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Abstract

In this paper we handle the problem of filling the hole in the graphic of a surface by
means of a patch that joins the original surface with C1-smoothness and fulfills
an additional non-linear geometrical constraint regarding its area or its mean
curvature at some points. Furthermore, we develop a technique to estimate the
optimum area that the filling patch is expected to have that will allow us to
determine optimum filling patches by means of a system of linear and quadratic
equations. We present several numerical and graphical examples showing the
effectiveness of the proposed method.

Keywords: Filling holes, surface reconstruction, area constraint, curvature
constraint, energy functional.

1. Introduction.

There exists a wide range of fields in which problems involving the fitting
of datasets including regions with missing or poor-quality information -or the
more general of image reconstruction- arise. Among these fields we can mention,
for example, engineering problems ([26], [35]), 3D scanning with applications
to archaeology, CAGD, Earth Sciences or image reconstruction ([29], [27], [34]),
physics ([38], [17]), computer vision in robotics ([8], [9]), etc.

A particular case of the above referred research field is the one of filling the
hole of a given surface, i.e., of determining a patch reconstructing a piece of a
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surface that for some reason is unknown or not properly defined. Several works
regarding this specific topic define the filling patch to join the surface to be filled
with some smoothness conditions and minimizing some quantity related to the
geometrical shape or to a physical feature of the patch in order to, somehow,
obtain a simple and fair filling (see e.g. [9], [20], [39] and references therein).
Nevertheless, these approaches based on the minimization of some quantity often
lead to ‘flat’ patches, unable to retrieve complex shapes or even be faithful to the
shape of the original surface to be filled. A simple example is the one of filling the
hole on the top of a semisphere or a cone: depending on which the role of the filling
patch is meant to be, we may want it to be somehow minimal, or we may want it to
be faithful to the holed surface, or even more generally, to adapt to some specific
prescribed shape or geometrical feature. Some papers in the literature develop
techniques to overcome the problem of the flatness of the filling patches that some
methods provide, like biharmonic optimization ([33]); transfinite interpolation
([18]); algorithms to handle weakly defined control points by means of B-spline
surfaces ([37]); or functionals involving some geometric features required for the
filling patch, like [21] or [23], where the patch is forced to somehow ‘inherit’ the
shape of the surface to be filled, or [22], where a volume condition over the filling
patch is imposed. Most of the additional geometrical constraints imposed with the
aim that the filling patches be faithful to a prescribed shape or pattern are linear,
in the sense that the associated problems lead to determinate linear systems.
Nevertheless, filling patches fulfilling non-linear constraints are also useful in
several researching fields like image processing, where curvature constraints are
used to develop some models (see e.g. [1], [24], [32] and references therein),
or biological problems, where area constraints are considered in the frame of
biological cell membranes (see e.g. [10] and references therein).

In this paper, we consider the problem of defining fair filling patches under
the two specific non-linear constraints pointed out above: having a prescribed
area and having prescribed values of the mean curvature at some points. In
both cases, we consider the filling patches to be quadratic Powell-Sabin splines,
which allow us not only to join both the patch and the original holed surface
with C1-smoothness, but also to simplify the expressions of the area and of the
mean curvature of the filling patches insofar as both geometrical features can be
expressed in terms of the coefficients of the expansion of the quadratic Powell-
Sabin splines in a basis of the corresponding vectorial space. Another reason to
consider quadratic splines is related to the fact that increasing the degree or the
smoothness of the fitting splines implies handling much larger linear systems that
are worse conditioned, adding further to the difficulty of solving them numerically.
Besides, in the case of the area constraint, we consider Bézier techniques that will
allow us to approximate the quadratic Powell-Sabin splines by means of triangular
patches, leading to simpler expressions of the area. Moreover, we develop an ad-
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hoc algorithm to determine an optimum value of the area that the filling patch
is expected to have when there is no prescribed value of the area. The joint
implementation of both, Bézier approximation and determination of the optimum
area, allows us to translate the filling problem with area constraint into a system
of linear and quadratic equations, that have been already highly explored in the
literature. Therefore, not only we fill under an arbitrary area constraint, but we
also lean on results in quadratic equations to obtain area-constrained ‘optimum’
filling patches.

It is worth to mention that as the systems of equations associated to the
constraints considered in this paper are non-linear, infinite filling patches fulfilling
such constraints can be found, but of course not all of them are fair enough. In
order to get proper filling patches we will look for the ones minimizing a relative
error balancing the bending energy of the filling patch -in order to get surfaces
with no roughness or irregularities- and the non-linear constraint considered.

The outline of the paper is as follows: In Section 2 we give a brief description
of all the preliminaries and basic concepts that will be used throughout the work
and we describe the general frame of the problem to be considered. In Section
3 we introduce the main tools used to handle the non-linear systems arisen. In
Sections 4 and 5 we consider the non-linear area and mean curvature constraints,
respectively. In both cases, we give numerical and graphical results and we include
an analysis of the numerical methods leading to the best results. In Section 4 we
also include the method to determine an optimum value of the area of the filling
patch when there is no particular value to impose. Finally, we end by presenting
some concluding remarks.

2. Preliminaries.

2.1. The Powell-Sabin triangulation.

Let D ⊂ R2 be a polygonal domain (an open, non-empty, connected set) in
such a way that D admits a ∆1-type triangulation (see Figure 1 left), defined as
the ones induced by integer translates of x = 0, y = 0 and x+y = 0 (see e.g. [16]).
Given a ∆1-triangulation T of D, we will consider the associated Powell-Sabin
triangulation T6 of T (see e.g. [28]), which is obtained by joining an appropriate
interior point ΩT of each T ∈ T to the vertices of T and to the interior points
ΩT ′ of the neighbouring triangles T ′ ∈ T of T . When T has a side lying on
the boundary of D, the point ΩT is joined to the mid-point of this side, to the
vertices of T and to the interior points ΩT ′ of the neighbouring triangles T ′ ∈ T
of T . Hence, the six micro-triangles inside any T ∈ T have the point ΩT as a
common vertex. There are several ways to consider appropriates points ΩT [30],
nevertheless, a good choice [31] is considering ΩT to be the incenter of T , for all
T ∈ T (see Figure 1).
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Figure 1: ∆1-triangulation (left) and associated Powell-Sabin sub-triangulation (right).

It is well known [30] that given the values of a function f (defined on D) and
the ones of its first partial derivatives at all the knots of T , there exists a unique
S in the spline space

S1
2 (D, T6) =

{
S ∈ C1(D) : S|T ′ ∈ P2(T ′) ∀ T ′ ∈ T6

}
,

where P2 stands for the space of bivariate polynomials of total degree at most
two, such that the values of S and the ones of its first partial derivatives coincide
with those of f at all the knots of T .

2.2. The hole-filling problem.

In order to later present the techniques developed to fill holes by means of non-
linear constraints, we first introduce the general notation that will be considered
throughout the paper.

Let H (the hole) be a connected and nonempty subset of D (see Figure 2,
left) such that ∂D ∩ ∂H = ∅, where ∂X stands for the boundary of the set
X. If H was not connected, the techniques developed to fill one connected hole
would be applied to each of the connected components of H. Let T be a ∆1-type
triangulation of D, with associated Powell-Sabin triangulation T6, and consider

H∗ =
⋃

T∈{T∈T :T∩H 6=∅}

T.

H∗ is a polygonal domain surrounding H (see Figure 2, middle). The reason
to extend the original hole H to the polygonal one H∗ is because the filling
patches to be considered are splines defined over triangulations. Of course, H∗

tends to H as the triangulation T becomes finer, which, furthermore, must be
fine enough to have ∂D ∩ ∂H∗ = ∅. Let us consider the ∆1-type triangulation

TD−H∗ = {T ∈ T : T ⊂ D − H∗} of D−
◦
H∗, with associated Powell-Sabin

sub-triangulation (TD−H∗)6 = {T ∈ T6 : T ⊂ D − H∗}, and, analogously, let
us consider the ∆1-type triangulation TH∗ = {T ∈ T : T ⊂ H∗} of H∗ with
associated Powell-Sabin subtriangulation (TH∗)6 = {T ∈ T6 : T ⊂ H∗}. Let

S1
2 (D −H∗) ≡ S1

2 (D −H∗, (TD−H∗)6) =
{
v|D−H∗ : v ∈ S1

2 (D, T6)
}

and
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S1
2 (H∗) ≡ S1

2 (H∗, (TH∗)6) =
{
v|H∗ : v ∈ S1

2 (D, T6)
}

be the spaces of the Powell-Sabin splines of D−
◦
H∗ and H∗ associated to the

triangulations TD−H∗ and TH∗ , respectively.
The problem we are going to consider in this work is:
Problem. Let f : D − H −→ R be a function. We want to fill the hole in

the graphic of f over H∗ by means of a C1-function

f̃ : D −→ R

x 7→
{

sf if x ∈ D −H∗
σsf if x ∈ H∗

(1)

in such a way that:

i) f̃ = sf be as close as possible to f over D −H∗;

ii) f̃ = σsf fills the hole of f over H∗ with some desired geometric non-linear
properties.

Function sf over D −H∗ is the only one (see [3], Proposition 1) minimizing
the ‘energy functional’ defined on S1

2 (D, T6) by

J1(v) =< ρ(v − f) >2
q +τ1|v|21,D−H∗ + τ2|v|22,D−H∗ , (2)

where |v|m,D−H∗ =
(∑

|β|=m
∫
D−H∗ ∂

βu(x)2dx
)1/2

; ρ is the evaluation operator

ρ(v) = (v(p1), . . . , v(pq));P = {p1, . . . , pq} is a subset of points in D−H∗; τ1 ≥ 0
and τ2 > 0. The first term of J1 measures how well v approximates the dataset
{f(pi)}qi=1 (in the least squares sense), while the second and the third ones rep-
resent the ‘minimal energy condition’. In [3] it is shown that sf can be expressed

as sf =
∑`

i=1 βiγi, where {γ1, . . . , γ`} is a basis of S1
2 (D −H∗), and β = (βi)

`
i=1

is the unique solution of the linear system AX = b, where

A =

(
< ρ(γi), ρ(γj) >q +

2∑
m=1

τm(γi, γj)m

)`
i,j=1

and b = (< ρ(f), ρ(γi) >q)
`
i=1 .

On the other hand, the filling patch σsf over H∗ will be defined to fulfill three
conditions: First, it must join sf with class C1. To this end, σsf must belong to
the set S1

2 (H∗sf ) = {v ∈ S1
2 (H∗) : ϕ(v) = ϕ(sf )}, where ϕ(v) = (ϕi(v))3s

i=1, with

ϕi(v) = v(ti), ϕs+i(v) =
∂v

∂x
(ti), ϕ2s+i(v) =

∂v

∂y
(ti), for i = 1, . . . , s,
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Figure 2: Hole H, surrounding polygonal hole H∗ and boundary knots of H∗.

and {t1, . . . , ts} are the knots of T laying on the boundary of H∗ (see Figure 2,
right).

Secondly, σsf is required to minimize the functional J2 : S1
2 (H∗sf )→ R defined

by
J2(v) = λ0|v|21,H∗ + |v|22,H∗ , (3)

where |v|m,H∗ =
(∑

|β|=m
∫
H∗ ∂

βu(x)2dx
)1/2

and λ0 ≥ 0, i.e., we want to control

the bending energy of σsf in such a way that its graphics does not have roughness
or irregularities. In Theorem 1 of [20] it is shown that there exists a unique
σsf ∈ S1

2 (H∗sf ) minimizing J2 which has the expression

σsf =
3s∑
i=1

ϕi(sf )w0
i +

n∑
j=1

αjwj , (4)

where B∂H∗ = {w0
i }3si=1 are the functions of the usual Hermite basis of S1

2 (H∗)
associated to the boundary knots {ti}si=1, i.e., the ones verifying

ϕ(w0
i ) = (0, . . . , 0,

ith)

1 , 0, . . . , 0) for i ∈ {1, . . . , 3s};

{w0
1, . . . , w

0
3s, w1, . . . , wn} is the extension of B∂H∗ to the usual Hermite basis

of S1
2 (H∗) and the vector α = (αj)

n
j=1 is the solution of the system of linear

equations 

f1(α) =
n∑
j=1

b
(1)
j αj = d1

...

fn(α) =
n∑
j=1

b
(n)
j αj = dn

, (5)

where 
b
(t)
j = λ0(wj , wt)1,H∗ + (wj , wt)2,H∗ ,

dt = −
3s∑
i=1

ϕi(sf )
(
λ0(w0

i , wt)1,H∗ + (w0
i , wt)2,H∗

)
,
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for t = 1, . . . , n. For the sake of simplicity, we will also consider the matrix form
of (5):

Mnα = bn, (6)

where
Mn =

(
b
(i)
j

)n
i,j=1

and bn = (d1, . . . , dn)T ,

and T denotes the transposition operation.
Finally, we will impose σsf to fulfill N additional geometrical constraints,

which will lead to the N additional non-linear equations

fn+i(α) = dn+i, i = 1, . . . , N. (7)

To obtain the filling patch σsf , we will handle simultaneously the equation sys-
tems (6)-(7). In Sections 4 and 5 we consider particular cases for fn+i.

3. Solving non-linear equations systems with optimization techniques.

The solution of a system of non-linear equations has close connections with
non-linear optimization problems. In fact, it is well known that the solution of

gi(x) = 0, i = 1, . . . ,m

is the global minimum of ‖g(x)‖, with g(x) = (g1(x), . . . , gm(x)).
With this motivation, to carry out the experiments reported in Sections 4 and

5, we have considered different reformulations of the original non-linear system
of equations as an optimization problem. In all cases, gi(α) = fi(α) − di for all
i = 1, . . . , n+N, and µ ∈ (0, 1).

· Reformulation O1:
The most natural way of addressing the non-linear systems of equations is
by solving it directly:

(µg1(α), . . . , µgn(α), (1− µ)gn+1(α), . . . , (1− µ)gn+N (α)) = 0. (8)

Variants can consider the absolute value of components,

(µ|g1(α)|, . . . , µ|gn(α)|, (1− µ)|gn+1(α)|, . . . , (1− µ)|gn+N (α)|) = 0, (9)

or penalize componentwise errors,

(
µg2

1(α), . . . , µg2
n(α), (1− µ)g2

n+1(α), . . . , (1− µ)g2
n+N (α)

)
= 0. (10)
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The parameter µ allows to allocate different weights to the linear and to
the nonlinear constraints. For solving these systems of non-linear equations,
we considered the functions lsqnonlin and fsolve, from the Optimization
toolbox of Matlab [42], and knitro nlneqs and knitro nlnlsq, from Kni-
tro [41].

· Reformulation O2:
Inspired by the above mentioned relation between the solution of systems of
equations and optimization problems, the different equations can be scalar-
ized into a single function that needs to be minimized:

µ
n∑
i=1

|gi(α)|+ (1− µ)
N∑
j=1

|gn+j(α)|.

Penalizing deviations by squaring them also removes the nonsmoothness
associated to the previous function, promoting the success of derivative
based solvers for addressing the problem:

µ
n∑
i=1

g2
i (α) + (1− µ)

N∑
j=1

g2
n+j(α).

In this case, function knitro nlp from Knitro [41], GlobalSearch from the
Global Optimization toolbox of Matlab [42], and the solvers SID-PSM [12,
13] and GLODS [14] were considered. The last two are derivative-free op-
timization solvers, thus more likely to succeed on the formulation using
the absolute value. Additionally, GLODS and GlobalSearch are global op-
timization solvers, allowing a more thorough exploration of the variable
space.

· Reformulation O3:
The solution of the system of nonlinear equations can also be regarded as
a multiobjective optimization problem:

min {|gi(α)|, |gn+j(α)|}ni=1
N
j=1

.

However, considering that n and N can be large, the linear and the nonlin-
ear constraints were independently aggregated, thus generating the biob-
jective problem:

min

 n∑
i=1

|gi(α)|,
N∑
j=1

|gN+j(α)|

 .
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A simple variant penalizes the errors, by squaring each one of the compo-
nents:

min

 n∑
i=1

g2
i (α),

N∑
j=1

g2
N+j(α)

 .

There are not too many solvers available to address biobjective optimization
problems. We considered BoostDMS [5], MultiGLODS [15], and paretosearch [42],
the last from the Global Optimization toolbox of Matlab. In general, rather
than a single point, the solution of a multiobjective optimization problem is
a set of points, which constitutes the Pareto front of the problem. If the so-
lution of the non-linear system of equations is unique, then the Pareto front
will be a singleton. Usually, that will not happen and a solution needs to be
selected from the final approximation to the Pareto front. The parameter
µ can be used for scalarization of the Pareto points, as in reformulation O2,
allowing the selection of a single solution.

· Reformulation O4:
Finally, a Chebyshev formulation can be considered by minimizing the worst
component of the system of non-linear equations:

min max {µ |gi(α)| , (1− µ) |gn+j(α)|}ni=1
N
j=1

.

As usual, deviations can be penalized:

min max
{
µg2

i (α), (1− µ)g2
n+j(α)

}n
i=1

N

j=1
.

In this case, solvers SID-PSM [12, 13], GLODS [14], functions GlobalSearch

and fminimax from Matlab [42], and knitro nlp from Knitro [41] were
attempted to solve the problem.

Observe that, with exception of the multiobjective solvers (paretosearch,
BoostDMS, and MultiGLODS), with the aim of solving the non-linear system (6)-
(7), all solvers were provided with an initialization vector α̂ = (α̂1, . . . , α̂n). To

this end, let {ξi}
n
3
i=1 be the set of knots of T laying in the interior of H∗ and let

{w3(i−1)+t}3t=1 be the usual Hermite basis functions of S1
2 (H∗) associated to the

knot ξi, for i = 1, . . . , n3 . Then, any σ =
∑3s

i=1 ϕi(sf )w0
i +

∑n
j=1 αjwj ∈ S1

2 (H∗sf )
verifies 

α3(i−1)+1 = σ(ξi)

α3(i−1)+2 = ∂σ
∂x (ξi)

α3(i−1)+3 = ∂σ
∂y (ξi)

for i = 1, . . . ,
n

3
.
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On this basis, we have considered the initialization vector α̂ to be
α̂3(i−1)+1 = ĥ(ξi)

α̂3(i−1)+2 = ∂ĥ
∂x(ξi)

α̂3(i−1)+3 = ∂ĥ
∂y (ξi)

for i = 1, . . . ,
n

3
,

where ĥ is the filling function of the test function h when considering the C1-basic
filling method developed in [20], i.e., somehow we lean on the ‘basic’ C1-filling
ĥ =

∑3s
i=1 ϕi(sf )w0

i +
∑n

j=1 α̂jwj to obtain filling patches fulfilling the additional
non-linear constraints.

4. Filling patches satisfying an area constraint.

In this section we consider the particular case of determining minimal energy
filling patches fulfilling the additional non-linear constraint of having a prescribed
area, i.e., we want the graphic of the filling σsf defined in (1) to have a given
area A over H∗. The expression of the area Area(σ) of the graphic of a function
σ ∈ S1

2 (H∗sf ) is not easy to handle as it implies to consider a great number of
integrals of square roots of quadratic functions over triangles. Hence, we will
consider the unique non-linear fn+1 in (7) to be a suitable approximation of
Area(σ) and dn+1 to be the prescribed area A. The values {fi(α) − di}ni=1 in
(5) and dn+1 in (7) are strongly dependent insofar as high prescribed area values
A will of course increase the bending energy of σ, moving the values {fi(α)}ni=1

away from being the ‘minimal’ {di}ni=1. Anyway, fixed the prescribed area A,
we are still interested in minimizing the bending energy of σ, i.e. in minimizing
{fi(α) − di}ni=1, in order to obtain a filling patch σsf as smooth as possible,
without roughness or irregularities. In this frame, the role of the parameter µ
appearing in the objective functions Oi introduced in Section 3, balancing the
weight given to the linear part {gi(α)}ni=1 and to the non-linear one gn+1(α) is
quite trascendental as it should lead to a proper balanced pair bending energy-
area.

For the sake of clarity, we will divide this section into several subsections:
the first three handle the questions of estimating suitable values of µ, fn+1 and
prescribed A, respectively. In the two final sections we present the general setting
under which the experiments have been carried out and the numerical results,
respectively.

4.1. Estimation of the optimum parameter µ.

In order to be able to estimate ‘optimal’ values of µ, we have considered 1600
functions σ =

∑3s
i=1 ϕi(sf )w0

i +
∑n

j=1 αjwj ∈ S1
2 (H∗sf ), where each αj has been

randomly chosen in the interval [−2.5, 2.5]. For each one of these functions σ we
10



have computed its bending energy J2(σ) (3) and its area, and we have considered
the point (Area(σ),J2(σ)). To shorten this procedure, the bending energy J2(σ)
has been computed by means of a numerical integration formula, exact for splines
of order two, that evaluates in three points. In Figure 3 we show the cloud of
points obtained for the triangulation T and the polygonal H∗ shown in Figure
2 right. These provide an insight of how the balance of the bending energy-area
is. Next, given a prescribed value of the area A, we compute an estimation E(A)
of which the bending energy associated to this area is expected to be by means
of a quadratic regression function E (in red in Figure 3). Then, the value of the
parameter µ considered to be optimum is the one verifying µE(A) = (1 − µ)A
in order that the linear part {gi(α)}ni=1 in (5), regarding the bending energy, and
the non-linear one gn+1(α), regarding the area constraint, have the same weight
in the objective functions Oi considered, i.e.

µopt =
A

A+ E(A)
.

Figure 3: Quadratic regression for the cloud of points (Area(σ),J2(σ)).

In Tables 1-6 we give the values of the optimum parameters associated to
the different experiments carried out. It can be observed that the higher the
value of the prescribed area is, the less the optimum value of the parameter µ is.
This is reasonable insofar as the bending energy of a function σ ∈ S1

2 (H∗sf ) grows
faster than its area and, therefore, higher values of A require lower weights of the
bending energy to achieve an equilibrium between them.

4.2. Approximation fn+1 of the area expression.

To obtain a suitable approximation fn+1 of the area Area(σ) of a filling patch
σ ∈ S1

2 (H∗sf ), we will use the concept of the Bézier control net and its elevations
of a bivariate polynomial. A thorough development of the control nets and of the
properties that we will use in this work can be found in [19]. For completeness,
we briefly describe its construction. Given a triangle T , it is well-known that the
Bernstein polynomials of degree m ≥ 1 over T , defined as

Bm
λ (τ ) =

m!

λ1!λ2!λ3!
τλ11 τλ22 τλ33 , τ ∈ [0, 1]3, λ ≥ 0,

11



where τ = (τ1, τ2, τ3) are baricentric coordinates with respect to T (the multi-
index notation λ = (λ1, λ2, λ3) ∈ Z3 is used, |λ| = λ1 + λ2 + λ3 = m, and λ ≥ 0
indicates that λi ≥ 0 for i = 1, 2, 3), form a partition of the unity over T and
constitute a basis for Pm(T ). For any p ∈ Pm(T ), the unique representation

p =
∑

|λ|=m,λ≥0

bλB
m
λ ,

is called the Bernstein-Bézier representation of p with respect to T . The coeffi-
cients bλ are called the Bézier ordinates of p. The points {(ξmλ , bλ)}|λ|=m

λ≥0

, where

ξmλ are the Bézier triangle points of order m of T , defined as the ones having

barycentric coordinates
(
λ1
m ,

λ2
m ,

λ3
m

)
(see Figure 4), are called the Bézier control

points of p, and the linear interpolant B of the Bézier control points is called the
Bézier control net of p (see Figure 4 right). The values of the Bézier control net
coincide with the ones of p at the vertices of T and, moreover, the control net is
tangent to the graphic of p at these points (see Figure 4 right).
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Figure 4: Bézier triangle points of orders 2, 3 and 4, and control net of p ∈ P2(T ).

If p ∈ P2, then p ∈ P2+i for all i ≥ 1, and hence it can be written as

p =
∑

|λ|=2,λ≥0

bλB
2
λ =

∑
|µ|=2+i,µ≥0

b
(i)
µ B2+i

µ ,

where

b
(i)
µ =

∑
|λ|=2,λ≥0

(
µ1
λ1

) (
µ2
λ2

) (
µ3
λ3

)(
2 + i
2

) bλ. (11)

The ith-elevation B(i) of the Bézier control net of p, defined as the linear

interpolant of the control points {(ξ(2+i)
µ , b

(i)
µ )}|µ|=2+i

|µ|≥0

, lies in the convex hull of

B(k) for all k = 0, . . . , i − 1 (we adopt the convention B(0) ≡ B), is tangent to p
at the vertices of T, and verifies limi→+∞ B(i) = p.

Now, with the aim to obtain a filling patch over the polygonal hole H∗ whose
graphic has a prescribed area A, we will consider the next process. Given a
generic function σ =

∑3s
i=1 ϕi(sf )w0

i +
∑n

j=1 αjwj ∈ S1
2 (H∗sf ), let us consider
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the control net BσT ≡ B
(0)
σT of each of the quadratic polynomials σT ≡ σ|T , for

T ∈ (TH∗)6; let B(i)
σT be the ith-elevation of BσT for i ≥ 1; and let B(i)

σ be the

C0-surface obtained by joining all the B(i)
σT , for T ∈ (TH∗)6, in such a way that

Area(B(i)
σ ) =

∑
T∈(TH∗ )6

Area
(
B(i)
σT

)
.

Since limi→+∞ B(i)
σT = σT , we have

Area(σ) =
∑

T∈(TH∗ )6

Area (σT ) =
∑

T∈(TH∗ )6

Area

(
lim

i→+∞
B(i)
σT

)
=

∑
T∈(TH∗ )6

lim
i→+∞

Area
(
B(i)
σT

)
= lim

i→+∞

∑
T∈(TH∗ )6

Area
(
B(i)
σT

)
= lim

i→+∞
Area(B(i)

σ ).

If for any elevation level k we consider a function σk ∈ S1
2 (H∗sf ) verifying

Area(B(k)

σk
) = A, then Area(limk→+∞ σ

k) = A. Therefore, for any elevation level
k, we will consider

fn+1(α) = Area(B(k)

σk
), (12)

i.e., σk will be a function whose kth-elevation of its control net has area A.
It is worth to mention that the Bézier ordinates of a polynomial p ∈ P2(T )

can be obtained by means of the expressions
bλ = p(ξ2λ), for λ ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2)},
b110 = 1

2

(
4p(ξ2110)− b200 − b020

)
,

b101 = 1
2

(
4p(ξ2101)− b200 − b002

)
,

b011 = 1
2

(
4p(ξ2011)− b020 − b002

)
.

This fact, together with (11), allows us to obtain the expression of the vertices

of any of the triangular patches of B(k)

σk
in terms of the unknowns α. As a

consequence, if we express the area of each triangular patch in terms of the
coordinates of their vertices, we get that fn+1 has an expression of the form

fn+1(α) =
∑̀
t=1

√√√√c
(t)
00 +

n∑
i=1

c
(t)
0i αi +

n∑
i,j=1

c
(t)
ij αiαj , (13)

where ` ≡ `(k) is the number of triangular patches in B(k)

σk
.
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4.3. Estimation of optimum area.

All non-linear systems (6)-(7) associated to the experiments presented in this
section have been carried out by means of the different formulations and solvers
presented in Section 3. We have also considered different values of the prescribed
area A to be set equal to dn+1 in (7). Nevertheless, we have found it appropriate
to include a numerical procedure in order to estimate an optimum value of A
when there is no particular value to impose.

This numerical procedure consists of estimating the optimum value of the area
that each of the triangles of the k-elevation of the control net of the filling patch
σsf must have by means of an extrapolation based on the values of the areas of
the triangles of the k-elevation of the control net of sf over D −H∗, i.e., we use
known values of area of pieces of sf over D − H∗ to estimate values of area of

pieces of σsf over H∗. More precisely, let us denote by N (k)
D−H∗ (resp. N (k)

H∗ ) the
subtriangulation of (TD−H∗)6 (resp. (TH∗)6) given by the Bézier triangles points
of order k of all the triangles of (TD−H∗)6 (resp. (TH∗)6). In Figure 5 left and

middle we show the subtriangulations N (2)
D−H∗ and N (2)

H∗ for the triangulation T 5.
The procedure is as follows:

i) Let C be the centroid of the polygonal hole H∗ (in Figure 5 right we show
H∗ and its centroid for the hole defined in (17) and shown in Figure 2).

ii) For any triangle T ∈ N (k)
D−H∗ , we consider a point pT = (xT , yT ), where xT

is the distance from the incenter CT of T to C and yT is the area of sf over
T .

iii) With the cloud of points given in the previous step, we estimate the value

of the optimum area AoptT of the filling patch σsf over each T ∈ N (k)
H∗ by

evaluating the least squares regression of the cloud of points on the distance

from the incenter of each of the triangles of the triangulation N (k)
H∗ to C.

C

Figure 5: Subtriangulations N (2)
D−H∗ and N (2)

H∗ for T 5 and H∗ with its centroid C.

In Figure 6 we show, for k = 2 and for both test functions h1 and h2, the
cloud of points defined in ii) above (blue dots), and the points (‖CT −C‖2,AoptT )

(red dots) for each triangle T ∈ N (2)
H∗ , where ‖ · ‖2 stands for the usual Euclidean
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norm in R2. The optimum value Aopt of the prescribed area to consider is then

the sum of the estimated areas of σsf over all the triangles in N (k)
H∗ , i.e.

Aopt =
∑

T∈N (k)
H∗

AoptT . (14)

Figure 6: Estimation of optimum areas for Franke’s (left) and semisphere (right) functions.

In Tables 1 and 4 we give the values of Aopt for each one of the experiments
considered. One important advantage of considering optimum values of area over

each one of the triangles of N (k)
H∗ is that Equation (13) becomes separable and

quadratic, i.e., imposing σsf to have a prescribed value d̂t of the area over each

one of the triangles Tt of N (k)
H∗ , for t = 1, . . . , `, instead of a global value of the

area all over H∗, leads to ` independent quadratic equations

c
(t)
00 +

n∑
i=1

c
(t)
0i αi +

n∑
i,j=1

c
(t)
ij αiαj = d̂ 2

t , t = 1, . . . , `, (15)

which can be equivalently written as

c
(t)
00 + c

(t)
0 ·α + αTC(t)α = d̂ 2

t ,

where c
(t)
0 =

(
c

(t)
01 , . . . , c

(t)
0n

)
; the (i, j)-element of C(t) is

c
(t)
ij

2 if i 6= j and c
(t)
ii if

i = j. Problem (6)-(15) can now be restated as finding α that satifies

Mnα− bn = 0

c
(1)
00 + c

(1)
0 ·α + αTC(1)α− d̂ 2

1 = 0

c
(2)
00 + c

(2)
0 ·α + αTC(2)α− d̂ 2

2 = 0
...

c`00 + c
(`)
0 ·α + αTC(`)α− d̂ 2

` = 0.

(16)

This new explicit reformulation has theoretical and practical implications. On
one hand, it allows for a better understanding of the underlying geometry since it
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describes the arrangement of intersecting lines and ellipses. More importantly, it
sheds light on the nonconvexity of the problem due to the presence of these equal-
ity quadratic constraints. Also, given that the problem is inherently infeasible,
solving (16) has to be thought in terms of minimizing an infeasibility measure
of the constraints. Having a geometrical interpretation can help choosing an
appropiate merit function that measures infeasibility and the best optimization
solver to use. On the other hand, a nice property of explicit quadratic constrains
is that solvers have access to first- and second-order derivatives practically at no
computational cost, If q(x) = 1/2 xTQx+ cTx− d = 0 is a quadratic constraint,
then∇x q(x) = Qx+c and∇2

xx q(x) = Q are the first- and second-order derivatives
respectively. Thus, dedicated quadratically-constrained solvers by design exploit
the explicitly revealed structure in (16), as we will see in the experimental part.

4.4. Numerical and graphical examples settings.

All examples of filling patches under area constraints presented in this section,
except the last one, have been carried out over the domain D = (0, 1) × (0, 1);
with the hole H defined implicitly by

H =

{
(x, y) ∈ R2 :

(x− 0.5)2

0.2252
+

(y − 0.5)2

0.2252
≤ 1

}
, (17)

shown in Figure 2 left, and with the ∆1-type triangulations T m of D defined as
the ones associated to uniform partitions of [0, 1] into m subintervals, for m = 5, 9
(T 5 is shown in Figure 2). The smoothing parameters in the functional (2) have
been chosen to be τ1 = 10−4 and τ2 = 10−5. These values have been checked to
lead to proper fitting functions sf over D −H∗ –a deep study on how to choose
these parameters values was undertaken in [4]–, while the smoothing parameter
in functional (3) has been taken to be λ0 = 10 in order to give the same weight
to the semi norms | · |1 and | · |2 over D −H∗ and over H∗ in the functionals (2)
and (3), respectively. We have considered two test functions, whose graphics are
shown in Figure 7:

· Franke’s function:

h1(x, y) = 0.75e−
(9x−2)2+(9y−2)2

4 + 0.75e−
(9x+1)

10
− (9y+1)2

49 +

0.5e−
(9y−7)2+(9x−3)2

4 − 0.2e−(9y−4)2−(9x−7)2 ;

· Semisphere function:

h2(x, y) =

{ √(
1
2

)2 − (x− 1
2

)2 − (y − 1
2

)2
if

(
x− 1

2

)2
+
(
y − 1

2

)2 ≤ ( 12)2
0 otherwise

.
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Figure 7: Franke’s function (left) and semisphere (right).

4.5. Numerical results.

In order to check the feasibility of the proposed method, we will consider,
for both test functions, three different values of the prescribed area: the optimal
one Aopt, obtained with the method previously developed (14), and another two
values A+ and A++, greater than Aopt. All experiments have been carried out
over the triangulations T 5 and T 9 and with the elevations k = 0, 4, 7 of the
control net. We will denote by

σ
(k)
hi,A =

3s∑
i=1

ϕi(sf )w0
i +

n∑
j=1

α̂jwj ∈ S1
2 (H∗sf )

the best solution of (6)-(7) when handling the test function hi with prescribed
area A and for the non-linear fn+1 as in (12), where the ‘best solution’ α̂ =
(α̂1, . . . , α̂n) has been considered to be the one minimizing the relative error

Er(α) =

(
J2

(∑3s
i=1 ϕi(sf )w0

i +
∑n

j=1 αjwj

)
− J2(σsf )

)2

J2(σsf )2
+

(fn+1(α)−A)2

A2
,

(18)
where σsf ∈ S1

2 (H∗sf ), defined in (4), is the unique spline in S1
2 (H∗sf ) minimizing

the bending energy J2, i.e., σsf is the C1-‘minimum’ filling patch of sf , in such
a way that the first summand of (18) gives a measure of the relative bending
energy of the spline

∑3s
i=1 ϕi(sf )w0

i +
∑n

j=1 αjwj with respect to the minimum
one, while the second summand is a measure of the relative error associated to
the area constraint. Therefore, somehow we define the best solution to be the
one exhibiting an equilibrium between a relative minimal bending energy and
a relative minimal error with respect to the area A to be achieved. Of course,
as expected, we obtain very bad results for values of A lower than a certain
quantity (in fact, A cannot be less than the area of the polygonal H∗, these

experiments result in very high values of (fn+1(α)−A)2

A2 ). In Tables 1, 2 and 3, we
show results for Franke’s function h1, while in Tables 4, 5 and 6, we show results

for semisphere’s function h2. In all cases we give the area A(σ
(k)
hi,A) of the best
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solution σ
(k)
hi,A. In Tables 1 and 4 we also include an estimation of the relative

error

E =

∑1500
s=1

(
hi(as)− σ(k)

hi,Aopt(as)
)2

∑1500
s=1 hi(as)

2
,

where {a1, . . . , a1500} are random points in H∗, when filling both test functions

with the ‘optimum’ splines σ
(k)
hi,Aopt obtained with the optimal area constraint

Aopt, as well as the exact area of the test function A(hi) over H∗.

k=0 k=4 k=7

T 5

µopt = 1.44 · 10−3

A(h1) = 0.5832


Aopt = 0.5971

A(σ
(0)

h1,Aopt ) = 0.5785

E = 7.01 · 10−3


Aopt = 0.5934

A(σ
(4)

h1,Aopt ) = 0.5818

E = 3.14 · 10−3


Aopt = 0.5890

A(σ
(7)

h1,Aopt ) = 0.5845

E = 1.17 · 10−3

T 9

µopt = 3.09 · 10−4

A(h1) = 0.4260


Aopt = 0.4358

A(σ
(0)

h1,Aopt ) = 0.4181

E = 7.71 · 10−4


Aopt = 0.4329

A(σ
(4)

h1,Aopt ) = 0.4217

E = 5.21 · 10−4


Aopt = 0.4291

A(σ
(7)

h1,Aopt ) = 0.4251

E = 2.12 · 10−4

Table 1. Numerical results for Franke’s test function for A = Aopt.

k=0 k=4 k=7

T 5

µopt = 5.87 · 10−4 A(σ
(0)
h1,0.8

) = 0.697 A(σ
(4)
h1,0.8

) = 0.755 A(σ
(7)
h1,0.8

) = 0.792

T 9

µopt = 1.26 · 10−4 A(σ
(0)
h1,0.8

) = 0.713 A(σ
(4)
h1,0.8

) = 0.762 A(σ
(7)
h1,0.8

) = 0.798

Table 2. Numerical results for Franke’s test function for A = A+ = 0.8.

k=0 k=4 k=7

T 5

µopt = 2.1 · 10−4 A(σ
(0)
h1,1.8

) = 1.711 A(σ
(4)
h1,1.8

) = 1.742 A(σ
(7)
h1,1.8

) = 1.781

T 9

µopt = 4.52 · 10−5 A(σ
(0)
h1,1.8

) = 1.723 A(σ
(4)
h1,1.8

) = 1.764 A(σ
(7)
h1,1.8

) = 1.787

Table 3. Numerical results for Franke’s test function for A = A++ = 1.8.

k=0 k=4 k=7

T 5

µopt = 2.14 · 10−2

A(h2) = 0.3656


Aopt = 0.3741

A(σ
(0)

h2,Aopt ) = 0.3626

E = 4.13 · 10−3


Aopt = 0.3718

A(σ
(4)

h2,Aopt ) = 0.3645

E = 1.08 · 10−3


Aopt = 0.3694

A(σ
(7)

h2,Aopt ) = 0.3668

E = 8.89 · 10−4

T 9

µopt = 3.55 · 10−3

A(h2) = 0.2562


Aopt = 0.2624

A(σ
(0)

h2,Aopt ) = 0.2541

E = 3.73 · 10−4


Aopt = 0.2604

A(σ
(4)

h2,Aopt ) = 0.2559

E = 2.38 · 10−4


Aopt = 0.2581

A(σ
(7)

h2,Aopt ) = 0.2567

E = 9.87 · 10−5

Table 4. Numerical results for semisphere’s test function for A = Aopt.

k=0 k=4 k=7

T 5

µopt = 7.9 · 10−4 A(σ
(0)
h2,0.7

) = 0.649 A(σ
(4)
h2,0.7

) = 0.656 A(σ
(7)
h2,0.7

) = 0.679

T 9

µopt = 1.71 · 10−4 A(σ
(0)
h2,0.7

) = 0.666 A(σ
(4)
h2,0.7

) = 0.671 A(σ
(7)
h2,0.7

) = 0.689

Table 5. Numerical results for semisphere’s test function for A = A+ = 0.7.
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k=0 k=4 k=7

T 5

µopt = 2.94 · 10−4 A(σ
(0)
h2,1.3

) = 1.262 A(σ
(4)
h2,1.3

) = 1.271 A(σ
(7)
h2,1.3

) = 1.289

T 9

µopt = 6.38 · 10−5 A(σ
(0)
h2,1.3

) = 1.276 A(σ
(4)
h2,1.3

) = 1.281 A(σ
(7)
h2,1.3

) = 1.294

Table 6. Numerical results for semisphere’s test function for A = A++ = 1.3.

It is well known that the higher the elevation level of the control net of a
bivariate quadratic polynomial is, the better its area approximates the area of
the polynomial. All our experiments showcase this behaviour and can be observed
that the relative error E decreases and the area constraint is better satisfied as
the elevation level k increases.

We can also observe that the results obtained for triangulation T 9 are better
than the ones associated to T 5. Of course, this is also reasonable since dispos-
ing of a higher dimensional spline space where to look for filling patches must
lead to better results. Although, of course, raising dimensions turns into higher
computational costs.

In the case A = Aopt, the best results, reported in Tables 1 and 4 and in
Figures 8 and 9 left, have been obtained when considering the non-linear system of
separable equations (6)-(15). In practical terms, Problem (16) can be numerically
solved using interior point (or barrier) methods (IPM) ([36, 6, 7, 11, 25]). IPM
define a family of iterative methods that can solve convex or nonconvex nonlinear
programming problems of the form

min
α∈Rn

f(α), subject to c(α) = 0, (19)

where f(α) : Rn → R is the objective function and c(α) : Rn → Rm describes a
set of m ≥ 0 constraints. The algorithm consists of outer and inner loops. Given
that (19) has no inequalities nor bound constraints, in the outer loop a sequence
of (unconstrained) problems similar to

min
α∈Rn

φ(α) := f(α)− λT c(α)

are solved where λ is a Lagrange multiplier vector. These problems are generally
solved using Newton’s method and thus require to solve a linear system of equa-
tions involving the Hessian of the Lagrangian of (19) in order to find a suitable
descent direction. For our case and since we are interested in finding a feasible
point, there is no objective function and the constraints function c(α) = 0 is
described in (16). Only linear and quadratic constraints are involved and the
Hessian of the Lagrangian contains a block of constant elements. Quadratically
constrained IPM methods exploit this fact and can keep a factorization of this
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block without the need to refactorize at each outer iteration. The inner loop
consists of a line search using e.g. exact penalty functions or filter methods [36].

State-of-the-art IPM solvers such as NAG’s e04st [40] or IpOpt [36] solve
problem (16) by finding a feasible point. In this case, the inner iteration line-
search minimizes a merit function, fI(α), defined as a metric that measures in-
feasibility. Many metrics have been proposed, each with its own advantage.
Sparsity-preserving `1-norm, Euclidean `2-norm or weighted variants of the pre-
vious two are all quite commonplace. We use an `1-norm and the merit function
chosen is fI(α) =

∑`
i=1 |ci(α)|. This choice for fI(α) matches with the imple-

mented one in the solvers e04st and IpOpt [36], with the former one used in the
experimentation. It is worth mentioning that both implemententations achieve
the best performance by making use of the first- and second-order derivatives.
Tables 1 and 4 report results for the numerical experimentation using the e04st

solver.
On the other hand, regarding the case A 6= Aopt, formulations O1, which di-

rectly attempt to solve the system of non-linear equations, are the most successful
ones, when solved by fsolve, from Matlab, or knitro nlneqs, from Knitro. It
is worthy to mention that for high values of the prescribed area A, the minimal
bending energy condition is much harder to fulfill, since the unique solution of
the linear system (6) is naturally associated to a low value of A. From this point
of view, we find it reasonable that the best results in the case A = A++ are
obtained by considering the minimization of {(fi(x) − di)2}ni=1 rather than the
one of {fi(x)− di}ni=1 or {|fi(x)− di|}ni=1, as it happens in the case A = A+. In
fact, the results obtained for A = A+ by means of the solution of the system

min
{

(µopt)2(fi(α)− di)2, (1− µopt)2(fn+1(α)−A+)2
}n
i=1

= 0

are worse than the ones obtained with (8) and (9). Similarly, the results obtained
for A = A++ by solving the system(√

µopt (f1(α)− d1) , . . . ,
√
µopt (fn(α)− dn) ,

√
1− µopt

(
fn+1(α)−A++

))
= 0

or(√
µopt |f1(α)− d1| , . . . ,

√
µopt |fn(α)− dn| ,

√
1− µopt

∣∣fn+1(α)−A++
∣∣) = 0

are worse than the ones obtained with 10. These facts show that obtaining
good results depends not only on the value of µopt but also on the formulation
considered.

In Figure 8 above we show the graphics of the filling patches σ
(7)
h1,A of Franke’s

function obtained for triangulation T 9 and for the three different prescribed val-
ues of A considered in Tables 1, 2 and 3, respectively. In Figure 8 below we show
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the graphics of the global reconstructed functions (1) all over D. Figure 9 follows
the same pattern for the semisphere’s function. In the case of the semisphere,
due to the symmetry of its graphic around the top point (0.5, 0.5, h2(0.5, 0.5)), we
have obtained, in all experiments, two different kinds of solutions: the ones lead-
ing to filling patches ‘above’ the graphic of the semisphere and the ones leading

to filling patches ‘below’ the graphic. Since the components {α3(i−1)+1}
n/3
i=1 of any

solution α of (6)-(7) are exactly the values of the filling patch σsf at the knots
of the triangulation T lying in the interior of H∗, it is easy to decide whether
a solution is desirable or not. In the examples provided in this section we have
chosen the solutions leading to filling patches ‘above’ the graphic of the semi-
sphere in order to somehow keep its shape. Obviously, another solutions leading
to ‘sunked’ filling patches can be considered.

A = Aopt = 0.4260 A = A+ = 0.8 A = A++ = 1.8

Figure 8: Franke’s filling patches with prescribed areas in T 9 for k = 7.

A = Aopt = 0.2562 A = A+ = 0.7 A = A++ = 1.3

Figure 9: Semisphere’s filling patches with prescribed areas in T 9 for k = 7.

To end this section, we have considered an example over a hole H0 with a
more complex geometry. This hole, whose graphic is shown in Figure 10 left, is
inspired by the one considered in Chapter XI.4 of [2]. This last example has also
been carried out over the domain D = (0, 1) × (0, 1), for Franke’s test function,
and for the smoothing parameters τ1 = 10−4 and τ2 = 10−5 in the functional (2),
and λ0 = 10 in the functional (3). In order to obtain a surrounding H∗0 close
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enough to H0, we have considered the triangulation T 25 of D. To perform this
example, we have directly considered the non-linear system of separable equations
(6)-(15), which in the previous ones led to the best filling patches. Numerical
results of this experiment are reported in Table 7, while the filling patch is shown
in Figure 10 right. As in the previous examples, Table 7 shows that the relative
error decreases and the area constraint is better satisfied as the elevation level k
increases.

Figure 10: Hole H0, surrounding polygonal hole H∗0 , and Franke’s filling patch in T 25 for k = 7.

k=0 k=4 k=7

T 25

µopt = 1.12 · 10−4

A(h1) = 0.4345


Aopt = .4447

A(σ
(0)

h1,Aopt ) = .04265

E = 9.15 · 10−4


Aopt = 0.4423

A(σ
(4)

h1,Aopt ) = 0.4318

E = 6.17 · 10−4


Aopt = 0.4369

A(σ
(7)

h1,Aopt ) = 0.4334

E = 4.49 · 10−4

Table 7. Numerical results for Franke’s test function for A = Aopt, hole H0 and T 25.

5. Filling patches satisfying curvature constraints.

In this section we consider the problem of determining minimal energy filling
patches with prescribed values of the mean curvature at some interior points of
H∗. Let us recall that the mean curvature of a bivariate function at a point (x, y)
is defined as

K =
∂xx(1 + ∂2

y)− 2∂x∂y∂xy + ∂yy(1 + ∂2
x)

2
(
1 + ∂2

x + ∂2
y

)3/2 ,

where ∂x, ∂y, ∂xx, ∂xy and ∂yy represent the first and second orders partial deriva-

tives operators. So, if {χq}`q=1 is a set of points in
◦
H∗ in which we want the filling

patch to have prescribed values K = {Kq}`q=1 of the mean curvature, we will have
to handle the non-linear system (6)-(7) where, for each q = 1, . . . , `, the function
fn+q in (7) has an expression of the form

fn+q(α) =

∑n
i,j,k=0D

q
ijkαiαjαk

2
(

1 +
∑n

i,j=0 F
q
ijαiαj

)3/2
,
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where we adopt the convention α0 = 1, and dn+q = Kq.
Contrary to what happens in the area constraint case, since mean curvature

is a local geometrical concept, we cannot expect to obtain any regression func-
tion providing a kind of dependence between the values {fi(α) − di}ni=1 in (5)
and the prescribed {Kq}`q=1. In fact, it is easy to define a function having zero
mean curvature at one point with a very high bending energy. Bending energy
is expected to take values much higher than the prescribed ones of the mean
curvature and, therefore, the values of the parametes µ in the objective functions
considered must necessarily be low in order to get a properly balanced bending
energy-mean curvature.

We have carried out experiments with both test functions Franke (h1) and
semisphere (h2) and, in all cases, the best solution σhi,K ∈ S1

2 (H∗sf ) associated
to prescribed values of the mean curvature K has been considered to be the one
minimizing the relative error(

J2

(∑3s
i=1 ϕi(sf )w0

i +
∑n

j=1 αjwj

)
− J2(sf )

)2

J2(sf )2
+
∑̀
q=1

(fn+q(α)−Kq)2

K2
q

,

where σsf ∈ S1
2 (H∗sf ), defined in (4), is the unique spline in S1

2 (H∗sf ) minimizing
the bending energy J2. All the experiments in this section have been performed
with the parameters values µ = 10−1, 10−4, 10−7, being the best resuts in all cases
the ones associated to µ = 10−4.

In Figure 11 we present results for Franke’s function h1 over the triangulation
T 5 when imposing mean curvature K1 = 0 at the point χ1 = (0.5, 0.5) -central
point in the graphics-. We show the graphic of σh1,K1 (left), the one of the global
reconstructed function (right) and the values of the mean curvature at χ1 of h1,
of the C1-minimal filling of h1 obtained just minimizing functional J2 (4), and of
the function σh1,K1 .

Function Mean curvature
at χ1

Franke 3.319

C1-filling 2.713

σh1,K1
0.257

Figure 11: Franke’s filling results with prescribed mean curvature at one point.

In Figure 11 we observe that, although the mean curvature of σh1,K1 at
(0.5, 0.5) is closer to the prescribed K1 = 0 than the ones of Franke’s function
and of its C1-filling, it is still a little bit far from being 0. This is due to the fact
that we have considered the coarse triangulation T 5. In order to improve this
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result, in Figure 12 we consider Franke’s function over the finer triangulation T 22

when imposing mean curvature K1 = 0 and K2 = 0 at the points χ1 = (0.36, 0.5)
and χ2 = (0.64, 0.5).

Function Mean curvature
at χ1

Mean curvature
at χ2

Franke 3.269 0.422

C1-filling 2.101 0.398

σh1,K1,K2
0.083 0.048

Figure 12: Franke’s filling results with prescribed mean curvature at two points.

Following the same pattern that for Franke’s function, in Figure 13 and in
Table 8 we show the results for different prescribed values K1 of the mean cur-
vature for the semisphere at the point χ1 = (0.5, 0.5), while in Figure 14 and in
Table 9 we show the results for different prescribed values K1 and K2 of the mean
curvature for the semisphere at the points χ1 = (0.36, 0.5) and χ2 = (0.64, 0.5),
respectively.

K1 = 0 K1 = −5 K1 = 5

Figure 13: Semisphere’s filling patches with prescribed mean curvature at one point.

Function Mean curvature
at χ1

Semisphere -2

C1-filling -0.731

σh2,K1=0 0.119

σh2,K1=−5 -4.778

σh2,K1=5 4.871

Table 8. Numerical results for semisphere’s with prescribed curvature at one point.
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K1 = −5, K2 = −5 K1 = 5, K2 = 5 K1 = 5, K2 = −5

Figure 14: Semisphere’s filling results with prescribed mean curvature at two points.

Function Mean curvature
at χ1

Mean curvature
at χ2

Semisphere -2 -2

C1-filling -0.731 -0.727

σ
h2,

{
K1=−5
K2=−5

-4.619 -4.774

σ
h2,

{
K1=5
K2=5

4.734 4.812

σ
h2,

{
K1=5
K2=−5

4.561 -4.661

Table 9. Numerical results for semisphere’s with prescribed curvature at two points.

Once all experiments have been carried out, we have found that for prescribed
values of the mean curvature closest to the exact ones of the functions to be filled
(semisphere with prescribed K1 = 0, K1 = −5 and K1 = K2 = −5), the best re-
sults are obtained by means of the solver knitro-nlneqs, using reformulation O1,
which treats directly the nonlinear system of equations, considering the absolute
value of the different components (9). For prescribed values of the mean curva-
ture farthest to the exact ones (the remaining experiments), the best results are
obtained by means of GlobalSearch, when considering reformulation O4, again
considering the absolute value of the different components. We point out that
solver GlobalSearch aims at global optimization, allowing a better exploration
of the variable space.

6. Conclusions.

We have developed a method to reconstruct holes in a given surface or, more
generally, in a given dataset. The filling patch joins the original surface with
C1-smoothness and it is defined as a spline of bivariate polynomials of total de-
gree at most two, leading to minimum possible computational costs insofar as no
lower degree allows to obtain C1-splines. Moreover, the filling patch is required
to be a proper approximation of a non-linear system composed of two types of
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equations: the first ones (linear) control the fairness of the filling patch, while
the second ones control non-linear features, as the area or the mean curvature.
To obtain the filling patch, some reformulations of the original non-linear system
and some solvers to address biobjective optimization problems are considered.
In the particular case of the area constraint, we develop a method to estimate
optimum values of the weight to be given to each one of the geometric character-
istic (fairness and non-linear constraint) to be handled, as well as a method to
estimate the optimal area to be imposed. The numerical and graphical examples
presented show the effectiveness of the numerical methods proposed. Regarding
the area constraint, experiments carried out show that the filling patch associated
to the optimum value of the area is better achieved when the original non-linear
system is reformulated in terms of several disaggregated equations numerically
solved by means of interior point methods. While, in the general case, reformu-
lations directly attempting to solve the system of non-linear equations are the
most successful ones, when solved by fsolve, from Matlab, or knitro nlneqs,
from Knitro. Regarding the mean curvature constraint we also found that solvers
and reformulations leading to the best results depend on the value of the mean
curvature imposed. More precisely, solver knitro-nlneqs and reformulation O1

work better for prescribed values closer to the exact ones, while for farthest val-
ues the best results are obtained by means of GlobalSearch, when considering
reformulation O4.
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