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Abstract

We present a derivative-free separable quadratic modeling and cubic regularization technique
for solving smooth unconstrained minimization problems. The derivative-free approach is mainly
concerned with building a quadratic model that could be generated by numerical interpolation or
using a minimum Frobenius norm approach, when the number of points available does not allow to
build a complete quadratic model. This model plays a key role to generate an approximated gra-
dient vector and Hessian matrix of the objective function at every iteration. We add a specialized
cubic regularization strategy to minimize the quadratic model at each iteration, that makes use
of separability. We discuss convergence results, including worst case complexity, of the proposed
schemes to first-order stationary points. Some preliminary numerical results are presented to illus-
trate the robustness of the specialized separable cubic algorithm.
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1 Introduction

We consider unconstrained minimization problems of the form

min
x∈Rn

f(x), (1)

where the objective function f : Rn → R is continuously differentiable in Rn. However, we assume
that the derivatives of f are not available and that cannot be easily approximated by finite difference
methods. This situation frequently arises when f must be evaluated through black-box simulation
packages, and each function evaluation may be costly and/or contaminated with noise [13].

Recently [4, 25, 26], in a derivative-based context, several separable models combined with ei-
ther a variable-norm trust-region strategy or with a cubic regularization scheme were proposed for
solving (1), and their standard asymptotic convergence results were established. The main idea of
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these separable model approaches is to minimize a quadratic (or a cubic) model at each iteration, in
which the quadratic part is the second-order Taylor approximation of the objective function. With
a suitable change of variables, based on the Schur factorization, the solution of these subproblems
is trivialized and an adequate choice of the norm at each iteration permits the employment of a
trust-region reduction procedure that ensures the fulfillment of global convergence to second-order
stationary points [4, 25]. In that case, the separable model method with a trust-region strategy
has the same asymptotic convergence properties as the trust-region Newton method. Later in [26],
starting with the same modeling introduced in [25], the trust-region scheme was replaced with a
separable cubic regularization strategy. Adding convenient regularization terms, the standard asymp-
totic convergence results were retained, and moreover the complexity of the cubic strategy for finding
approximate first-order stationary points became O(ε−3/2). For the separable cubic regularization
approach used in [26], complexity results with respect to second-order stationarity were also estab-
lished. We note that regularization procedures serve to the same purpose and are strongly related
to trust-region schemes, with the advantage of possessing improved worst-case complexity (WCC)
bounds; see, e.g., [1, 2, 5, 6, 8, 20, 22, 23, 24, 28, 32].

However, as previously mentioned, the separable cubic approaches developed in [4, 25, 26] are based
on the availability of the exact gradient vector and the exact Hessian matrix at every iteration. When
exact derivatives are not available, quadratic models which are based only on the objective function
values, computed at sample points, can be obtained retaining good quality of approximation of the
gradient and the Hessian of the objective function. These derivative-free models can be constructed
by means of polynomial interpolation or regression or by any other approximation technique. These
models are called, depending on their accuracy, fully-linear or fully-quadratic; see [10, 11, 13] for
details.

Fully-linear and fully-quadratic models are the basis for derivative-free optimization trust-region
methods [12, 13, 30] and have also been successfully used in the definition of a search step for uncon-
strained directional direct search algorithms [14]. In the latter, minimum Frobenious norm approaches
are adopted, when the number of points available does not allow the computation of a determined
interpolation model.

This state of affairs motivated us to develop a derivative-free separable version of the regularized
method introduced in [26]. This means that we will start with a derivative-free quadratic model,
which can be obtained by different schemes, to obtain an approximated gradient vector and Hessian
matrix per iteration, and then we will add the separable regularization cubic terms associated with
an adaptive regularization parameter to guarantee convergence to stationary points.

The paper is organized as follows. In Section 2 we present the main ideas behind the derivative-
based separable modeling approaches. Section 3 revises several derivative-free schemes for building
quadratic models. In Section 4 we describe our proposed derivative-free separable cubic regularization
strategy, and discuss the associated convergence properties. Section 5 reports numerical results to give
further insight into the proposed approach. Finally, in Section 6 we present some concluding remarks.

Throughout, unless otherwise specified, we will use the Euclidean norm ‖x‖ = (x>x)1/2 on Rn,
where the inner product x>x =

∑n
i=1 x

2
i . For a given ∆̃ > 0 we will denote the closed ball B(x; ∆̃) =

{y ∈ Rn | ‖y − x‖ ≤ ∆̃}.
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2 Separable Cubic Modeling

In the standard derivative-based quadratic modeling approach, for solving (1), a quadratic model of
f(x) around xk is constructed by defining the model of the objective function as

mk(s) = fk + g>k s+
1

2
s>Hks, (2)

where fk = f(xk), gk = ∇f(xk) is the gradient vector at xk, and Hk is either the Hessian of f at xk,
∇2f(xk), or a symmetric approximation of it. The step sk is the minimizer of mk(s).

In [25], instead of using the standard quadratic model associated with Newton’s method, the
equivalent separable quadratic model

mS
k (y) = fk + (Q>k gk)

>y +
1

2
y>Dky (3)

was considered to approximate the objective function f around the iterate xk. In (3), the change of
variables y = Q>k s is used, where the spectral (or Schur) factorization of Hk:

Hk = QkDkQ
>
k , (4)

is computed at every iteration. In (4), Qk is an orthogonal n × n matrix whose columns are the
eigenvectors of Hk, and Dk is a real diagonal n× n matrix whose diagonal entries are the eigenvalues
of Hk. Let us note that since Hk is symmetric then (4) is well-defined for all k. We also note that (3)
may be non-convex, i.e., some of the diagonal entries of Dk could be negative.

For the separable regularization counterpart in [26], the model (3) is kept and a cubic regularization
term is added:

mSR
k (y) = fk + (Q>k gk)

>y +
1

2
y>Dky + σk

1

6

n∑
i=1

|yi|3, (5)

where σk ≥ 0 is dynamically obtained. Note that a 1/6 factor is included in the last term of (5) to
simplify derivative expressions. Notice also that, since Dk is a diagonal matrix, models (3) and (5)
are indeed separable.

As a consequence, at every iteration k the subproblem

min
y∈Rn

mSR
k (y)

is solved to compute the vector yk, and then the step will be recovered as sk = Qkyk.
The gradient of the model mSR

k (y), given by (5), can be written as follows:

∇mSR
k (y) = Q>k gk +Dky +

σk
2
ûk,

where the i-th entry of the n-dimensional vector ûk is equal to |yi|yi. Similarly, the Hessian of (5) is
given by

∇2mSR
k (y) = Dk + σk diag(|yi|).

To solve ∇mSR
k (y) = 0, and find the critical points, we only need to independently minimize n one-

dimensional special functions. These special one-variable functions are of the following form

h(z) = c0 + c1z + c2z
2 + c3|z|3.

The details on how to find the global minimizer of h(z) are fully described in [26, Sec. 3].
In the next section, we will describe several derivative-free alternatives to compute a model of type

(2), to be incorporated in the separable regularized model (5).
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3 Fully-linear and Fully-quadratic Derivative-free Models

Interpolation or regression based models are commonly used in derivative-free optimization as surro-
gates of the objective function. In particular, quadratic interpolation models are used as replacement
of Taylor models in derivative-free trust-region approaches [12, 30].

The terminology fully-linear and fully-quadratic, to describe a derivative-free model that retains
Taylor-like bounds, was first proposed in [13]. Definitions 3.1 and 3.2 provide a slightly modified
version of it, suited for the present work. Throughout this section, ∆max is a given positive constant
that represents an upper bound on the radii of the regions in which the models are built.

Assumption 3.1 Let f be a continuously differentiable function with Lipschitz continuous gradient
(with constant Lg).

Definition 3.1 [13, Definition 6.1] Let a function f : Rn → R, that satisfies Assumption 3.1, be
given. A set of model functions M = {m : Rn → R, m ∈ C1} is called a fully-linear class of models if:

1. There exist positive constants κef and κeg such that for any x ∈ Rn and ∆̃ ∈ (0,∆max] there
exists a model function m(s) in M , with Lipschitz continuous gradient, and such that

• the error between the gradient of the model and the gradient of the function satisfies

‖∇f(x+ s)−∇m(s)‖ ≤ κeg ∆̃, ∀s ∈ B(0; ∆̃), (6)

and

• the error between the model and the function satisfies

|f(x+ s)−m(s)| ≤ κef ∆̃2, ∀s ∈ B(0; ∆̃).

Such a model m is called fully-linear on B(x; ∆̃).

2. For this class M there exists an algorithm, which we will call a ‘model-improvement’ algorithm,
that in a finite, uniformly bounded (with respect to x and ∆̃) number of steps can

• either establish that a given model m ∈ M is fully-linear on B(x; ∆̃) (we will say that a
certificate has been provided),

• or find a model m ∈M that is fully-linear on B(x; ∆̃).

For fully-quadratic models, stronger assumptions on the smoothness of the objective function are
required.

Assumption 3.2 Let f be a twice continuously differentiable function with Lipschitz continuous Hes-
sian (with constant LH).

Definition 3.2 [13, Definition 6.2] Let a function f : Rn → R, that satisfies Assumption 3.2, be
given. A set of model functions M = {m : Rn → R, m ∈ C2} is called a fully-quadratic class of models
if:

1. There exist positive constants κef , κeg, and κeh such that for any x ∈ Rn and ∆̃ ∈ (0,∆max]
there exists a model function m(s) in M , with Lipschitz continuous Hessian, and such that
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• the error between the Hessian of the model and the Hessian of the function satisfies

‖∇2f(x+ s)−∇2m(s)‖ ≤ κeh ∆̃, ∀s ∈ B(0; ∆̃), (7)

• the error between the gradient of the model and the gradient of the function satisfies

‖∇f(x+ s)−∇m(s)‖ ≤ κeg ∆̃2, ∀s ∈ B(0; ∆̃), (8)

and

• the error between the model and the function satisfies

|f(x+ s)−m(s)| ≤ κef ∆̃3, ∀s ∈ B(0; ∆̃).

Such a model m is called fully-quadratic on B(x; ∆̃).

2. For this class M there exists an algorithm, which we will call a ‘model-improvement’ algorithm,
that in a finite, uniformly bounded (with respect to x and ∆̃) number of steps can

• either establish that a given model m ∈ M is fully-quadratic on B(x; ∆̃) (we will say that
a certificate has been provided),

• or find a model m ∈M that is fully-quadratic on B(x; ∆̃).

Algorithms for model certification or for improving the quality of a given model can be found in [13].
This quality is directly related to the geometry of the sample set used in its computation [10, 11].
However, some practical approaches have reported good numerical results related to implementations
that do not consider a strict geometry control [3, 17].

4 Derivative-free Separable Cubic Regularization Approach

In a derivative-free optimization setting, instead of (2), we will consider the following quadratic model

m̃k(s) = fk + g̃>k s+
1

2
s>H̃ks,

where g̃k = ∇m̃k(xk) and H̃k = ∇2m̃k(xk) are good quality approximations of gk and Hk, respectively,
built using interpolation or a minimum Frobenius norm approach (see Chapters 3 and 5 in [13]).
Hence, analogous to the discussion in Section 2, by using the change of variables y = Q̃>k s, where
H̃k = Q̃kD̃kQ̃

>
k , with Q̃k an orthogonal n× n matrix whose columns are the eigenvectors of H̃k, and

D̃k is a real diagonal n × n matrix whose diagonal entries are the eigenvalues of H̃k, the equivalent
separable quadratic model

m̃S
k (y) = fk + (Q̃>k g̃k)

>y +
1

2
y>D̃ky (9)

is used for the approximation of the objective function f around the iterate xk. We then regularize (9)
by adding a cubic or a quadratic term, depending on having been able to compute a fully-quadratic
or a fully-linear model, respectively:

m̃SR
k (y) = fk + (Q̃>k g̃k)

>y +
1

2
y>D̃ky + σk

1

p!

n∑
i=1

|yi|p,
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where p ∈ {2, 3} and σk ≥ 0 is dynamically obtained.
As a consequence, at every iteration k the subproblem

min
y∈Rn

m̃SR
k (y) subject to

ξ

σk
≤ ‖y‖∞ ≤ ∆, (10)

is solved to compute the vector yk, and then the step will be recovered as sk = Q̃kyk.
The constraint ‖y‖∞ ≤ ∆, where ∆ > 0 is a fixed given parameter for all k, is necessary to ensure

the existence of a solution of problem (10) in some cases. Indeed, since some diagonal entries of D̃k

might be negative, for p = 2 the existence of an unconstrained minimizer of the objective function
in (10) is not guaranteed. In the case of p = 3 and any σk > 0, the existence of an unconstrained
minimizer of the same function is guaranteed. Nevertheless, if some diagonal entries of D̃k are negative,
and σk is still close to zero, imposing the constraint ‖y‖∞ ≤ ∆ prevents the obtained vector y from
being too large, and therefore avoids unnecessary numerical difficulties when solving (10).

The additional constraint ‖y‖∞ ≥ ξ
σk

relates the stepsize with the regularization parameter and is
required to establish WCC results. A similar strategy has been used in [8] when building models using
a probabilistic approach. As we will see in Section 4, this additional lower bound does not prohibit the
iterative process to drive the first-order stationarity measure below any given small positive threshold.

In this case, by solving n one-dimensional independent minimization problems in the closed in-
tervals [−∆,−ξ/σ] and [ξ/σ,∆], we are being more demanding than the original constraint. These
one-variable functions are of the form

h(z) = c0 + c1z + c2z
2 + c3|z|3.

The details on how to find the global minimizer of h(z) on the closed and bounded intervals [−∆,−ξ/σ]
and [ξ/σ,∆], for ∆ > 0 and ξ/σ > 0, are similar to the ones described in [26, Sec. 3]. A practical
approach for the resolution of (10) will be suggested and tested in Section 5.

The following algorithm is an adaptation of Algorithm 2.1 in [26], for the derivative-free case.

Algorithm 1
Let α > 0, σsmall > 0, η > 1, and ξ > 0 be algorithmic parameters. Assume that x0 ∈ Rn is a given
initial approximation to the solution of problem (1). Initialize k ← 0.

Step 1: Choose σk = σsmall and ∆ > ξ
σk

.

Step 2: Build a quadratic polynomial model m̃k(s) = fk + g̃>k s + 1
2s
>H̃ks, by selecting points in

B(xk,
ξ
σk

) (fully-linear, minimum Frobenious norm models or fully-quadratic polynomial models can
be considered, depending on the number of points available for reuse or on the effort allowed in terms
of number of function evaluations). Set p = 2 (respectively p = 3) if the computed model is fully-linear
(respectively fully-quadratic).

Step 3: Compute a solution strial of

Minimize g̃>k s+
1

2
s>H̃ks+

σk
p!

n∑
i=1

|[Q̃>k s]i|p subject to
ξ

σk
≤ ‖Q̃>k s‖∞ ≤ ∆, (11)

where H̃k = Q̃kD̃kQ̃
>
k is a Schur factorization of H̃k.
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Step 4: Test the sufficient decrease condition

f(xk + strial) ≤ f(xk)− α
n∑
i=1

|[Q̃>k strial]i|p. (12)

If (12) is fulfilled, define sk = strial, xk+1 = xk + sk, update k ← k + 1 and go to Step 1. Otherwise
set σnew = ησk, update σk ← σnew, and go to Step 2.

Remark 4.1 The upper bound constraint in (11) does not affect the separability nature of Step 3, since
it can be equivalently replaced by |(Q̃>k s)i| ≤ ∆ for all i. However, the lower bound in (11) affects the
separability of Step 3. Two strategies have been developed to impose the lower bound constraint in (11)
while maintaining the separability approach. These strategies will be described in Section 5.

In the following subsections, the convergence and worst-case behavior of Algorithm 1 will be
analyzed independently for the fully-linear and fully-quadratic cases.

4.1 Fully-linear Approach

This subsection will be devoted to the analysis of the WCC of Algorithm 1 when fully-linear models
are used. For that, we need the following technical lemma.

Lemma 4.1 [29, Lemma 1.2.3] Let Assumption 3.1 hold. Then, we have∣∣∣f(x+ s)− f(x)−∇f(x)>s
∣∣∣ ≤ Lg

2
‖s‖2. (13)

As it is common in nonlinear optimization, we assume that the norm of the Hessian of each model is
bounded.

Assumption 4.1 Assume that the norm of the Hessian of the model is bounded, i.e.,

‖H̃k‖ ≤ κH̃ , ∀k ≥ 0 (14)

for some κH̃ > 0.

We also assume that the trial point provides decrease to the current model, i.e., that for p = 2 the
value of the objective function of (11) at strial is less than or equal to its value at s = 0.

Assumption 4.2 Assume that

g̃>k strial +
1

2
s>trialH̃kstrial +

σk
2

n∑
i=1

[Q̃>k strial]
2
i ≤ 0. (15)

Clearly, (15) holds if strial is a global solution of (11) for p = 2. Hence, taking advantage of our
separability approach, the vector strial obtained at Step 3 of Algorithm 1 satisfies (15).

In the following lemma, we will derive an upper bound on the number of function evaluations
required to satisfy the sufficient decrease condition (12), which in turn guarantees that every iteration
of Algorithm 1 is well-defined. Moreover, we also obtain an upper bound for the regularization
parameter.
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Lemma 4.2 Let Assumptions 3.1, 4.1, and 4.2 hold and assume that at Step 2 of Algorithm 1 a
fully-linear model is always used. In order to satisfy condition (12), with p = 2, Algorithm 1 needs at
most 

log
([

2
(
α+

Lg

2 + κeg +
κH̃
2

)]
/σsmall

)
log η

+ 1 (16)

function evaluations, not accounting for the ones required for model computation. In addition, the
maximum value of σk for which (12) is satisfied, is given by

σmax = max

{
σsmall, 2η

(
α+

Lg
2

+ κeg +
κH̃
2

)}
. (17)

Proof First, we will show that if

σk ≥ 2

(
α+

Lg
2

+ κeg +
κH̃
2

)
(18)

then the sufficient decrease condition (12) of Algorithm 1 is satisfied for p = 2.
In view of (15), we have

f(xk + strial)− f(xk) ≤ f(xk + strial)− f(xk)− g̃>k strial −
1

2
s>trialH̃kstrial −

σk
2

n∑
i=1

[Q̃>k strial]
2
i

≤ |f(xk + strial)− f(xk)−∇f(xk)
>strial|+ |(∇f(xk)− g̃k)>strial|

+

∣∣∣∣12s>trialH̃kstrial

∣∣∣∣− σk
2

n∑
i=1

[Q̃>k strial]
2
i .

Thus, by using (6), (13), (14), and ‖strial‖ ≥ ξ
σk

(due to Step 3 of Algorithm 1), we obtain

f(xk + strial)− f(xk) ≤
Lg
2
‖strial‖2 + κeg

ξ

σk
‖strial‖+

κH̃
2
‖strial‖2 −

σk
2

n∑
i=1

[Q̃>k strial]
2
i

≤
(
Lg
2

+ κeg +
κH̃
2

)
‖strial‖2 −

σk
2

n∑
i=1

[Q̃>k strial]
2
i

=

(
Lg
2

+ κeg +
κH̃
2
− σk

2

) n∑
i=1

[Q̃>k strial]
2
i

≤ −α
n∑
i=1

[Q̃>k strial]
2
i ,

where the equality in the third line follows from the fact that Q̃ is an orthogonal n × n matrix and
so ‖strial‖2 = ‖Q̃>k strial‖2 =

∑n
i=1[Q̃>k strial]

2
i , and the last inequality holds due to (18).

Now, from the way σk is updated at Step 4 of Algorithm 1, it can be easily seen that for the
fulfillment of (12) with p = 2 we need

log
([

2
(
α+

Lg

2 + κeg +
κH̃
2

)]
/σsmall

)
log η

+ 1
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function evaluations, and, additionally, the upper bound on σk at (17) is derived from (18). 2

The following assumption, which holds for global solutions of subproblem (11) (with p = 2),
is central in establishing our WCC results. For similar assumptions required to obtain worst-case
complexity bounds see [2, 24].

Assumption 4.3 Assume that, for all k ≥ 0,

‖Q̃>k strial‖∞ =
ξ

σk
, or ‖Q̃>k strial‖∞ = ∆,

or

∥∥∥∥∥∥∇s
[
g̃>k s+

1

2
s>H̃ks+

σk
2

n∑
i=1

[Q̃>k s]
2
i

]
s=strial

∥∥∥∥∥∥ ≤ β1‖strial‖, (19)

for some β1 > 0.

Under this assumption, we are able to prove that, when the trial point is not on the boundary of
the feasible region of (11) (with p = 2), then the norm of the gradient of the objective function at the
new point is of the same order as the norm of the trial point.

Lemma 4.3 Let Assumptions 3.1, 4.1, 4.2, and 4.3 hold. Then, we have

‖Q̃>k strial‖∞ =
ξ

σk
or ‖Q̃>k strial‖∞ = ∆, (20)

or
‖∇f(xk + strial)‖ ≤ κ1‖strial‖,

where κ1 = Lg + κeg + κH̃ + σmax + β1, and σmax was defined in Lemma 4.2.

Proof Assume that none of the equalities at (20) hold. We have ∇sm̃SR
k (strial) = g̃k + H̃kstrial +

r(strial), where

r(strial) = σkQ̃k

(
[Q̃>k strial]1, . . . , [Q̃

>
k strial]n

)>
.

Now, by using Assumption 3.1, (14), and (6), we have∥∥∇f(xk + strial)−∇sm̃SR
k (strial)

∥∥ =
∥∥∥∇f(xk + strial)−

(
g̃k + H̃kstrial + r(strial)

)∥∥∥
≤ ‖∇f(xk + strial)−∇f(xk)‖+ ‖∇f(xk)− g̃k‖

+
∥∥∥H̃kstrial

∥∥∥+ ‖r(strial)‖

≤
(
Lg + κeg + κH̃ + σmax

)
‖strial‖.

Therefore, in view of (19), we have

‖∇f(xk + strial)‖ ≤ ‖∇f(xk + strial)−∇sm̃SR
k (strial)‖+ ‖∇sm̃SR

k (strial)‖
≤
(
Lg + κeg + κH̃ + σmax + β1

)
‖strial‖,

which completes the proof. 2

Now, we have all the ingredients to derive an upper bound on the number of iterations required by
Algorithm 1 to find a point at which the norm of the gradient is below some given positive threshold.
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Theorem 4.1 Given ε > 0, let Assumptions 3.1, 4.1, 4.2, and 4.3 hold. Let {xk} be the sequence
of iterates generated by Algorithm 1, and fmin ≤ f(x0). Then the number of iterations such that
‖∇f(xk+1)‖ > ε and f(xk+1) > fmin is bounded above by

f(x0)− fmin

αmin

{(
ξ

σmax

)2
, ( ε
κ1

)2

} , (21)

where σmax and κ1 were defined in Lemmas 4.2 and 4.3, respectively.

Proof In view of Lemma 4.3, we have

‖sk‖ ≥ min

{
ξ

σk
,∆,
‖∇f(xk+1)‖

κ1

}
.

Hence, since ‖∇f(xk+1)‖ > ε and ∆ > ξ
σk

, we obtain

‖sk‖ ≥ min

{
ξ

σk
,
ε

κ1

}
≥ min

{
ξ

σmax
,
ε

κ1

}
.

On the other hand, due to the sufficient decrease condition (12), we obtain

f(xk+1) ≤ f(xk)− α
n∑
i=1

[Q̃>k sk]
2
i

= f(xk)− α‖Q̃>k sk‖2

≤ f(xk)− αmin

{(
ξ

σmax

)2

,

(
ε

κ1

)2
}
.

By summing up these inequalities, for 0, 1, . . . , k, we obtain

k + 1 ≤ f(x0)− fmin

αmin

{(
ξ

σmax

)2
,
(
ε
κ1

)2
} ,

which concludes the proof. 2

Since κeg = O(
√
n) (see Chapter 2 in [13]), we have κ1 = O(

√
n). Now, if ξ is chosen such that

ξ
σmax

= O( ε
κ1

), then the dependency of the upper bound given at (21) on n is O(n). Furthermore,
for building a fully-linear model we need O(n) function evaluations. Combining these facts with
Theorem 4.1, we can derive an upper bound on the number of function evaluations that Algorithm 1
needs for driving the first-order stationarity measure below some given positive threshold.

Corollary 4.1 Given ε > 0, let Assumptions 3.1, 4.1, 4.2, and 4.3 hold. Let {xk} be the sequence
of iterates generated by Algorithm 1 and assume that ‖∇f(xk+1)‖ > ε and f(xk+1) > fmin. Then,
Algorithm 1 needs at most O

(
n2ε−2

)
function evaluations for driving the norm of the gradient below ε.

The complexity bound derived here matches the one derived in [18] for derivative-free trust-region
optimization methods and for direct search methods in [31]; see also [15].
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4.2 Fully-quadratic Approach

In this subsection, we will analyze the WCC of Algorithm 1 when we build fully-quadratic models.
The following lemma is essential for establishing such bounds.

Lemma 4.4 [29, Lemma 1.2.4] Let Assumption 3.2 hold. Then, we have∣∣∣∣f(x+ s)− f(x)−∇f(x)>s− 1

2
s>∇2f(x)s

∣∣∣∣ ≤ LH
6
‖s‖3, (22)

and ∥∥∇f(x+ s)−∇f(x)−∇2f(x)s
∥∥ ≤ LH

2
‖s‖2. (23)

Similarly to the fully-linear case, we assume that the trial point provides decrease to the current
model, i.e., that for p = 3 the value of the objective function of (11) at strial is less than or equal to
its value at s = 0.

Assumption 4.4 Assume that

g̃>k strial +
1

2
s>trialH̃kstrial +

σk
6

n∑
i=1

|[Q̃>k strial]i|3 ≤ 0. (24)

We note that (24) is clearly satisfied if strial is a global solution of (11) when p = 3. Therefore, taking
advantage of our separability approach, the vector strial obtained at Step 3 of Algorithm 1 satisfies
(24).

With this assumption, we are able to obtain upper bounds on the number of function evaluations
required to satisfy the sufficient decrease condition (12), and also on the regularization parameter.

Lemma 4.5 Let Assumptions 3.2 and 4.4 hold and assume that at Step 2 of Algorithm 1 a fully-
quadratic model is always used. In order to satisfy condition (12), with p = 3, Algorithm 1 needs at
most 

log
([

6
(
α+
√
n
(
LH
6 + κeg + κeh

2

))]
/σsmall

)
log η

+ 1

function evaluations, not considering the ones required for model computation. In addition, the max-
imum value of σk for which (12) is satisfied, is given by

σmax = max

{
σsmall, 6η

[
α+
√
n

(
LH
6

+ κeg +
κeh
2

)]}
. (25)

Proof First, we will show that if

σk ≥ 6

(
α+
√
n

(
LH
6

+ κeg +
κeh
2

))
(26)

then the sufficient decrease condition (12) of Algorithm 1 is satisfied, with p = 3.

11



In view of (22), we have

f(xk + strial)− f(xk) ≤ ∇f(xk)
>strial +

1

2
s>trial∇2f(xk)strial +

LH
6
‖strial‖3

≤ g̃>k strial +
1

2
s>trialH̃kstrial +

LH
6
‖strial‖3 + |(∇f(xk)− g̃k)>strial|

+
1

2
|s>trial(∇2f(xk)− H̃k)strial|.

Thus, by using (7), (8), and since ‖strial‖ ≥ ε
σk

(due to Step 3 of Algorithm 1), we obtain

f(xk + strial)− f(xk) ≤ g̃>k strial +
1

2
s>trialH̃kstrial +

LH
6
‖strial‖3 + κeg(

ξ

σk
)2‖strial‖+

κeh
2
‖strial‖3

≤ g̃>k strial +
1

2
s>trialH̃kstrial +

(
LH
6

+ κeg +
κeh
2

)
‖strial‖3.

Now, by applying (24), we have

f(xk + strial)− f(xk) ≤ −
σk
6

n∑
i=1

|[Q̃>k strial]i|3 +

(
LH
6

+ κeg +
κeh
2

)
‖strial‖3,

which, in view of the inequality ‖ · ‖3 ≥ n−1/6‖ · ‖2 (see Theorem 16 on page 26 in [21]), leads to

f(xk + strial)− f(xk) ≤ −
σk
6

n∑
i=1

|[Q̃>k strial]i|3 +
√
n

(
LH
6

+ κeg +
κeh
2

)
‖Q̃>k strial‖33

=

(√
n

(
LH
6

+ κeg +
κeh
2

)
− σk

6

) n∑
i=1

|[Q̃>k strial]i|3

≤ −α
n∑
i=1

|[Q̃>k strial]i|3,

where the equality in the second line follows from the fact that, for any vector w ∈ Rn, ‖w‖33 =∑n
i=1 |wi|3 and so ‖Q̃>k strial‖33 =

∑n
i=1 |[Q̃>k strial]i|3, and the last inequality holds due to (26).

Now, from the way σk is updated at Step 4 of Algorithm 1, it can easily be seen that for the
fulfillment of (26) we need

log
([

6
(
α+
√
n
(
LH
6 + κeg + κeh

2

))]
/σsmall

)
log η

+ 1

function evaluations, and, additionally, the upper bound on σk at (25) is derived from (26). 2

The following assumption is quite similar to condition (14) given in [26], and it holds for global
solutions of subproblem (11) (with p = 3). For similar assumptions, required to obtain worst-case
complexity bounds associated with cubic regularization, see [1, 2, 6, 8, 24, 32].
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Assumption 4.5 Assume that, for all k ≥ 0,

‖Q̃>k strial‖∞ =
ξ

σk
, or ‖Q̃>k strial‖∞ = ∆,

or

∥∥∥∥∥∥∇s
[
g̃>k s+

1

2
s>H̃ks+

n∑
i=1

σk
6
|[Q̃>k s]i|3

]
s=strial

∥∥∥∥∥∥ ≤ β2‖strial‖2, (27)

for some β2 > 0.

Again, we are able to prove that, when the trial point is not on the boundary of the feasible region
of (11) (with p = 3), then the norm of the gradient of the function computed at the new point is of
the order of the squared norm of the trial point.

Lemma 4.6 Let Assumptions 3.2, 4.4, and 4.5 hold. Then, we have

‖Q̃>k strial‖∞ =
ξ

σk
or ‖Q̃>k strial‖∞ = ∆, (28)

or
‖∇f(xk + strial)‖ ≤ κ2‖strial‖2,

where κ2 = LH
2 + κeg + κeh + σmax

2 + β2, and σmax was defined in Lemma 4.5.

Proof Assume that none of the equalities at (28) hold. We have ∇sm̃SR
k (strial) = g̃k + H̃kstrial +

r(strial), where

r(strial) =
σk
2
Q̃k

(
sign

(
[Q̃>k strial]1

)
[Q̃>k strial]

2
1, . . . , sign

(
[Q̃>k strial]n

)
[Q̃>k strial]

2
n

)>
.

Now, by using (23), (7), and (8), we have∥∥∇f(xk + strial)−∇sm̃SR
k (strial)

∥∥ =
∥∥∥∇f(xk + strial)−

(
g̃k + H̃kstrial + r(strial)

)∥∥∥
≤
∥∥∇f(xk + strial)−∇f(xk)−∇2f(xk)strial

∥∥
+ ‖∇f(xk)− g̃k‖+

∥∥∥(∇2f(xk)− H̃k

)
strial

∥∥∥+ ‖r(strial)‖

≤
(
LH
2

+ κeg + κeh +
σmax

2

)
‖strial‖2.

Therefore, in view of (27), we have

‖∇f(xk + strial)‖ ≤ ‖∇f(xk + strial)−∇sm̃SR
k (strial)‖+ ‖∇sm̃SR

k (strial)‖

≤
(
LH
2

+ κeg + κeh +
σmax

2
+ β2

)
‖strial‖2,

which completes the proof. 2

Now, we have all the supporting results to establish the WCC bound of Algorithm 1 for the
fully-quadratic case.

13



Theorem 4.2 Given ε > 0, let Assumptions 3.2, 4.4, and 4.5 hold. Let {xk} be the sequence of iterates
generated by Algorithm 1, and fmin ≤ f(x0). Then the number of iterations such that ‖∇f(xk+1)‖ > ε
and f(xk+1) > fmin is bounded above by

√
n(f(x0)− fmin)

αmin

{(
ξ

σmax

)3
, ( ε
κ2

)3/2

} , (29)

where σmax and κ2 were defined in Lemmas 4.5 and 4.6, respectively.

Proof In view of Lemma 4.6, we have

‖sk‖ ≥ min

 ξ

σk
,∆,

√
‖∇f(xk+1)‖

κ2

 .

Hence, since ‖∇f(xk+1)‖ > ε and ∆ > ξ
σk

, we obtain

‖sk‖ ≥ min

{
ξ

σk
,

√
ε

κ2

}
≥ min

{
ξ

σmax
,

√
ε

κ2

}
.

On the other hand, due to the sufficient decrease condition (12) and the inequality ‖ · ‖3 ≥ n−1/6‖ · ‖2,
we obtain

f(xk+1) ≤ f(xk)− α
n∑
i=1

|[Q̃>k sk]i|3

≤ f(xk)−
α‖Q̃>k sk‖3√

n

≤ f(xk)−
αmin

{(
ξ

σmax

)3
, ( ε
κ2

)3/2

}
√
n

.

By summing up these inequalities, for 0, 1, . . . , k, we obtain

k + 1 ≤
√
n(f(x0)− fmin)

αmin

{(
ξ

σmax

)3
, ( ε
κ2

)3/2

} ,
which concludes the proof. 2

Similarly to what we saw before for the fully-linear case, since κeg = O(n) and κeh = O(n) (see

Chapter 3 in [13]), we have κ2 = O(n3/2). By choosing ξ in a way such that ξ
σmax

= O(
√

ε
κ2

), the

dependency of the upper bound given at (29) on n becomes of the order O(n11/4). Additionally, for
building a fully-quadratic model we need O(n2) function evaluations. Combining these facts with
Theorem 4.2, we can establish a WCC bound for driving the first-order stationarity measure below
some given positive threshold.
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Corollary 4.2 Given ε > 0, let Assumptions 3.2, 4.4, and 4.5 hold. Let {xk} be the sequence of
iterates generated by Algorithm 1 and assume that ‖∇f(xk+1)‖ > ε and f(xk+1) > fmin. Then,
Algorithm 1 needs at most O

(
n19/4ε−3/2

)
function evaluations for driving the norm of the gradient

below ε.

In terms of ε, the derived complexity bound matches the one established in [7] for a derivative-free
method with adaptive cubic regularization. The dependency of the bound derived here on n is worse
than the one derived in [7]. However, we have explicitly taken into account the dependency of the
constants κeg and κeh on n.

5 Illustrative Numerical Experiments

In this section we illustrate the different options to build the quadratic models at Step 2 of Algorithm
1 and two different strategies to address the subproblems (10).

Model computation is a key issue for the success of Algorithm 1. However, in Derivative-free
Optimization, saving in function evaluations by reusing previously evaluated points is a main concern.
At each evaluation of a new point, the corresponding function value is stored in a list, of maximum
size equal to (n + 1)(n + 2), for possible future use in model computation. If new points need to be
generated with the sole purpose of model computation, the center, ‘extreme’ points and ‘mid-points’
of the set defined by xk + 1

σk
[I − I] are considered. Inspired by the works of [3, 17], no explicit

control of geometry is kept (in fact, we also tried the approach suggested by [30], but the results did
not improve). If a new point is evaluated and the maximum number of points allowed in the list
has been reached, then the point farther away from the current iterate will be replaced by the new
one. Points are always selected in B(xk;

1
σk

) for model computation. The option for a radius larger

than ξ
σk

, since in our numerical implementation ξ = 10−5, allows a better reuse of the function values
previously computed, avoiding an excessive number of function evaluations just for model computation.
Additionally, the definition of the radius as 1

σk
ensures that if the regularization parameter increases,

the size of the neighborhood in which the points are selected decreases, a mechanism that resembles
the behavior of trust-region radius in derivative-based optimization.

Fully-linear and fully-quadratic models can be considered at all iterations, as well as hybrid ver-
sions, where depending on the number of points available for reuse inside B(xk;

1
σk

) the option for a
fully-linear or a fully-quadratic model is taken (thus, some iterations will use a fully-linear model and
others a fully-quadratic model). Fully-quadratic models always require (n + 1)(n + 2)/2 points for
computation. Fully-linear models are built using all the points available in B(xk;

1
σk

), once that this
number is at least n+ 2 and does not exceed (n+ 1)(n+ 2)/2− 1. In this case, a minimum Frobenius
norm approach is taken to solve the linear system that provides the model coefficients (see [13, Section
5.3]).

Regarding the solution of subproblem (10), the imposed lower bound causes difficulties to the
separability approach. Two strategies were considered to address it. In the first one, every one-
dimensional problem considers the corresponding lower and upper bounds. This approach is not
equivalent to the original formulation. It imposes a stronger condition since any vector y computed
with this approach will satisfy ‖y‖∞ ≥ ξ

σk
, but there could be a vector y satisfying ‖y‖∞ ≥ ξ

σk
, which

does not satisfy |yi| ≥ ξ
σk
,∀i ∈ {1, . . . , n}. The second approach adopted disregards the lower bound

condition, only considering ‖y‖∞ ≤ ∆ when solving subproblem (10). After computing y, the lower
bound condition is tested and, if not satisfied, maxi=1,...,n |yi| is set equal to ξ

σk
to force the obtained

vector y to also satisfy the lower bound constraint at (10).
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Algorithm 1 was implemented in Matlab 2021a. The experiments were executed in a laptop com-
puter with CPU Intel core i7 1.99 GHz, RAM memory of 16 GB, running Windows 10 64-bits. As test
sets, we considered the smooth collection of 44 problems proposed in [27] and 111 unconstrained prob-
lems with 40 or less variables from OPM, a subset of the CUTEst collection [19]. Computational codes
for the problems and the proposed initial points can be found at https://www.mcs.anl.gov/∼more/df
and https://github.com/gratton7/OPM, respectively.

Parameters in Algorithm 1 were set to the following values: ∆ = 10, for each iteration k, σsmall =
0.1, η = 8, and α = 10−4. At each iteration, the process is initialized with the minimization of
the quadratic model (9), with no regularization term, computed by selecting points in B(xk; 1). In
this case, no lower bound is considered when solving subproblem (10). If the sufficient decrease
condition (12) is not satisfied by the computed solution, then the regularization process is initiated,
considering σk = σsmall. This approach allows to take advantage of the local properties of the “pure”
quadratic models. As stopping criteria we consider ‖g̃k‖ < ε, where ε = 10−5, or a maximum of 1500
function evaluations.

Regarding model computation, four variants were tested, depending on using fully-linear or fully-
quadratic models and also on the value of p in the sufficient decrease condition used to accept new
points at Step 4 of Algorithm 1. Fully-quadratic variant always computes a fully-quadratic model,
built using (n+ 1)(n+ 2)/2 points, with a cubic sufficient decrease condition (p = 3). Fully-linear
always computes a quadratic model, using n+2 points, under a minimum Frobenious norm approach.
In this case, the sufficient decrease condition considers p = 2. Hybrid versions compute fully-quadratic
models, using (n+ 1)(n+ 2)/2 points or fully-linear minimum Frobenious norm models, with at least
n + 2 points and a maximum of (n + 1)(n + 2)/2 − 1 points (depending on the number of points
available in B(xk; 1/σk)). In this case, variant Hybrid p3 always uses a cubic sufficient decrease
condition to accept new points, whereas variant Hybrid p23 selects a quadratic or cubic sufficient
decrease condition, depending on the type of model that could be computed at the current iteration
(p = 2 for fully-linear and p = 3 for fully-quadratic).

Results are reported using data profiles [27] and performance profiles [16]. In a simplified way, a
data profile provides the percentage of problems solved by a given algorithmic variant inside a given
computational budget (expressed in sets of np+1 function evaluations, where np denotes the dimension
of problem p). Let S and P represent the set of solvers, associated to the different algorithmic variants
considered, and the set of problems to be tested, respectively. If hp,s represents the number of function
evaluations required by algorithm s ∈ S to solve problem p ∈ P (up to a certain accuracy), the data
profile cumulative function is given by

ds(ζ) =
1

|P|

∣∣∣∣{p ∈ P :
hp,s
np + 1

≤ ζ
}∣∣∣∣ . (30)

With this purpose, a problem is considered to be solved to an accuracy level τ if the decrease obtained
from the initial objective function value (f(x0)− f(x)) is at least 1− τ of the best decrease obtained
for all the solvers considered (f(x0)− fL), meaning:

f(x0)− f(x) ≥ (1− τ)[f(x0)− fL]. (31)

In the numerical experiments reported, the accuracy level was set equal to 10−5.
Performance profiles allow to evaluate the efficiency and the robustness of a given algorithmic vari-

ant. Let tp,s be the number of function evaluations required by solver s ∈ S to solve problem p ∈ P,
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according to the criterion (31). The cumulative distribution function, corresponding to the perfor-
mance profile for solver s ∈ S is given by:

ρs(ς) =
1

| P |
| {p ∈ P : rp,s ≤ ς} |,

with rp,s = tp,s/min{tp,s̄ : s̄ ∈ S}. Thus, the value of ρs(1) represents the percentage of problems where
solver s required the minimum number of function evaluations, meaning it was the most efficient solver.
Large values of ς allow to evaluate the capability of the algorithmic variants to solve the complete
collection.

Figure 1 reports the results obtained when considering different strategies for building the quadratic
models. In this case, the stricter approach is used for solving subproblem (10), always imposing the
lower bound for each entry of the vector y at each one-dimensional minimization.
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Figure 1: Data and performance profiles comparing the use of different strategies for the computation
of the quadratic models.

It is clear that the hybrid version, that adequately adapts the sufficient decrease condition to the
type of computed model, presents the best performance. The hybrid version that does not adapt the
sufficient decrease condition is no better than the fully-linear approach. Even so, both are better than
requiring the computation of a fully-quadratic model at every iteration.

For the best variant, namely the hybrid version that adapts the sufficient decrease condition, we
considered the second approach to the solution of problem (10), where the lower bound constraint is
initially ignored, being the computed solution y modified a posteriori, if it does not satisfy the lower
bound constraint. We denote this variant by adding the word projection. Results are very similar
and can be found in Figure 2.

It is worth mentioning that the modification of the final solution, which was obtained by ignoring
the lower bound constraint, was required only in seven problems, with a maximum of three times in
two of those seven problems.

17



0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d

s
(

)
Data Profiles

Hybrid_p23
Hybrid_p23 projection

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
(

)

Performance  Profiles

Hybrid_p23
Hybrid_p23 projection

Figure 2: Data and performance profiles comparing two different strategies to address the solution of
subproblem (10).

6 Conclusions and Final Remarks

We present and analyze a derivative-free separable regularization approach for solving smooth un-
constrained minimization problems. At each iteration we build a quadratic model of the objective
function using only function evaluations. Several variants have been considered for this task, from a
less expensive minimum Frobenius norm approach, to a more expensive fully-quadratic model, or a
hybrid version that combines the previous approaches depending on the number of available useful
points from previous iterations.

For each one of the variants, we add to the model either a separable quadratic or a separable
cubic regularization term to guarantee convergence to stationary points. Moreover, for each option we
present a WCC analysis and we establish that, for driving the norm of the gradient below ε > 0, the
fully-quadratic and the minimum Frobenius norm regularized approaches need at most O

(
n19/4ε−3/2

)
or O

(
n2ε−2

)
function evaluations, respectively.

The application of a convenient change of variables, based on the Schur factorization of the ap-
proximate Hessian matrices, trivializes the computation of the minimizer of the regularized models
required at each iteration. In fact, the solution of the subproblem required at each iteration is reduced
to the global minimization of n independent one-dimensional simple functions (a polynomial of degree
2 plus a term of the form |z|3) on a closed and bounded set on the real line. It is worth noticing that,
for the typical low-dimensions used in DFO, the O(n3) computational cost of Schur factorizations is
insignificant, as compared to the cost associated with the function evaluations required to build the
quadratic model. Nevertheless, in addition to its use in [4], this separability approach can be extended
to be efficiently applied in other large-scale scenarios, for example in inexact or probabilistic adaptive
cubic regularization; see, e.g., [1, 8]. We would like to point out that the global minimizers of the
regularized models can also be obtained using some other tractable schemes that, instead of solving
n independent one-dimensional problems, solve at each iteration only one problem in n variables; see,
e.g., [5, 9, 28]. These non-separable schemes, as well as our separable approach, require an O(n3)
linear algebra computational cost.

We also present a variety of numerical experiments to add understanding and illustrate the behavior
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of all the different options considered for model computation. In general, we noticed that all the
options show a robust performance. However, the worst behavior, concerning the required number
of function evaluations, is consistently observed when using the fully-quadratic approach, and the
best performance is observed when using the hybrid versions combined with a separable regularization
term.

Concerning the worst case complexity (WCC) results obtained for the considered approaches, a
few comments are in order. Even though these results are of a theoretical nature and in general
pessimistic in relation to the practical behavior of the methods, it is interesting to analyze which of
the two considered approaches produces a better WCC result. For that, it is convenient to use their
leading terms, i.e., n19/4ε−3/2 for the one using the fully-quadratic model and n2ε−2 for the one using
the minimum Frobenius norm model. After some simple algebraic manipulations, we obtain that for
the fully-quadratic approach to be better (that is, to require fewer function evaluations in the worst
case), it must hold that n < ε−2/11 or equivalently that ε < 1/n11/2. Therefore, if n is relatively
small and ε is not very large (for example n < 9 and ε ≈ 10−5) then the combined scheme that is
based on the fully-quadratic model has a better WCC result than the scheme based on the minimum
Frobenius norm approach. In our numerical experiments, the average dimension was 8.8 and for our
stopping criterion we fix ε = 10−5, and hence from the theoretical WCC point of view, the best option
is the one based on the fully-quadratic model. However, in our computational experiments the worst
practical performance is clearly associated with the combination that uses the fully-quadratic model.
We also note that if we choose a more tolerant stopping criterion (say ε = 10−2), then for most of the
same considered small-dimensional problems we have that ε > 1/n11/2, and so the scheme that uses
the minimum Frobenius norm model exhibits simultaneously the best theoretical WCC result as well
as the best practical performance.

Finally, for future work, it would be interesting to study the practical behavior and the WCC
results of the proposed derivative-free approach in the case of convex functions.
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[18] Garmanjani R., Júdice D., and Vicente L.N.: Trust-region methods without using derivatives:
Worst case complexity and the nonsmooth case. SIAM J. Optim., 26, 1987–2011 (2016)

[19] Gould N.I.M, Orban D., and Toint Ph.L.: CUTEst: a Constrained and Unconstrained Testing
Environment with safe threads for mathematical optimization. Comp. Optim. Appl., 60, 545–557
(2015)

[20] Grapiglia G.N., Yuan J., and Yuan Y.-X.: On the convergence and worst-case complexity of
trust-region and regularization methods for unconstrained optimization. Math. Program., 152,
491–520 (2015)
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