xk) + ρ̄(αk‖dk‖)

αk‖dk‖
−

ρ̄(αk‖dk‖)

αk‖dk‖
− rk

≥ lim sup
k∈K′′

fj(xk + αkdk)− fj(xk) + ρ̄(αk‖dk‖)

αk‖dk‖
.

The first inequality follows from {xk}k∈K′′ being a feasible refining subsequence and
the fact that xk+αkdk is feasible for k ∈ K ′′. The term rk is bounded above by ν||d−
dk/‖dk‖‖, where ν is the Lipschitz constant of F near x∗. Note, also, that the limit
limk∈K′′ ρ̄(αk‖dk‖)/(αk‖dk‖) is 0 for both globalization strategies (Subsections A.1
and A.2). In the case of using integer lattices (Subsection A.1), one uses ρ̄(·) =
0. When imposing sufficient decrease (Subsection A.2), this limit follows from the
properties of the forcing function and Assumption A.5.

Since {xk}k∈K is a refining subsequence, for each k ∈ K ′′, xk + αkdk is not
nondominated relatively to Lk. Thus, for each k ∈ K ′′ it is possible to find j(k) ∈
{1, . . . ,m} such that fj(k)(xk +αkdk)− fj(k)(xk) + ρ̄(αk‖dk‖) ≥ 0. Since the number
of objective functions components is finite, there must exists one, say j = j(d), for
which there is an infinite set of indices K ′′′ ⊆ K ′′ such that

f◦
j(d)(x∗; d) ≥ lim sup

k∈K′′′

fj(d)(xk + αkdk)− fj(d)(xk) + ρ̄(αk‖dk‖)

αk‖dk‖
≥ 0.

If we assume strict differentiability of F at the point x∗, the conclusion of the
above result will be ∇fj(x∗)

⊤d ≥ 0.
Convergence for a Pareto-Clarke critical point (see Definition 4.6) or a Pareto-

Clarke-KKT critical point (see Definition 4.7) can be established by imposing density
in the unit sphere of the set of refining directions associated with x∗. We note that this
assumption is stronger than just considering that the normalized set of directions D
is dense in the unit sphere.
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Theorem 4.9. Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω.
Assume that F is Lipschitz continuous near x∗ and TH

Ω (x∗) 6= ∅. If the set of refining
directions for x∗ is dense in TCl

Ω (x∗), then x∗ is a Pareto-Clarke critical point.
If, in addition, F is strictly differentiable at x∗, then this point is a Pareto-Clarke-

KKT critical point.
Proof. Given any direction v in the Clarke tangent cone, one has that

f◦
j (x∗; v) = lim

d → v
d ∈ TH

Ω (x∗)

f◦
j (x∗; d),

for all j ∈ {1, . . . ,m} (see [2]).
Since the number of objective functions is finite, and from the previous theorem,

there must exist a sequence of directions {dw}w∈W in TH
Ω (x∗), converging to v such

that f◦
j (x∗; dw) ≥ 0 for all directions dw in that sequence and for some j = j(v) ∈

{1, . . . ,m}. The first statement of the theorem follows by taking limits of the Clarke
generalized derivatives in this sequence (and the second one results trivially).

Note that the assumption of density of the set of refining directions in the unit
sphere is not required only because of the presence of constraints. In fact, it is also
necessary even without constraints because one can easily present examples where the
cone of directions simultaneous descent for all objective functions can be as narrow
as one would like.

In the following corollary, we state the previous results for the particular case of
single objective optimization, where the number of the objective function components
equals one.

Corollary 4.10. Let m = 1 and F = (f1) = f .
Under the conditions of Theorem 4.8, if d ∈ TH

Ω (x∗) is a refining direction for x∗,
then f◦(x∗; d) ≥ 0.

Under the conditions of Theorem 4.9, the point x∗ is a Clarke critical point, i.e.,
f◦(x∗; v) ≥ 0, ∀v ∈ TCl

Ω (x∗).
If, additionally, we require the inclusion of all the nondominated points in the

iterate list, and if it is finite the number of iterations for which the cardinality of the
iterate list exceeds one, we can establish first-order convergence for an ideal point.

Corollary 4.11. Consider the algorithmic variant where Ltrial = Lfiltered in
all iterations (Algorithm 2.3). Assume that is finite the number of iterations for which
the cardinality of {Lk}k∈K exceeds one.

Under the conditions of Theorem 4.8, if d ∈ TH
Ω (x∗) is a refining direction for x∗,

we have, for all j ∈ {1, . . . ,m}, f◦
j (x∗; d) ≥ 0.

Under the conditions of Theorem 4.9, the point x∗ is an ideal point, i.e.,

f◦
j (x∗; v) ≥ 0, ∀j ∈ {1, . . . ,m}, ∀v ∈ TCl

Ω (x∗).

Proof. Let us recall the proof of Theorem 4.8 until its last paragraph. Now, by
assumption, it is possible to consider an infinite subset of indices K ′′′ ⊆ K ′′ such that
|Lk| = 1, for each k ∈ K ′′′. The selection criterion for the iterate list ensures that for
each k ∈ K ′′′, xk +αkdk is dominated by xk and it follows trivially that f◦

j (x∗; d) ≥ 0
for all j ∈ {1, . . . ,m}. The proof of the second assertion follows the same type of
arguments of the proof of Theorem 4.9.

5. Test problems, solvers, metrics, and profiles.
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5.1. Test problems. We have collected 100 multiobjective optimization (MOO)
problems reported in the literature involving only simple bounds constraints, i.e.,
problems for which Ω = [ℓ, u] with ℓ, u ∈ Rn and ℓ < u. All test problems were
modeled by us in AMPL (A Modeling Language for Mathematical Programming) [22]
and are available for public testing at http://www.mat.uc.pt/dms.

The problems and their dimensions are given in Table 5.1. To avoid a long
presentation we do not describe their mathematical formulations, which can be found
in the AMPL model files. We also provide in Table 5.1 the original references for
these problems — noting, however, that in some cases the formulation coded differed
from the literature due to errors, mismatches or lack of information found in the
corresponding papers.

5.2. Solvers tested. We have considered in our numerical studies the following
publicly available solvers for MOO without derivatives:

• AMOSA (Archived MultiObjective Simulated Annealing) [5] — www.isical.

ac.in/~sriparna_r/software.html;
• BIMADS (BI-Objective Mesh Adaptive Direct Search) [3] tested only for
problems with two objective functions — www.gerad.ca/nomad/Project/

Home.html;
• Epsilon-MOEA (Epsilon MultiObjective Evolutionary Algorithm) [16] — www.

iitk.ac.in/kangal/codes.shtml;
• GAMULTI (Genetic Algorithms for Multiobjective, MATLAB toolbox) —
www.mathworks.com;

• MOPSO (MultiObjective Particle Swarm Optimization) [8] — delta.cs.

cinvestav.mx/~ccoello/EMOO/EMOOsoftware.html;
• NSGA-II (Nondominated Sorting Genetic Algorithm II, C version) [17] —
www.iitk.ac.in/kangal/codes.shtml;

• NSGA-II (MATLAB implementation by A. Seshadri) — www.mathworks.

com/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective

-optimization-algorithm;
• PAES (Pareto Archived Evolution Strategy) [29] — dbkgroup.org/knowles/

multi.
However, in order to keep the paper to a reasonable size and not to confuse the

reader with excessive information, we are only reporting later (see Section 6.2) a part
of the numerical tests that were performed. Besides five versions of our DMS, the
selected solvers were AMOSA, BIMADS, and NSGA-II (C version), since these were
the ones who exhibited the best performance in the above mentioned test set. The
numerical results regarding the remaining codes can be found in http://www.mat.

uc.pt/dms.

5.3. Metrics and profiles used for solver comparison. In the multiobjec-
tive case, one is interested in assessing the ability of a solver to obtain points which
are Pareto optimal and to compute a highly diversified subset of the whole Pareto
front. With these two goals in mind, we present in the next subsections the metrics
used to assess the performance of the tested solvers. While there are other metrics
in the literature, we have selected the ones presented herein due to their applicability
to a large set of test problems. In particular, using a metric that considers the dis-
tance from the obtained Pareto front to the true Pareto one implies the knowledge
of the latter for all the problems in the test set. In addition, presenting results for a
metric that only considers a small number of test problems is meaningless. Despite
not including a metric that requires the true Pareto front, we present later, and for
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Problem n m Problem n m Problem n m
BK1 [25] 2 2 I5 [24] 8 3 MOP3 [25] 2 2
CL1 [6] 4 2 IKK1 [25] 2 3 MOP4 [25] 3 2
Deb41 [15] 2 2 IM1 [25] 2 2 MOP5 [25] 2 3
Deb512a [15] 2 2 Jin1 [48] 2 2 MOP6 [25] 2 2
Deb512b [15] 2 2 Jin2 [48] 2 2 MOP7 [25] 2 3
Deb512c [15] 2 2 Jin3 [48] 2 2 OKA1 [39] 2 2
Deb513 [15] 2 2 Jin4 [48] 2 2 OKA2 [39] 3 2
Deb521a [15] 2 2 Kursawe [31] 3 2 QV1 [25] 10 2
Deb521b [15] 2 2 L1ZDT4 [18] 10 2 Sch1 [25] 1 2
Deb53 [15] 2 2 L2ZDT1 [18] 30 2 SK1 [25] 1 2
DG01 [25] 1 2 L2ZDT2 [18] 30 2 SK2 [25] 4 2
DPAM1 [25] 10 2 L2ZDT3 [18] 30 2 SP1 [25] 2 2
DTLZ1 [19] 7 3 L2ZDT4 [18] 30 2 SSFYY1 [25] 2 2
DTLZ1n2 [19] 2 2 L2ZDT6 [18] 10 2 SSFYY2 [25] 1 2
DTLZ2 [19] 12 3 L3ZDT1 [18] 30 2 TKLY1 [25] 4 2
DTLZ2n2 [19] 2 2 L3ZDT2 [18] 30 2 VFM1 [25] 2 3
DTLZ3 [19] 12 3 L3ZDT3 [18] 30 2 VU1 [25] 2 2
DTLZ3n2 [19] 2 2 L3ZDT4 [18] 30 2 VU2 [25] 2 2
DTLZ4 [19] 12 3 L3ZDT6 [18] 10 2 WFG1 [25] 8 3
DTLZ4n2 [19] 2 2 LE1 [25] 2 2 WFG2 [25] 8 3
DTLZ5 [19] 12 3 lovison1 [33] 2 2 WFG3 [25] 8 3
DTLZ5n2 [19] 2 2 lovison2 [33] 2 2 WFG4 [25] 8 3
DTLZ6 [19] 22 3 lovison3 [33] 2 2 WFG5 [25] 8 3
DTLZ6n2 [19] 2 2 lovison4 [33] 2 2 WFG6 [25] 8 3
ex005 [26] 2 2 lovison5 [33] 3 3 WFG7 [25] 8 3
Far1 [25] 2 2 lovison6 [33] 3 3 WFG8 [25] 8 3
FES1 [25] 10 2 LRS1 [25] 2 2 WFG9 [25] 8 3
FES2 [25] 10 3 MHHM1 [25] 1 3 ZDT1 [49] 30 2
FES3 [25] 10 4 MHHM2 [25] 2 3 ZDT2 [49] 30 2
Fonseca [21] 2 2 MLF1 [25] 1 2 ZDT3 [49] 30 2
I1 [24] 8 3 MLF2 [25] 2 2 ZDT4 [49] 10 2
I2 [24] 8 3 MOP1 [25] 1 2 ZDT6 [49] 10 2
I3 [24] 8 3 MOP2 [25] 4 2 ZLT1 [25] 10 3
I4 [24] 8 3

Table 5.1
A description of our test set. Recall that n is the number of variables and m is the number of

objective functions.

illustrative purposes, numerical results for some selected solvers on a small subset of
problems where such information is available.

5.3.1. Performance profiles. In order to present values of the different metrics
for all problems and all solvers considered, we have used the so-called performance
profiles, as suggested in [20] (see also [45] and the references therein for the use of
performance profiles in global derivative-free optimization). Performance profiles are
depicted by a plot of a cumulative distribution function ρ(τ) representing a perfor-
mance ratio for the different solvers. Let S be the set of solvers and P be the set of
problems. Let tp,s denote the performance of the solver s ∈ S on the problem p ∈ P
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— lower values of tp,s indicate better performance. The performance ratio is defined
by first setting rp,s = tp,s/min{tp,s̄ : s̄ ∈ S}, for p ∈ P and s ∈ S. Then, one defines
ρs(τ) = (1/|P|)|{p ∈ P : rp,s ≤ τ}|. Thus, the value of ρs(1) is the probability of the
solver s winning over the remaining ones. If we are only interested in determining
which solver is the best (in the sense of winning the most), we compare the values
of ρs(1) for all the solvers. At the other end, solvers with the largest probabilities
ρs(τ) for large values of τ are the most robust ones (meaning the ones that solved the
largest number of problems in P).

5.3.2. Purity metric. The first metric considered by us is called Purity [4] and
is used to compare the Pareto fronts obtained by different solvers. Again, let S be
the set of solvers and P be the set of problems. Let Fp,s denote the approximated
Pareto front determined by the solver s ∈ S for problem p ∈ P . Let also Fp denote
an approximation to the true Pareto front of problem p, calculated by first forming
∪s∈SFp,s and then removing from this set any dominated points. The Purity metric

consists then in computing, for solver s ∈ S and problem p ∈ P , the ratio c
Fp
p,s/cp,s,

where c
Fp

p,s = |Fp,s∩Fp| and cp,s = |Fp,s|. This metric is thus represented by a number

t̄p,s = c
Fp

p,s/cp,s between zero and one. Higher values for t̄p,s indicate a better Pareto
front in terms of the percentage of nondominated points.

When using performance profiles to analyze the performance of the solvers mea-
sured by the Purity metric, we need to set tp,s = 1/t̄p,s (then, again, lower values of
tp,s indicate better performance). Note that when a solver s is not able to obtain a
single nondominated point in Fp, we obtain t̄p,s = 0, and thus tp,s = +∞, meaning
that solver s was ‘unable’ to solve problem p.

The Purity metric has shown to be sensitive to the number and type of solvers
considered in a comparison. In fact, when two ‘similar’ solvers produce similar ap-
proximated Pareto fronts, their performance under the Purity metric deteriorates
significantly since many of these points will dominate each other. This effect will
then let a third solver easily win among the three. Thus, we decided to only compare
solvers in pairs when using the Purity metric. Still, since we have two solvers and a
large number of problems, we present the results using performance profiles.

An additional difficulty is the inclusion of stochastic solvers in numerical com-
parisons. Since two different runs of such solvers may produce different solutions, we
decided to make 10 runs for each stochastic solver on each single problem. From these
10 runs, we then selected the best and the worst run. The best run simply consists
of the run that has the higher percentage of nondominated solutions when compared
to the remaining ones (considering as a reference Pareto front the one obtained from
the ten runs performed). In a similar way, the worst run is selected as the one with
the lowest percentage of nondominated points.

5.3.3. Spread metrics. The second type of metrics used by us tries to measure
the extent of the spread achieved in a computed Pareto front. Since we are interested
in computing a set of points that span the entire true Pareto front, the proposed
metrics have to consider first ‘extreme points’ in the objective function space Rm,
which will be the same for the application of the metrics on any of the obtained fronts.
The description of the computation of such ‘extreme points’ will be given later in this
subsection. We considered essentially two formulae for the spread metrics.

The first formula attempts at measuring the maximum size of the ‘holes’ of an
approximated Pareto front. Let us assume that solver s ∈ S has computed, for
problem p ∈ P , an approximated Pareto front with N points, indexed by 1, . . . , N ,
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to which we add the ‘extreme points’ mentioned above and indexed by 0 and N + 1.
The metric Γ > 0 consists of setting

Γ = Γp,s = max
j∈{1,...,m}

(

max
i∈{0,...,N}

{δi,j}

)

, (5.1)

where δi,j = (fi+1,j − fi,j) (and we assume that the objective function values have
been sorted by increasing order for each objective j). For m = 2, the quantities δi,j ,
i = 0, . . . , N , j = 1, . . . ,m, are depicted in Figure 5.1. In this case, the metric reduces
to consider the maximum distance in the infinity norm between consecutive points in
the approximated Pareto front.

f
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Computed extreme points

Obtained points

δ
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δ
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δ
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N−1,1

δ
N,2

δ
N−1,2

Fig. 5.1. Distances between points in an approximated Pareto front to be used by the metrics
Γ and ∆. For simplicity, we depict the case for m = 2.

In [17] a different metric was proposed for m = 2 to indicate how well the points
are distributed in an approximated Pareto front. The major drawback of that measure
is that it cannot be easily extended to problems with more than two components in
the objective function. In fact, it uses the concept of consecutive points lying in
the approximated Pareto front, which is not possible to define without ambiguity for
m > 2. The following formula, however, extends the measure of distribution of an
approximated front, for higher dimensional objective spaces (m ≥ 2):

∆ = ∆p,s = max
j∈{1,...,m}

(

δ0,j + δN,j +
∑N−1

i=1 |δi,j − δ̄j |

δ0,j + δN,j + (N − 1)δ̄j

)

, (5.2)

where δ̄j , for j = 1, . . . ,m, is the average of the distances δi,j , i = 1, . . . , N − 1. In
our numerical experience we have nevertheless compared the proposed metric of [17]
with (5.2) for m = 2, obtaining very similar results. Thus, we decided to use (5.2),
which allows us to include in the test set problems with more than two components
for the objective function.

Regarding the computation of the ‘extreme points’ in the objective function
space Rm, since the true Pareto front is not known for the majority of the prob-
lems in the test set, they must be determined, for each problem p ∈ P , from the
obtained Pareto fronts Fp,s for all s ∈ S. Moreover, in an attempt to have informa-
tion as good as possible, we considered all runs of all solvers (including the ones for
which the results are not reported in this paper). For each problem, we first removed
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the dominated points from the reunion of all these fronts. Then, for each component
of the objective function, we selected the pair corresponding to the highest pairwise
distance measured using fj(·). Note that this procedure can certainly be expensive if
we have many points in all these fronts, but such computation can be implemented
efficiently and, after all, it is part of the benchmarking and not of the optimization
itself.

We also need to use performance profiles when analyzing the results measured in
terms of the Γ and ∆ metrics since, again, one has the issue of having several solvers
on many problems. In these cases, we have set tp,s = Γp,s or tp,s = ∆p,s depending
on the metric considered.

5.3.4. Data profiles. One possible way of assessing how well derivative-free
solvers perform in terms of the number of evaluations is given by the so-called data
profiles proposed in [37] for single objective optimization. Suppose that there is only
one objective function f(x). For each solver, a data profile consists of a plot of the
percentage of problems that are solved for a given budget of function evaluations. Let
hp,s be the number of function evaluations required for solver s ∈ S to solve problem
p ∈ P (up to a certain accuracy). The data profile cumulative function is then defined
by

ds(σ) =
1

|P|
|{p ∈ P : hp,s ≤ σ}|. (5.3)

A critical issue related to data profiles is when a problem is considered as being solved.
The authors in [37] suggested that a problem is solved (up to some level ε of accuracy)
when

f(x0)− f(x) ≥ (1− ε)(f(x0)− fL), (5.4)

where x0 is the initial guess and fL is the best obtained objective function value
among all solvers.

In the multiobjective case we need to consider instead a reference Pareto front Fp

in order to determine whether a problem p ∈ P has been solved or not. Then, a
solver s is said to solve problem p, up to an accuracy of ε, if the percentage of points
obtained in the reference Pareto front Fp is equal to or greater than 1− ε, i.e., if

|Fp,s ∩ Fp|

|Fp|/|S|
≥ 1− ε, (5.5)

where Fp,s is the approximated Pareto front obtained by solver s on problem p. Note
that in (5.5) the number of points in Fp is divided by the number of solvers in S in an
attempt to consider that all solvers are expected to contribute equally to the reference
Pareto front.

The reference Pareto front can be computed in a number of possible ways depen-
ding on the choice of solvers (and on how long we let them run). To have meaningful
results for our data profiles (in other words, a significant number of points in the
numerator of (5.5)), we considered only the solvers in the set S chosen for comparison
and a maximum number of 5000 function evaluations. The reference Pareto front is
then computed by forming the union of the output fronts of the solvers and eliminating
from there all the dominated points.

Following [37], we also divided σ in (5.3) by n+ 1 (the number of points needed
to build a simplex gradient). Finally, note also that we did not consider any spread
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metric for data profiles since such metrics might not decrease monotonically with the
budget σ of function evaluations (a consequence of this fact would be that a problem
could be considered unsolved after had been considered solved earlier in the running
sequence).

6. Numerical experience.

6.1. Comparing different DMS variants. The simplest possible version of
direct multisearch (DMS), Algorithm 2.1, initializes the list of nondominated points
with a singleton (L0 = {(x0;α0)}) and considers an empty search step in all iterations.
This version is referred to as DMS(1). Since no initial guess has been provided along
with the majority of the problems in our test set, it was our responsibility to define
a default value for the initial point x0 to be used in DMS(1). A reasonable (perhaps
the most neutral) choice is x0 = (u+ ℓ)/2.

Since DMS is competing against population based algorithms, it is desirable to
equip it with the possibility of starting from an initial list different from a singleton.
Such a list can be computed by first generating a set S0 of points and then eliminating
from those the dominated ones. Let Snd

0 denote the resulting set. The initial list is
then given by L0 = {(x;α0), x ∈ Snd

0 }. We considered the three following ways of
generating S0 (taking |S0| = n and S0 ⊆ Ω = [ℓ, u] in all of them):

• DMS(n,line), where S0 is formed by equally spaced points on the line con-
necting ℓ and u, i.e., S0 = {ℓ+ (i/(n− 1))(u− ℓ), i = 0, . . . , n− 1};

• DMS(n,lhs), where S0 is generated using the Latin Hypercube Sampling strat-
egy (see [35]). In this strategy, a multi-interval in Rn is partitioned into n
multi-subintervals of equal dimension and points are uniformly randomly gen-
erated in each one of these multi-subintervals. The Latin Hypercube Sam-
pling strategy generates random points by randomly permuting these points
among the multi-subintervals. Our numerical implementation uses the MAT-
LAB function lhsdesign from the Statistics Toolbox, followed by a shifting
and scaling of the generated points in [0, 1]n to the multi-interval [ℓ, u];

• DMS(n,rand), where the n elements of S0 are uniformly randomly generated
in the multi-interval [ℓ, u] (see, for instance, [40]). In this case, our numerical
implementation uses the MATLAB function rand, followed by a shifting and
scaling of the generated points in [0, 1]n to the multi-interval [ℓ, u].

Algorithm 2.1 allows for a variety of ways of selecting the trial list from the
filtered list. We chose to work with Algorithm 2.3, meaning that Ltrial = Lfiltered.
The strategy chosen to manage the list consisted of always add points to the end of
the list and move a point already selected as a poll center to the end of the list (at
the end of an iteration).

For all the variants tested (DMS(1), DMS(n,line), DMS(n,lhs), and DMS(n,rand)),
we chose1 Dk = [In − In], where In is the identity matrix of order n. We have cho-
sen ρ̄(·) as the constant, zero vector of dimension m. The step size parameter was
halved in unsuccessful iterations and maintained in successful ones. Note that since
the search step is empty these choices respect the requirements for global convergence
by integer lattices (see Section A.1).

Also, for all variants, we picked α0 = 1 and adopted a stopping criterion consisting

1It is important to note that the result of Theorem 4.9 was derived under the assumption that
the set of refining directions was dense in the unit sphere. We also tried in our numerical setting to
use a poll set Dk equal to [Qk − Qk] (where Qk is an orthogonal matrix computed by randomly
generating the first column) but the results were not better.
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Fig. 6.1. Comparing DMS(n,line) and DMS(1) based on performance profiles of the Purity
metric.
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Fig. 6.2. Comparing DMS(n,line) and DMS(n,lhs) based on performance profiles of the Purity
metric.

of the step size αk being lower than a predefined threshold αǫ = 10−3 for all points
in the list or a maximum of 20000 objective function evaluations.

Figures 6.1–6.3 depict performance profiles of the Purity metric for the four above
mentioned variants of DMS. When a stochastic variant is involved (DMS(n,lhs) or
DMS(n,rand)), the figures show the best and worst run comparisons as explained
in Subsection 5.3.2. We can easily see that DMS(n,line) is the best variant, either
in terms of efficiency or robustness, although the gains when comparing to DMS(1)
are not overwhelming. In fact, reading the values of the curves of Figure 6.1 for
τ = 1, we can observe that both DMS(n,line) and DMS(1) are able to attain the best
metric value for close to 70% of the problems. In terms of robustness, and reading
the same curves but now for large values of τ , we observe that both DMS(n,line) and
DMS(1) are able to provide at least one nondominated point for slightly more than
90% of the problems. However, DMS(n,line) is significantly better than DMS(n,lhs)
(see Figure 6.2) and DMS(n,rand) (see Figure 6.3), in terms of both efficiency and
robustness, even when considering the best Pareto front obtained for 10 runs. For the
sake of brevity, we do not provide pairwise comparisons among DMS(1), DMS(n,lhs),
and DMS(n,rand).

The performance profiles of the spread metrics Γ and ∆ are given in Figure 6.4
for average values of the stochastic variants (the minimum and maximum values were
also analyzed and do not change the conclusions stated next). In general, we can say
that DMS(1) and DMS(n,line) exhibit a similar performance in terms of both metrics,
better than the remaining ones regarding efficiency.
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Fig. 6.3. Comparing DMS(n,line) and DMS(n,rand) based on performance profiles of the
Purity metric.
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Fig. 6.4. Comparing DMS(1), DMS(n,line), DMS(n,lhs), and DMS(n,rand) based on perfor-
mance profiles of the Γ (left) and ∆ (right) metrics (taking average values for stochastic variants).

6.2. Comparing DMS to other solvers. In this section we present a com-
parison of the DMS(n,line) variant against the selected solvers AMOSA, BIMADS,
and NSGA-II (C version). The selected solvers have been tested using their default
parameters values except for the population size and number of iterations (genera-
tions). For AMOSA, we considered an initial temperature of 100, a final temperature
of 2.5 × 10−6, and a cooling factor of 0.6, yielding a total of 20650 objective func-
tion evaluations. For NSGA-II (C version), we set a population of 100 points for
200 generations, yielding a total of 20000 objective function evaluations. As men-
tioned before, for the DMS(n,line) solver, we imposed a stopping criterion consisting
of αk < αǫ = 10−3 for all points in the list or a maximum of 20000 objective function
evaluations. While AMOSA and NSGA-II (C version) always use the objective func-
tion evaluations budget, the DMS(n,line) may stop earlier due to the convergence of
all the points in the list to the requested step size accuracy. For BIMADS, a limit
of 20000 objective function evaluations is also imposed. The BIMADS delta criteria
was set to true meaning that the runs are also stopped when the step or mesh size
parameter falls below a threshold (which is set in some problem dependent way).

From the performance profile of Figure 6.5, we can observe that, when using the
Purity metric as a comparison measure, DMS(n,line) performs better than BIMADS
in terms of efficiency, being about the same with respect to robustness. Figure 6.6
compares DMS(n,line) to AMOSA, also in terms of the Purity metric, the former being
better for both the best and worst Pareto fronts obtained by AMOSA. Considering
the performance profiles plotted in Figure 6.7 for the Purity metric as well, we can
conclude that DMS(n,line) performs better than NSGA-II (C version) in terms of
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Fig. 6.5. Comparing DMS(n,line) and BIMADS based on performance profiles of the Purity
metric (only problems with two objective functions were considered).
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Fig. 6.6. Comparing DMS(n,line) and AMOSA based on performance profiles of the Purity
metric.

efficiency. Regarding robustness, and also looking at Figure 6.7, DMS(n,line) slightly
outperforms NSGA-II (C version) when considering its worst Pareto front, and slightly
looses compared to its best Pareto front.

Figure 6.8 depicts the performance profiles using the spread metrics Γ and ∆
(see (5.1) and (5.2)) for problems where m = 2 (again we only show the results for
average values of the stochastic variants as the ones for minimum and maximum
values do not affect our conclusions). One can observe that DMS(n,line) exhibits the
best overall performance for the Γ matric, although NSGA-II (C version) is slightly
more efficient in terms of the ∆ metric. Such conclusions are true mainly in terms of
efficiency, since the four solvers seem to be equally robust under both metrics. These
conclusions are also supported from the performance profiles of Figure 6.9 where all
the problems are considered (m ≥ 2) and BIMADS is excluded due to its limitation
to m = 2.

As previously mentioned, we did not use any metric which required the knowledge
of the true Pareto front. This set is known, however, for some of the problems, such
as Problems ZDT1–ZDT4 and ZDT6 (and is discontinuous for ZDT3).

When the true Pareto front is known, which is the case for these five problems (see
http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems), one
can also use the Purity metric to compare the approximated Pareto fronts to the
true one. Table 6.1 presents such results for the 5 problems under consideration.
There are analytical expressions for the Pareto fronts of these problems, where f2 is
given in terms of f1. We considered discretized forms of these fronts by letting f1
vary in a equally spaced grid of step 10−5. One can see, for problems ZDT1 and
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Fig. 6.7. Comparing DMS(n,line) and NSGA-II (C version) based on performance profiles of
the Purity metric.

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Γ performance profile for 10 runs

τ

ρ

 

 

DMS(n,line)
BIMADS
NSGA−II (C version)
AMOSA

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average ∆ performance profile for 10 runs

τ

ρ

 

 

DMS(n,line)
BIMADS
NSGA−II (C version)
AMOSA

1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Fig. 6.8. Comparing AMOSA, BIMADS, DMS(n,line), and NSGA-II (C version) based on
performance profiles of the Γ (left) and ∆ (right) metrics (taking average values for stochastic
variants); only problems with two objective functions were considered.

ZDT2, that at least 95% of the points in the approximated Pareto front computed by
DMS(n,line) are not dominated by the true ones (up to a certain precision). BIMADS
performed clearly the best for ZDT4. NSGA-II (C version) and AMOSA, on the other
hand, were unable to obtain a single nondominated point for all problems. Finally,
in Table 6.2 we provide the values of the spread metrics for the selected 4 solvers on
these 5 problems.

So far we have only reported numerical results about the quality of the approxi-
mated Pareto fronts, giving no indication on the number of evaluations of the objective
functions made by the different solvers. While NSGA-II (C version) and AMOSA took
all the available budget (20000 overall evaluations) for all the problems in the test set,
BIMADS and the different versions of DMS managed to solve a number of problems
without exhausting the budget. In Figures 6.10 and 6.11 we provide data profiles for
the four solvers under consideration, AMOSA, BIMADS, DMS(n,line), and NSGA-II
(C version), on the biobjective subset of our test set, corresponding to four values
of accuracy ε = 0.5, 0.25, 0.1, 0.05. We chose to report only results for the best ver-
sions of the stochastic solvers AMOSA and NSGA-II (C version). So, for instance,
in Figure 6.10 (left), we can conclude that if a budget of 1000 (simplex) evaluations
is imposed, then both BIMADS and DMS(n,line) were able to solve around 54% of
the problems in the sense of (5.5). These two solvers seem clearly the most efficient
ones for budgets up to 2500 (simplex) evaluations, being BIMADS better for more
accurate solutions and DMS(n,line) better for less accurate ones.

24



20 40 60 80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Γ performance profile for 10 runs

τ

ρ

 

 

DMS(n,line)
NSGA−II (C version)
AMOSA

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average ∆ performance profile for 10 runs

τ

ρ

 

 

DMS(n,line)
NSGA−II (C version)
AMOSA

1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Fig. 6.9. Comparing AMOSA, DMS(n,line), and NSGA-II (C version) based on performance
profiles of the Γ (left) and ∆ (right) metrics (taking average values for stochastic variants).

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
DMS(n,line) 0.974 0.950 0.804 0.029 0.992
BIMADS 0.126 0.176 0.083 0.915 0.682
NSGA-II (C version, best) 0.000 0.000 0.000 0.000 0.000
NSGA-II (C version, worst) 0.000 0.000 0.000 0.000 0.000
AMOSA (best) 0.000 0.000 0.000 0.000 0.000
AMOSA (worst) 0.000 0.000 0.000 0.000 0.000

Table 6.1
The Purity metric values (t̄p,s, see Section 5.3.2) for true Pareto front versus selected solvers.

6.3. Improving DMS performance. When solving practical derivative-free
optimization problems, the major computational burden lies typically on the evalua-
tion of the functions involved, which should then be the main focus when improving
efficiency. Being DMS a direct-search method, the implementation of a cache could
naturally lead to effective improvement of the code performance. We implemented
a simple cache procedure by which before evaluating a point, one checks, using the
infinity norm, if it has been previously evaluated. Then, objective function values will
not be computed for points whose distance from a previously evaluated point is less
than a tolerance (set to 10−3).

Another important concern, now from the multiobjective aspect of the problem,
is the capability of a solver to compute the entire Pareto front in an uniform way, or
at least to generate a high number of evenly spread nondominated points. Having
such goal in mind, we can use one of the spread metrics described before to order
the current list Lk of nondominated points, before selecting a new poll center. For
simplicity, we chose the metric (5.1). We have thus experimented a version of DMS
where, at a given iteration, the new poll center will be the point corresponding to the
highest value of Γ in the list (with ties broken by selecting the one with largest value
of the step size parameter).

The new version of DMS corresponding to the above described strategies was
named DMS(n,line,cache,spread). In Figures 6.12 and 6.13, we report performing pro-
files comparing this new version of DMS and the best solvers tested, namely BIMADS
and NSGA-II (C version), for the Purity metric. The corresponding data profiles can
be found in Figure 6.14 for the five solvers under consideration. Figure 6.15 depicts
the results obtained for the two spread metrics, Γ and ∆.
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Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
Γ

DMS(n,line) 0.044 0.010 0.537 0.125 3.808
BIMADS 0.040 0.035 0.197 0.145 1.791
NSGA-II (C version) 0.053 0.161 0.172 7.135 1.894
AMOSA 0.240 0.122 0.186 0.094 1.652

∆
DMS(n,line) 0.555 0.492 1.464 0.696 1.184
BIMADS 1.378 1.389 1.604 1.942 1.313
NSGA-II (C version) 0.660 0.788 1.326 0.986 0.998
AMOSA 0.800 0.795 1.284 0.915 1.287

Table 6.2
The Γ and ∆ metrics values for the selected solvers. (Only average values are provided for

stochastic solvers.)
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Fig. 6.10. Data profiles for AMOSA, BIMADS, DMS(n,line), and NSGA-II (C version) solvers
(ε = 0.5 on the left and ε = 0.25 on the right).

From the observation of these profiles, we can conclude that the modifications
considered, implemented in the variant DMS(n,line,cache,spread), led to an even fur-
ther improving of the efficiency and robustness of the basic DMS algorithm.

7. Conclusions. In this paper we introduced, analyzed, and tested a new algo-
rithmic approach for multiobjective optimization (MOO) without derivatives. This
approach has been called direct multisearch (DMS) since it naturally generalizes direct
search (of directional type) from single to multiobjective optimization. The principles
of DMS are extremely simple. Instead of updating a single point per iteration, it up-
dates an iterate list of feasible nondominated points. Iteration success is measured by
changes in the iterate list. Each iteration of DMS includes provision for an optional
search step. Polling is also applied, as in single objective optimization, at a selected
point of the iterate list. Both steps can add points to the iterate list, forming a filtered
intermediate list, and there is significant flexibility in the way a trial list is formed
from this filtered list.

The goal of DMS is to approximate the true (global, if possible) Pareto front,
although theoretically one is only able to prove that there is a limit point in a sta-
tionary form of this front, as no aggregation or scalarization technique is incorporated
in DMS. For this purpose, and to be able to state results for nonsmooth objective
functions, we used in this paper the notion of a Clarke-Pareto stationary or critical
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Fig. 6.11. Data profiles for AMOSA, BIMADS, DMS(n,line), and NSGA-II (C version) solvers
(ε = 0.1 on the left and ε = 0.05 on the right).
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Fig. 6.12. Comparing DMS(n,line,cache,spread) and BIMADS based on performance profiles
of the Purity metric (only problems with two objective functions were considered).

point. Our results can be further generalized for discontinuous objective functions
following the steps in [47].

Our numerical experience has shown that DMS is a highly competitive technique
for derivative-free MOO. Although we tested a few variants of DMS, in particular
in what the initial list of nondominated points is concerned, there are a number
of possible strategies which can be incorporated in the DMS framework and lead to
further possible improvements. In fact, the performance of DMS is already remarkably
good for the simple implementations tested on Sections 6.1 and 6.2 which do not
incorporate any dissemination or spreading techniques particularly designed for the
determination of the Pareto front. Such techniques could be easily fitted into DMS
by means of an appropriate search step (such as a swarm search step; see [45, 46]
for m = 1) or by selecting the poll centers using a spread metric (as reported in
Section 6.3 where it has been shown that such procedure and the use of a cache have
the potential to further improve the performance of the more basic versions).

In addition, one could also study the introduction of quadratic polynomial inter-
polation models in DMS to possibly improve the efficiency of DMS in what concerns
the search step (see [11] for what has been done in this respect in single objective
optimization). One could also think of incorporating linear polynomial interpolation
models (i.e., simplex gradients) to possibly improve the efficiency of an opportunistic
DMS poll step (see [10, 12] for the single objective case).

DMS could be parallelized in many different ways, a obvious one being the par-
allelization of polling. In fact, complete polling for MOO requires a total of m|Dk|
function evaluations, which could be distributed among the available processors. A
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Fig. 6.13. Comparing DMS(n,line,cache,spread) and NSGA-II (C version) based on perfor-
mance profiles of the Purity metric.
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Fig. 6.14. Data profiles for AMOSA, BIMADS, DMS(n,line), DMS(n,line,cache,spread), and
NSGA-II (C version) solvers (ε = 0.5 on the left and ε = 0.05 on the right).

search step could also lead to various parallelization schemes.
Finally, if the user of our methodology has some type of preference for an objective

function (or for some of them), there are several places where such intention can be
specified. In fact, there is flexibility to show preference (for some of the objective
functions) in the initialization of the iterate list, in the search step, in the reordering
of the list and selection of the iterate point (poll center), in the form of polling, and,
finally, in the way the trial list is selected from the filtered list.

Appendix A. Appendix.

A.1. Globalization using integer lattices. When considering continuously
differentiable functions, a finite set of directions which satisfies appropriate integral-
ity requirements is enough to ensure convergence in single objective optimization.
Generalized Pattern Search (GPS) [1, 30] makes use of such a set of directions by
setting D = D.

Assumption A.1. The set D of positive spanning sets is finite and the elements
of D are of the form Gz̄j, j = 1, . . . , |D|, where G ∈ Rn×n is a nonsingular matrix
and each z̄j is a vector in Zn.

To deal with the presence of nondifferentiability, it is desirable to consider an
infinite set of directions D, which should be dense (after normalization) in the unit
sphere. However, if globalization is to be ensured by integer lattices, then some care
must be taken when generating the set D, as it is the case in Mesh Adaptive Direct
Search (MADS) [2], where generating iterates in integer lattices is guaranteed by the
first requirement of the next assumption.
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Fig. 6.15. Comparing AMOSA, BIMADS, DMS(n,line), DMS(n,line,cache,spread), and
NSGA-II (C version) based on performance profiles of the Γ (left) and ∆ (right) metrics (taking
average values for stochastic variants); only problems with two objective functions were considered.

Assumption A.2. Let D represent a finite set of positive spanning sets satisfying
Assumption A.1.

The set D is so that the elements dk ∈ Dk ⊆ D satisfy the following conditions:
1. dk is a nonnegative integer combination of the columns of D.
2. The distance between xk and the point xk + αkdk tends to zero if and only if

αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K.
3. The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈ Dk} are

positive spanning sets for Rn.
The third requirement above is not used in the convergence theory when applied

to nonsmooth objective functions, but is included for consistency with the smooth
case and because it is part of the MADS original presentation [2].

Also, the strategy for updating the step size parameter must conform to some
form of rationality.

Assumption A.3. The step size parameter is updated as follows: Choose a
rational number τ > 1, a nonnegative integer mmax ≥ 0, and a negative integer
mmin ≤ −1. If the iteration is successful, the step size parameter is maintained or
increased by taking αk,new = τm

+

αk, with m+ ∈ {0, . . . ,mmax}. Otherwise, the step

size parameter is decreased by setting αk,new = τm
−

αk, with m− ∈ {mmin, . . . ,−1}.

By setting β1 = τm
min

, β2 = τ−1, and γ = τm
max

, the updating strategy de-
scribed in Assumption A.3 conforms with those of Algorithm 2.1.

An additional condition imposes that the search step will be conducted in a
previously (implicitly defined) mesh (see Assumption A.4 below). We point out that
poll points must also lie on the mesh (i.e., Pk ⊂ Mk), but such a requirement is
trivially satisfied from the definition of the mesh Mk given below.

Assumption A.4. The search step in Algorithm 2.1 only evaluates points in

Mk =
⋃

x∈Ek

{x+ αkDz : z ∈ N|D|
0 },

where Ek is the set of all the points evaluated by the algorithm previously to itera-
tion k.
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As a result of the previous assumptions, we can state the desired convergence
result for the sequence of step size parameters, which was originally established by
Torczon [44] in the context of pattern search and generalized by Audet and Dennis
to GPS [1] and MADS [2] for single objective optimization.

Theorem A.1. Let Assumption 4.1 hold. Algorithm 2.1 under one of the As-
sumptions A.1 or A.2 combined with Assumptions A.3–A.4 and ρ̄(·) = 0 generates a
sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

Proof. In order to arrive to a contradiction, let us assume that there is a strictly
positive lower bound for the step size parameter. Classical arguments, similar to the
ones used by Torczon [44] and Audet and Dennis [1] for single objective optimization,
allow us to conclude that all the iterates and poll points (i.e., points of the form
xk + αkd, for d ∈ Dk) generated by DMS (Algorithm 2.1) lie in an integer lattice.
The intersection of a compact set with an integer lattice is finite and thus the number
of points which can be added to the iterate list is finite. It remains to show that the
algorithm cannot cycle among these finite number of points.

If a point is removed from the iterate list, then it is because it is dominated by
another point in the new iterate list. Thus, by transitivity, it can never be added
again to the iterate list. At each successful iteration, at least one new point is added
to the iterate list. Since the number of points which can be added is finite, the number
of successful iterations must also be finite, which, according to the step size updating
rules, contradicts the fact that there is a lower bound on the step size parameter.

A.2. Globalization by imposing sufficient decrease. A different globali-
zation strategy consists in using a forcing function, by considering ρ̄(·) = ρ(·) in
Algorithm 2.1, imposing sufficient rather than simple decrease when accepting new
iterates. The following result is relatively classic in nonlinear (single objective) op-
timization. Kolda, Lewis and Torczon [30] (see also [9, Section 7.7]) derive it in the
context of direct-search methods of directional type, when applied to single objective
optimization. We will need the following assumption (which, note, was already part
of Assumption A.2).

Assumption A.5. The distance between xk and the point xk + αkdk tends to
zero if and only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for all dk ∈ Dk and for any infinite subsequence K.
Note that Assumption A.5 is a weak condition on the set of directions D. A

normalized set of directions D dense in the unit sphere meets such a requirement.
Theorem A.2. Let Assumption 4.1 hold. Algorithm 2.1, when ρ̄(·) is a forcing

function and Assumption A.5 holds, generates a sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

Proof. Let us assume that lim infk→+∞ αk 6= 0, meaning that there is α∗ > 0
such that αk > α∗, for all k. From Assumption A.5, we then know that there is αd

∗ > 0
such that αk‖dk‖ > αd

∗, for all k and dk ∈ Dk. At each unsuccessful iteration k, the
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corresponding step size parameter is reduced by at least β2 ∈ (0, 1), and thus the
number of successful iterations must be infinite. Since ρ(·) is a non decreasing function,
which satisfies ρ(t) > 0, for t > 0, there exists ρ∗ > 0 such that ρ(αk) ≥ ρ(α∗) ≥ ρ∗
and ρ(αk‖dk‖) ≥ ρ(αd

∗) ≥ ρ∗, for all k and dk ∈ Dk, with ρ∗ = min(ρ(α∗), ρ(α
d
∗)),

taking into account what can happen in both the search and the poll steps.
At each successful iteration, any new point added to the current iterate list will

define a hypercube of length no smaller than ρ∗ in the set of points nondominated
by those in the iterate list, where it will be later impossible to generate a new point.
This and the fact that the number of successful iterations is infinite contradict As-
sumption 4.1.
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