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Abstract

Multiobjective optimization is an interdisciplinary field with diverse applications in
science, engineering, environment, finance, medicine, and many other domains. As
objective function components often conflict with each other, finding a single point that
simultaneously minimizes all function components becomes impossible. Instead, the
solution lies in the Pareto front, which represents a set of nondominated points.

This thesis proposes an algorithm that employs a trust-region approach to approximate
the set of Pareto critical points in multiobjective optimization problems. Initially, the
algorithm utilizes derivative information from the objective function to compute Taylor
models that provide approximations for the different components of it. Subsequently, the
algorithm will be adapted to handle multiobjective derivative-free optimization problems,
where derivative information is not accessible.

The primary objective of this algorithm is to achieve a comprehensive, densely pop-
ulated, and uniformly distributed approximation of the complete Pareto front. This is
accomplished through an iterative process consisting of two main steps: the extreme
point step and the scalarization step. These steps are performed alternately throughout the
algorithm’s execution.

During the extreme point step, the algorithm expands the approximation to the Pareto
front by moving towards its extreme points. These extreme points correspond to the
individual minimization of each objective function component. On the other hand, the
scalarization step focuses on reducing gaps along the Pareto front by solving suitable
scalarization problems.

The scalarization step incorporates a pivotal additional step, referred to as the middle
point step. This step plays an important role in determining the initial points for solving
the scalarization problems. The significance of this step in ensuring the high performance
of the algorithm is substantiated through numerical results.

The algorithm proposed in this thesis incorporates a meticulous approach to managing
the limited evaluations of objective functions. It is specifically designed to address
scenarios where the evaluation of objective functions is computationally expensive and
the budget for such evaluations is restricted. This approach maximizes the quality of the
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obtained approximation to the Pareto front, allowing for a more accurate representation
of the optimal trade-off solutions in multiobjective optimization problems with expensive
and limited function evaluations.

The thesis provides a detailed and comprehensive analysis of the convergence prop-
erties of the proposed method under the scenario where derivative information of the
objective function is available and utilized. The analysis aims to thoroughly understand
and evaluate the behavior of the algorithm as it iteratively advances toward the Pareto
critical points during the optimization process.

The results of numerical experiments are reported, to illustrate the effectiveness
and robustness of the proposed approach. These experiments are designed with two
main purposes. The first goal is to demonstrate the essentiality of each key algorithmic
feature in achieving optimal performance by this approach. Secondly, the performance
of this algorithm is compared against a state-of-the-art multiobjective derivative-based
optimization solver, which inherently attempts to generate approximations of the complete
Pareto front for a given problem.

In the second phase of the thesis, following the initial algorithm, we further modify
it to compute an approximation of the complete Pareto front in multiobjective derivative-
free optimization problems. In this scenario, the objective functions are assumed to
be expensive black-box functions, where derivatives are not available and cannot be
estimated. The modified algorithm is specifically adapted to fully accommodate the
absence of derivatives.

To approximate the objective function components, the modified algorithm incorpo-
rates various strategies to navigate the challenges posed by the absence of derivatives. It
employs a technique based on polynomial interpolation and minimum Frobenius norm
approaches to compute high-quality models that approximate the objective function
components.

The convergence analysis for the derivative-free version of the algorithm is conducted.
Extensive efforts are devoted to examining the convergence properties of the algorithm,
specifically considering the challenge of lacking derivative information.

Detailed numerical results are presented, demonstrating the notable performance
of the modified algorithm compared to state-of-the-art multiobjective derivative-free
optimization solvers, which also aim to approximate complete Pareto fronts.
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Resumo

A otimização multiobjetivo é um campo interdisciplinar com diversas aplicações em
ciência, engenharia, ambiente, finanças, medicina e em muitos outros domínios. Como as
componentes da função objetivo frequentemente estão em conflito entre si, encontrar um
único ponto que minimize simultaneamente todas as componentes da função torna-se
impossível. Em vez disso, a solução do problema consiste na determinação da frente de
Pareto, que representa um conjunto de pontos não dominados.

Esta tese propõe um algoritmo que utiliza uma abordagem baseada em regiões
de confiança para aproximar o conjunto de pontos de Pareto críticos, em problemas
de otimização multiobjetivo. Inicialmente, o algoritmo utiliza informação acerca das
derivadas da função objetivo para calcularmodelos de Taylorque constituem aproximações
das suas diferentes componentes. Posteriormente, o algoritmo será adaptado para lidar
com problemas de otimização multiobjetivo sem derivadas, onde a informação acerca das
derivadas não está acessível.

O objetivo principal deste algoritmo é determinar uma aproximação completa, den-
samente populada e uniformemente distribuída da fronteira de Pareto. Tal é alcançado
por meio de um processo iterativo composto por dois passos principais: o passo de ponto
extremo e o passo de escalarização. Estes passos são realizados alternadamente, durante a
execução do algoritmo.

No passo de ponto extremo, o algoritmo expande a aproximação da frente de Pareto,
movendo-se em direção aos seus pontos extremos. Esses pontos correspondem à mini-
mização individual de cada componente da função objetivo. Por outro lado, o passo de
escalarização concentra-se na redução de hiatos ao longo da frente de Pareto, por meio da
resolução de problemas de escalarização adequados.

O passo de escalarização incorpora uma etapa adicional fundamental, designada por
passo de ponto médio. Esse passo desempenha um papel importante na determinação dos
pontos iniciais para a resolução dos problemas de escalarização.

O algoritmo proposto nesta tese incorpora uma abordagem meticulosa para gerir as
avaliações limitadas das funções objetivo. É especificamente desenhado para lidar com
cenários em que a avaliação das funções objetivo é computacionalmente dispendiosa e
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o orçamento para tais avaliações é limitado. Esta abordagem maximiza a qualidade da
aproximação obtida para a frente de Pareto, permitindo uma representação mais precisa
das soluções ótimas de compromisso em problemas de otimização multiobjetivo com
avaliação dispendiosa e limitada das funções.

A tese providencia uma análise detalhada e abrangente das propriedades de convergên-
cia do método proposto, no cenário em que a informação acerca das derivadas da função
objetivo está disponível e é utilizada. A análise tem como objetivo compreender e avaliar
detalhadamente o comportamento do algoritmo à medida que avança iterativamente,
durante o processo de otimização, em direção aos pontos de Pareto críticos.

Os resultados da experimentação numérica são relatados para ilustrar a eficácia e a
robustez da abordagem proposta. Essas experiências são delineadas com dois objetivos
principais. O primeiro, é demonstrar a necessidade de cada elemento estrutural do al-
goritmo na obtenção de um desempenho ideal por meio desta abordagem. Em segundo
lugar, o desempenho do algoritmo é comparado com um código bem estabelecido de
otimização multiobjetivo baseado em derivadas, que inerentemente gera aproximações
completas da frente de Pareto para um certo problema.

Na segunda parte da tese, seguindo a estrutura algorítmica inicial, são introduzidas
modificações que permitam determinar uma aproximação à frente de Pareto completa
em problemas de otimização multiobjetivo sem derivadas. Neste cenário, assume-se
que as funções objetivo são dispendiosas, do tipo caixa-preta, não estando as derivadas
disponíveis, nem podendo ser estimadas. O algoritmo modificado é especificamente
adaptado para acomodar a ausência de derivadas.

Para aproximar as componentes da função objetivo, o algoritmo modificado incorpora
diversas estratégias para lidar com os desafios impostos pela ausência de derivadas.
Técnicas de interpolação polinomial e abordagens de norma de Frobenius mínima são
usadas para calcular modelos de alta qualidade que aproximam as componentes da função
objetivo.

A análise de convergência para a versão sem derivadas do algoritmo é conduzida. Es-
forços extensivos são dedicados a examinar as propriedades de convergência do algoritmo,
considerando especificamente o desafio da falta de informação acerca das derivadas.

Resultados numéricos detalhados são apresentados, demonstrando o bom desempe-
nho do algoritmo modificado por comparação com códigos de otimização multiobjetivo
sem derivadas bem estabelecidos, que também procuram aproximar frentes de Pareto
completas.
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1

Introduction

This chapter provides an overview of the thesis from a general perspective. It sets the
stage for the rest of the thesis, providing readers with a comprehensive understanding of
its context and objectives.

The chapter begins with a brief introduction to optimization in Section 1.1, providing
an overview of the fundamental concepts. The problem statement is then introduced in
Section 1.2, outlining the specific research problem to be addressed by the thesis. The
contributions of the thesis are discussed in Section 1.3, highlighting the novel findings
and advancements made in the field. Finally, Section 1.4 presents the organization of the
thesis, guiding readers through the structure and content of the subsequent chapters.

1.1 A brief introduction to optimization

Optimization is a fundamental concept that plays a crucial role in various fields of
study, providing a diverse range of approaches for finding the best possible solutions
to complex problems. It involves the process of maximizing or minimizing an objective
function, subject to certain constraints or conditions. The applications of optimization are
widespread, spanning disciplines such as engineering, economics, biology, psychology,
computer science, and machine learning.

The goal of optimization is to identify the optimal solution that maximizes efficiency,
minimizes cost, or achieves desired outcomes. This involves exploring the feasible solution
space and iteratively improving the objective function value until an optimal or near-
optimal solution is reached. Optimization methods can be broadly classified into two
categories: single-objective and multiobjective optimization.

Single-objective optimization focuses on optimizing a single objective while consid-
ering the constraints or limitations imposed by the problem. It aims to find the optimal
solution with respect to a specific objective, disregarding other objectives or trade-offs
that may exist.

On the other hand, multiobjective optimization addresses situations where multiple
objectives need to be simultaneously optimized. These objectives often conflict with

1



CHAPTER 1. INTRODUCTION

each other, making it challenging to find a single solution that optimizes all objectives
simultaneously. In real-world problems, decision-makers often encounter situations where
optimizing one objective may lead to the degradation of another one. For example, in
engineering design, achieving higher performance may increase costs.

Multiobjective optimization aims to find a set of solutions that represent a trade-off
between the competing objectives, known as the Pareto front. These solutions form a
frontier, where improving one objective requires sacrificing another. Decision-makers
can subsequently select the most appropriate solution from this set, considering their
preferences, requirements, or any established priorities.

Widely used optimization methods include gradient descent, Newton method, and
quasi-Newton methods, which can be used within the structure of trust-region or line
search algorithms to efficiently search the solution space. Additionally, conjugate gradient
and interior point methods are popular techniques for optimization problems with specific
characteristics. Evolutionary algorithms, such as genetic algorithms, particle swarm
optimization, and differential evolution, are also commonly employed for their ability to
explore complex search spaces and handle constraints, even if without general theoretical
guarantees of success.

Scalarization methods are commonly used in multiobjective optimization to convert
a multiobjective problem into a single-objective one. These methods aim to find a sin-
gle scalar objective function that incorporates multiple objectives, allowing the use of
traditional single-objective optimization techniques. These methods provide a range of
trade-off solutions along the Pareto front by adjusting weights or constraint levels.

Commonly used scalarization methods include the weighted sum method, where ob-
jectives are linearly combined, and the 𝜖−constraint method, which introduces constraints
on specific objectives while optimizing the others. Other scalarization methods include
achievement scalarizing functions, penalty-based methods, and augmented 𝜖−constraint
methods, each offering different ways to represent and optimize multiple objectives as a
single scalar objective.

Derivative-free optimization is a branch of optimization that addresses problems
where the derivative information of the objective function is either unavailable or compu-
tationally expensive to obtain. In many real-world scenarios, such as when dealing with
black-box functions or simulation-based models, it is not possible or practical to access
the derivatives explicitly. In such cases, derivative-free optimization methods offer an
alternative approach to finding optimal or near-optimal solutions.

Unlike traditional optimization methods that rely on the gradient or Hessian infor-
mation, derivative-free optimization techniques explore the solution space solely based
on the evaluations of the objective function. By adapting and refining the search based
on the observed function values, derivative-free optimization methods aim to iteratively
improve the solution and converge towards the optimum.

The field of derivative-free optimization has gained significant attention in recent
years due to its applicability in various domains, including engineering design, financial
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modeling, and machine learning. It provides a flexible and robust framework for solving
complex optimization problems where derivative information is unavailable. By lever-
aging techniques specifically designed for derivative-free optimization, researchers and
practitioners can tackle a wide range of challenging problems and obtain high-quality
solutions without relying on the gradient or derivative information.

Several widely used techniques have been developed to address derivative-free opti-
mization problems. Pattern search methods, including methods such as the Hooke-Jeeves
method, involve systematic pattern-based exploration of the search space. Direct search
methods, including techniques such as the mesh adaptive direct search algorithm, sys-
tematically explore the solution space based on the evaluations of the objective function.
Trust-region algorithms have also been commonly used. Evolutionary algorithms, such
as genetic algorithms and differential evolution, employ stochastic search and selection
mechanisms to explore the search space and refine solutions.

Trust-region methods have been successfully applied in various optimization problems
and have gained significant attention. They focus on improving the solution within a
trust region around the current point. Trust-region methods employ local models to
approximate the objective functions and explore the solution space efficiently. The solution
is updated iteratively within a trust region, ensuring convergence towards an optimal
solution. The trust-region radius is also updated iteratively as a safety region, limiting the
step size and ensuring that the objective function improves within a certain radius.

1.2 Problem statement

This thesis addresses the multiobjective optimization problem

min 𝐹(𝑥) = ( 𝑓1(𝑥), ..., 𝑓𝑞(𝑥))
s.t. 𝑥 ∈ R𝑛 ,

where 𝐹 : R𝑛 → R𝑞 , 𝑛, 𝑞 ∈ N, and 𝑞 ≥ 2.
The objective function components 𝑓𝑖 : R𝑛 → R, 𝑖 = 1, . . . , 𝑞, are mutually conflicting,

posing a challenge in finding a single optimal solution that simultaneously minimizes
all of them. The aim is to identify a set of solutions that represent a trade-off among the
competing objectives, known as the Pareto front of the problem, which comprises a set of
nondominated points.

Additionally, it will be taken into consideration that the evaluation of the objective
function is highly expensive. Hence, a crucial criterion for the designed algorithms will be
their ability to effectively control the number of function evaluations, thereby enhancing
the overall performance of the methods.

Initially, the objective function components 𝑓𝑖 , 𝑖 = 1, . . . , 𝑞, are assumed to be twice
continuously differentiable, with gradients and Hessians available. These gradients and
Hessians will be utilized in the solving strategy, as discussed in Chapter 5.
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Subsequently, Chapter 6 will concentrate on addressing the multiobjective derivative-
free optimization problem. In this scenario, the objective function components 𝑓𝑖 , 𝑖 =
1, . . . , 𝑞, are characterized by the absence of available derivatives and the inability to
approximate them. Consequently, a modified technique will be introduced, employing
numerical methods to compute models that approximate the true objective function
components.

1.3 Contributions of this thesis

This thesis delves into two prominent and demanding domains in the field of optimization.
Firstly, it tackles the realm of multiobjective optimization, addressing the challenge of
optimizing multiple conflicting objectives simultaneously. Subsequently, it narrows its
focus to the more specialized field of multiobjective derivative-free optimization, which
involves optimizing multiple conflicting objectives without the availability or possibility
of using derivative information.

The aim of this thesis is to explore the fundamentals and methodologies of multiobjec-
tive optimization. This research will cover various aspects of multiobjective optimization,
including optimality conditions, algorithmic approaches, and evaluation metrics.

This thesis seeks to contribute to the existing body of knowledge by presenting novel
methodologies or improvements to existing approaches in multiobjective optimization.
In addition to the theoretical analysis, through numerical experimentation, we aim to
demonstrate the effectiveness and applicability of the proposed methods.

The contributions of this thesis are significant in addressing the limitations of existing
algorithms based on trust-region methods for approximating the complete Pareto front
in multiobjective optimization problems. Unlike previous trust-region algorithms that
only provide a single critical point as a solution, this thesis presents a novel algorithm
that effectively approximates the complete Pareto front using trust-region approaches.

Furthermore, the thesis modifies the original derivative-based framework to address
the multiobjective derivative-free optimization. It makes a significant contribution by
addressing the limitations of existing trust-region algorithms in the literature for approxi-
mating the complete Pareto front in a general multiobjective derivative-free problem.

To overcome the absence of derivative information, innovative strategies based on
interpolation techniques are employed to build accurate models approximating the true
objective function components. These strategies have the potential to significantly advance
derivative-free optimization and can be effectively applied in future research and practical
applications.

Overall, the findings of this research contribute to the field of multiobjective opti-
mization by advancing our understanding of both derivative-based and derivative-free
optimization techniques. The insights gained from this study provide valuable guidance
for addressing the challenges associated with expensive, complex, and conflicting objec-
tives in real-world problems. By developing robust and effective algorithms and strategies,
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this thesis opens up new avenues for optimizing complex systems and decision-making
processes and paves the way for future advancements in multiobjective optimization.
The practical implications of this work can extend to various real-world domains, where
efficient and robust optimization methods are in high demand.

1.4 Organization of this thesis

The thesis is organized and outlined in the following structure.
Chapter 2 delves into the mathematical background of single-objective optimization,

covering fundamentals and optimality conditions. This chapter also explores techniques
for building models that approximate functions.

Chapter 3 is dedicated to single-objective numerical optimization methods. This
chapter categorizes algorithms into two groups:

• Derivative-basedmethods, including line searchmethods andtrust-region derivative-
based methods;

• Derivative-free methods, encompassing direct search methods and trust-region
derivative-free methods.

Chapter 4 focuses on multiobjective optimization. It begins by discussing the funda-
mentals of multiobjective optimization, subsequently delving into the study of optimality
conditions. A brief review of some derivative-based and derivative-free algorithms is also
provided. The chapter concludes with a discussion of some multiobjective metrics and
performance evaluation tools that will be used in the numerical sections.

In Chapter 5, a comprehensive framework for multiobjective optimization based on
trust-region methods is presented. The chapter starts by introducing the algorithmic
structure, followed by a discussion on convergence analysis. Numerical results are then
reported to evaluate the efficiency and robustness of the algorithm.

In Chapter 6, the proposed algorithm is modified to a multiobjective derivative-free
optimization setting. Initially, the algorithmic structure is introduced, highlighting its
adaptation to derivative-free optimization scenarios where derivatives are unavailable.
Next, the chapter establishes convergence analysis. Finally, numerical results are reported
to assess the efficiency and robustness of the modified algorithm.

To sum up, in Chapter 7, some concluding remarks and discussion on some potential
avenues for research are provided.
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2

Mathematical background in
single-objective optimization

In this chapter, our focus is on introducing the fundamental concepts and terminology
related to single-objective optimization. Readers who are familiar with this background
may skip it. We will introduce definitions, theorems, and relevant discussions. For a
comprehensive understanding, we recommend the references [2, 8, 20, 27] that provide
deeper insights into the concepts, techniques, and theoretical foundations.

In Section 2.1, the fundamental terminology of optimization is introduced, providing
a solid foundation for understanding the subject. Section 2.2 focuses on optimality
conditions, which play a crucial role in analyzing and solving optimization problems.
These conditions help to identify the optimal solutions and guide the development of
optimization algorithms. Finally, in Section 2.3, the concept of models is explored in detail,
emphasizing their significance in optimization algorithms. Adequate models can provide
good quality approximations to objective functions, enabling efficient exploration and
exploitation of the search space.

2.1 Fundamentals of optimization

Optimization is a topic that appears in almost all scientific areas. Solving an optimization
problem means minimizing or maximizing an objective function, often subject to some
constraints that need to be satisfied:

min/max 𝑓 (𝑥),
s.t. 𝑥 ∈ 𝑋

where 𝑓 : R𝑛 → R𝑚 , 𝑛, 𝑚 ∈ N and 𝑋 ⊆ R𝑛 .
A problem is defined as being single-objective if𝑚 = 1. Otherwise, the problem is said

to be multiobjective. In this chapter and in Chapter 3, we will focus on single-objective
optimization. The multiobjective case will be addressed in Chapter 4.

Throughout this thesis, we will only consider minimization problems, since a max-
imization problem can be easily converted into a minimization one, by considering the
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symmetry of the objective function. The optimum point will be the same, with a symmetric
value for the objective function.

If 𝑋 = R𝑛 , the problem is said to be unconstrained. When in presence of constraints,
𝑋 ⊂ R𝑛 is defined as:

𝑋 = {𝑥 ∈ R𝑛 |𝑐𝑖(𝑥) = 0, 𝑖 ∈ ℰ; 𝑐 𝑗(𝑥) ≥ 0, 𝑗 ∈ ℐ},

where ℰ and ℐ denote the index sets for equality and inequality constraints, respectively.
The set 𝑋 is called the feasible set or the feasible region and 𝑥 ∈ 𝑋 is said to be a feasible
point.

A single-objective optimization problem is linear when the objective function and
all the constraints are linear. Otherwise, it is said to be nonlinear. We will address the
nonlinear case.

2.2 Optimality conditions

Let us now consider the minimization problem:

min
𝑥∈𝑋⊆R𝑛

𝑓 (𝑥). (2.1)

The following definition formalizes the concept of solution.

Definition 2.1. A point 𝑥∗ ∈ 𝑋 is a global solution of Problem (2.1) if

∀𝑥 ∈ 𝑋, 𝑓 (𝑥∗) ≤ 𝑓 (𝑥).

Often it is very difficult to compute a global solution for a given problem. Even if we
have access to a point corresponding to the global solution, it may be difficult to verify it
[20], which justifies that many optimization methods focus on local solutions.

Definition 2.2. A point 𝑥∗ ∈ 𝑋 is a local solution of Problem (2.1) if there is 𝜖 > 0 such that

∀𝑥 ∈ 𝐵(𝑥∗ , 𝜖), 𝑓 (𝑥∗) ≤ 𝑓 (𝑥),

where 𝐵(𝑥∗ , 𝜖) = {𝑥 ∈ 𝑋 : ∥𝑥 − 𝑥∗∥ ≤ 𝜖}.

However, the previous definitions are not practical for the identification of minimizers,
not even if the problem is unconstrained. For this purpose, optimality conditions are
derived.

In the subsequent part of this section, our focus will shift toward discussing optimality
conditions specifically for unconstrained optimization problems. For readers interested in
exploring the topic of constrained optimization, we recommend referring to [20, 27]. These
references delve into the subject of constrained optimization, providing comprehensive
insights and discussions on the theory and methodologies involved.

Theorem 2.1 states a basic result from mathematical analysis, corresponding to a
first-order necessary condition for optimization [20, 27].
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Theorem 2.1. Let 𝑋 = R𝑛 and assume that the first-order derivatives of 𝑓 exist. If 𝑥∗ is a local
solution of Problem (2.1), then

∇ 𝑓 (𝑥∗) = 0. (2.2)

Points at which the vector gradient is null are said to be stationary points. Although,
a stationary point is not always a minimizer [20, 27]. Second-order optimality conditions,
which will require the concept of positive definiteness, allow the selection of minimizers
from stationary points. A symmetric matrix 𝐻 ∈ R𝑛×𝑛 is said to be positive definite if

∀ 𝑑 ∈ R𝑛 \ {0}, 𝑑⊤𝐻𝑑 > 0,

or, equivalently, if all of its eigenvalues are strictly positive. A matrix 𝐻 ∈ R𝑛×𝑛 is said to
be positive semidefinite if

∀ 𝑑 ∈ R𝑛 , 𝑑⊤𝐻𝑑 ≥ 0

or equivalently, if all of its eigenvalues are nonnegative.
Theorem 2.2 formalizes the second-order necessary and sufficient conditions for opti-

mality.

Theorem 2.2. Let 𝑋 = R𝑛 and 𝑓 be a second-order continuously differentiable function in an
open neighborhood of 𝑥∗. If 𝑥∗ is a local solution of Problem (2.1), then ∇ 𝑓 (𝑥∗) = 0 and ∇2 𝑓 (𝑥∗) is
positive semidefinite.

If ∇ 𝑓 (𝑥∗) = 0 and ∇2 𝑓 (𝑥∗) is positive definite, then 𝑥∗ is a strict local solution of Problem (2.1).

It was already mentioned that identifying global optimization solutions is, in general,
a difficult process. However, convexity simplifies the task. A set 𝑋 ⊆ R𝑛 is convex if and
only if

∀𝜆 ∈ [0, 1], ∀𝑥, 𝑦 ∈ 𝑋, 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑋.

A function 𝑓 on a convex set 𝑋 is convex if and only if

∀𝜆 ∈ [0, 1], ∀𝑥, 𝑦 ∈ 𝑋, 𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦).

A function 𝑓 on a convex set 𝑋 is strictly convex if and only if

∀𝜆 ∈ [0, 1],∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦 ⇒ 𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) < 𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦).

An optimization problem is convex if and only if 𝑋 is a convex set and 𝑓 is convex on 𝑋.
Assume that the Hessian matrix of 𝑓 is defined. Convexity is equivalent to having the

Hessian of 𝑓 positive semidefinite at every point 𝑥 ∈ 𝑋. Equivalently, strict convexity can
be defined as having the Hessian of 𝑓 positive definite at every point 𝑥 ∈ 𝑋. So, we can
relate the above theorems to the concept of convexity [27].

Theorem 2.3. Every local solution of a convex optimization problem is a global solution.

Theorem 2.4. Every local solution of a convex optimization problem with a strictly convex objective
function is a unique global solution.

It is worth noting that information about convexity is not always easy to obtain,
especially if derivatives are not available, and often functions to optimize are nonconvex.
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2.3 Models in optimization

Some optimization algorithms are model-based methods. In this case, models corre-
sponding to approximations to the objective function are used, because they are less
computationally expensive and easier to manipulate. Models with higher quality, that
have less error when compared to the original function, result in higher-quality solu-
tions. In this section, we will discuss some techniques for building high-quality linear or
quadratic polynomial models 𝑚 : R𝑛 → R to approximate a function 𝑓 : R𝑛 → R. Linear
models are less expensive but usually present a lower quality when compared to quadratic
ones because they can’t capture the curvature information of the objective function.

Derivatives provide noticeably useful information about functions and can be used
to compute high-quality approximations to the objective function by considering Taylor
expansions of it (see Section 2.3.1). However, in a derivative-free optimization setting,
derivatives are not available, and it isn’t possible to estimate them. In this situation,
interpolation, regression, or minimum Frobenius norm models can be extremely useful.
In the context of expensive function evaluation, we will try to reduce the number of
function evaluations required, while still building high-quality models.

Throughout this chapter, let 𝒫𝑑
𝑛 be the space of polynomials in R𝑛 of degree less than

or equal to 𝑑 ∈ N. Let 𝑏1 be the dimension of this space. For example, when 𝑑 = 1, 𝒫𝑑
𝑛 only

contains linear polynomials and 𝑏1 = 𝑛 + 1. In the quadratic case, for 𝑑 = 2, 𝒫𝑑
𝑛 contains

linear and quadratic polynomials and 𝑏1 =
(𝑛+1)(𝑛+2)

2 holds.
A basis of 𝒫𝑑

𝑛 is defined as

𝜙 = {𝜙0(𝑥), 𝜙1(𝑥), . . . , 𝜙𝑏(𝑥)},

a set of 𝑏1 polynomials of degree less than or equal to 𝑑 that spans 𝒫𝑑
𝑛 , where 𝑥 ∈ R𝑛 and

𝑏1 = 𝑏 + 1. There are several polynomial bases that are worth considering for various
applications. We will focus on the natural basis of monomials and on the basis of Lagrange
polynomials, that are relevant to the context of this thesis. The first one is detailed here
and the second one will be discussed later in this chapter.

The naturalbasis is the simplest and the most common polynomialbasis in the literature
[8], and can be written as

𝜙 =

{
1, 𝑥1 , . . . , 𝑥𝑛 ,

𝑥2
1

2 , 𝑥1𝑥2 , . . . ,
𝑥𝑑−1
𝑛−1𝑥𝑛

(𝑑 − 1)! ,
𝑥𝑑𝑛
𝑑!

}
.

For example, if 𝑑 = 2 and 𝑛 = 2, it is defined as

𝜙 =

{
1, 𝑥1 , 𝑥2 ,

𝑥2
1

2 , 𝑥1𝑥2 ,
𝑥2

2
2

}
,

and if 𝑑 = 2 and 𝑛 = 3, it corresponds to

𝜙 =

{
1, 𝑥1 , 𝑥2 , 𝑥3 ,

𝑥2
1

2 , 𝑥1𝑥2 ,
𝑥2

2
2 , 𝑥1𝑥3 , 𝑥2𝑥3 ,

𝑥2
3

2

}
.
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Any polynomial 𝑚(𝑥) ∈ 𝒫𝑑
𝑛 can be written as

𝑚(𝑥) =
𝑏∑
𝑗=0

𝛼 𝑗𝜙 𝑗(𝑥),

where 𝛼 𝑗 ∈ R are real coefficients, for 𝑗 ∈ {0, ..., 𝑏}.

2.3.1 Taylor models

Taylor models are based on derivatives, so gradients and Hessian matrices are required
for their computation. The following theorem, known as the Taylor theorem, is a powerful
tool in derivative-based optimization [27].

Theorem 2.5. Suppose that 𝑓 : R𝑛 → R is continuously differentiable and let 𝑎, 𝑥 ∈ R𝑛 . Then,

𝑓 (𝑎 + 𝑥) = 𝑓 (𝑎) + ∇ 𝑓 (𝑎 + 𝑡𝑥)⊤𝑥,

for some 𝑡 ∈ (0, 1). Moreover, if 𝑓 is twice continuously differentiable, then

𝑓 (𝑎 + 𝑥) = 𝑓 (𝑎) + ∇ 𝑓 (𝑎)⊤𝑥 + 1
2𝑥

⊤∇2 𝑓 (𝑎 + 𝑡𝑥)𝑥,

with 𝑡 ∈ (0, 1).

A linear approximation to a function 𝑓 can be obtained by using Taylor linear models

𝑚(𝑎 + 𝑥) = 𝑓 (𝑎) + ∇ 𝑓 (𝑎)⊤𝑥, (2.3)

with 𝑎, 𝑥 ∈ R𝑛 . In this thesis, we will often make use of quadratic Taylor models

𝑚(𝑎 + 𝑥) = 𝑓 (𝑎) + ∇ 𝑓 (𝑎)⊤𝑥 + 1
2𝑥

⊤∇2 𝑓 (𝑎)𝑥, (2.4)

where 𝑎, 𝑥 ∈ R𝑛 .
Error bounds for Taylor models are well-established for first-order and second-order

approximations. Theorems 2.6 and 2.7 state them, respectively.

Theorem 2.6. Let 𝑎 ∈ R𝑛 , Δ > 0, and assume that the function 𝑓 is continuously differentiable
in an open domain Ω containing 𝐵(𝑎,Δ), ∇ 𝑓 is Lipschitz continuous in Ω with constant 𝑣1 > 0,
and 𝑚 is the corresponding linear Taylor model defined by (2.3), approximating 𝑓 . Then, for all
points 𝑥 in 𝐵(𝑎,Δ), we have

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ 𝑓 (𝑥) − ∇𝑚(𝑥)∥ ≤ 𝜅𝑒 𝑔Δ,

• the error between the model and the function satisfies

| 𝑓 (𝑥) − 𝑚(𝑥)| ≤ 𝜅𝑒 𝑓Δ
2 ,
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where 𝜅𝑒 𝑔 and 𝜅𝑒 𝑓 are strictly positive constants depending on 𝑣1.

Theorem 2.7. Let 𝑎 ∈ R𝑛 , Δ > 0, and assume that the function 𝑓 is twice continuously
differentiable in an open domain Ω containing 𝐵(𝑎,Δ), ∇2 𝑓 is Lipschitz continuous in Ω with
constant 𝑣2 > 0, and𝑚 is the corresponding quadratic Taylor model defined by (2.4), approximating
𝑓 . Then, for all points 𝑥 in 𝐵(𝑎,Δ), we have

• the error between the Hessian of the model and the Hessian of the function satisfies

∥∇2 𝑓 (𝑥) − ∇2𝑚(𝑥)∥ ≤ 𝜅𝑒ℎΔ,

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ 𝑓 (𝑥) − ∇𝑚(𝑥)∥ ≤ 𝜅𝑒 𝑔Δ
2 ,

• the error between the model and the function satisfies

| 𝑓 (𝑥) − 𝑚(𝑥)| ≤ 𝜅𝑒 𝑓Δ
3 ,

where 𝜅𝑒ℎ , 𝜅𝑒 𝑔 and 𝜅𝑒 𝑓 are strictly positive constants depending on 𝑣2.

Some optimization methods, based on Taylor models, use real gradients and Hessian
matrices of functions, like what we will do in this thesis. Due to the high cost of computing
Hessians, quasi-Newton methods use special techniques to approximate them, like the
case of the BFGS or symmetric rank-one formulas (see [20] for more details).

2.3.2 Determined interpolation models

In the absence of derivatives, interpolation techniques can be used to build models. A
sample set of 𝑝 + 1 points

𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} ⊂ R𝑛 ,

for which the corresponding function values are known, is required to compute the
interpolating polynomial model 𝑚, modelling 𝑓 at the points in 𝑌.

Depending on the number of available points and the budget of function evaluations,
polynomial interpolation models can be built in a determined, when 𝑝 = 𝑏, regression,
when 𝑝 > 𝑏, or underdetermined, when 𝑝 < 𝑏, form. The determined case is discussed
here. The regression and underdetermined cases will be discussed in Sections 2.3.4, and
2.3.5, respectively. Regarding each case, Taylor-like error bounds, corresponding to the
polynomial interpolation models, will also be provided.

Let us consider a sample set of 𝑝 + 1 interpolation points 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} ⊂ R𝑛 .
The interpolating polynomial model 𝑚(𝑥) ∈ 𝒫𝑑

𝑛 , expressed as 𝑚(𝑥) = ∑𝑝

𝑗=0 𝛼 𝑗𝜙 𝑗(𝑥), where
𝜙 = {𝜙0(𝑥), 𝜙1(𝑥), . . . , 𝜙𝑝(𝑥)} is a basis of 𝒫𝑑

𝑛 , is built by computing the coefficients
𝛼0 , 𝛼1 , ..., 𝛼𝑝 , satisfying the interpolation conditions

𝑚(𝑦 𝑖) =
𝑝∑
𝑗=0

𝛼 𝑗𝜙 𝑗(𝑦 𝑖) = 𝑓 (𝑦 𝑖), 𝑖 = 0, .., 𝑝.
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This linear system of equations can be rewritten as

𝑀(𝜙, 𝑌)𝛼 = 𝑓 (𝑌),

where,

𝑀(𝜙, 𝑌) =


𝜙0(𝑦0) 𝜙1(𝑦0) . . . 𝜙𝑝(𝑦0)
𝜙0(𝑦1) 𝜙1(𝑦1) . . . 𝜙𝑝(𝑦1)
...

...
...

...

𝜙0(𝑦𝑝) 𝜙1(𝑦𝑝) . . . 𝜙𝑝(𝑦𝑝)


,

𝛼 =


𝛼0

𝛼1
...

𝛼𝑝


, 𝑓 (𝑌) =


𝑓 (𝑦0)
𝑓 (𝑦1)
...

𝑓 (𝑦𝑝)


.

Building a well-defined model 𝑚 requires having a poised interpolating sample set 𝑌.
The concept of poisedness, which is related to the geometry of 𝑌, illustrates how well the
points of 𝑌 are spread. The following definition [8] introduces the concept of poisedness
in polynomial interpolation, which implies that the previous system of equations has a
unique solution.

Definition 2.3. The set 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} is poised for polynomial interpolation in R𝑛 if the
matrix 𝑀(𝜙, 𝑌) is nonsingular for some basis 𝜙 in 𝒫𝑑

𝑛 .

An interesting aspect of this system is that if 𝑀(𝜙, 𝑌) is nonsingular for some basis 𝜙,
then it is nonsingular for any basis of 𝒫𝑑

𝑛 . So, the poisedness of 𝑌 is independent of the
selected basis. The following lemma [8] guarantees the uniqueness of the interpolating
polynomial 𝑚.

Lemma 2.1. Given a function 𝑓 : R𝑛 → R anda poised set𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝}, the interpolating
polynomial 𝑚 exists and is unique.

Although ignoring the geometry of𝑌may fail to maintain global convergence of model-
based algorithms and cause poor quality numerical results, checking and controlling the
geometry step by step may be computationally expensive, regarding the high number of
required function evaluations [8, 32]. So, an efficient algorithm will require an appropriate
strategy regarding this issue. We will return to this topic later in this chapter.

Linear interpolation

The simplest determined interpolation technique is linear interpolation, in which 𝑚 is a
polynomial of degree 𝑑 = 1 and 𝑝 = 𝑛. Using the natural basis

𝜙 = {1, 𝑥1 , . . . , 𝑥𝑛},

12
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linear interpolation can be rewritten in matrix form as


1 𝑦0

1 . . . 𝑦0
𝑛

1 𝑦1
1 . . . 𝑦1

𝑛
...

...
...

...

1 𝑦𝑛1 . . . 𝑦𝑛𝑛



𝛼0

𝛼1
...

𝛼𝑛


=


𝑓 (𝑦0)
𝑓 (𝑦1)
...

𝑓 (𝑦𝑛)


,

𝑀(𝜙, 𝑌)𝛼 = 𝑓 (𝑌).

The following theorem [8, Theorems 2.11 and 2.12] establishes error bounds for linear
polynomial interpolation models. Proofs are also available in [8].

Theorem 2.8. Assume that 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑛} ⊂ R𝑛 is a poised set of sample points, in the
linear interpolation sense, contained in the ball 𝐵(𝑦0 ,Δ(𝑌)) of radius Δ = Δ(𝑌) = max1≤𝑖≤𝑛 ∥𝑦 𝑖−
𝑦0∥. Furthermore, assume that the function 𝑓 is continuously differentiable in an open domain
Ω containing 𝐵(𝑦0 ,Δ), with ∇ 𝑓 Lipschitz continuous in Ω with constant 𝑣1 > 0. Let 𝑚 be the
corresponding linear polynomial interpolation model approximating 𝑓 . Then, for all points 𝑥 in
𝐵(𝑦0 ,Δ), we have

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ 𝑓 (𝑥) − ∇𝑚(𝑥)∥ ≤ 𝜅𝑒 𝑔Δ,

• the error between the model and the function satisfies

| 𝑓 (𝑥) − 𝑚(𝑥)| ≤ 𝜅𝑒 𝑓Δ
2 ,

where 𝜅𝑒 𝑔 = 𝑣1

(
1 + 𝑛 1

2 ∥𝐿̂−1∥/2
)
, 𝜅𝑒 𝑓 = 𝜅𝑒 𝑔 + 𝑣1/2, and

𝐿̂ =

[
𝑦1−𝑦0

Δ
, ...,

𝑦𝑛−𝑦0

Δ

]⊤
=


𝑦1

1 − 𝑦
0
1

Δ
. . .

𝑦1
𝑛 − 𝑦0

𝑛

Δ
...

...
...

𝑦𝑛1 − 𝑦0
1

Δ
. . .

𝑦𝑛𝑛 − 𝑦0
𝑛

Δ


.

Quadratic interpolation

Interpolating nonlinear techniques are essential to capture the curvature information of
functions, decreasing the approximation error of the models. Quadratic interpolation is
the simplest way of introducing it.
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For example, considering the natural basis when 𝑛 = 𝑑 = 2, a quadratic polynomial
interpolation model will be computed by solving the system

𝑀(𝜙, 𝑌) =



1 𝑦0
1 𝑦0

2
(𝑦0

1)
2

2 𝑦0
1𝑦

0
2

(𝑦0
2)

2

2

1 𝑦1
1 𝑦1

2
(𝑦1

1)
2

2 𝑦1
1𝑦

1
2

(𝑦1
2)

2

2

1 𝑦2
1 𝑦2

2
(𝑦2

1)
2

2 𝑦2
1𝑦

2
2

(𝑦2
2)

2

2

1 𝑦3
1 𝑦3

2
(𝑦3

1)
2

2 𝑦3
1𝑦

3
2

(𝑦3
2)

2

2

1 𝑦4
1 𝑦4

2
(𝑦4

1)
2

2 𝑦4
1𝑦

4
2

(𝑦4
2)

2

2

1 𝑦5
1 𝑦5

2
(𝑦5

1)
2

2 𝑦5
1𝑦

5
2

(𝑦5
2)

2

2




𝛼0

𝛼1
...

𝛼5


=


𝑓 (𝑦0)
𝑓 (𝑦1)
...

𝑓 (𝑦5)


,

𝑀(𝜙, 𝑌)𝛼 = 𝑓 (𝑌).

Error bounds for quadratic polynomial interpolation models can also be established,
this time also for Hessians. Detailed theoretical analysis is available in [8].

Theorem 2.9. Assume that 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} ⊂ R𝑛 , with 𝑝 + 1 =
(𝑛+1)(𝑛+2)

2 , is a poised set
of sample points, in the quadratic interpolation sense, contained in the ball 𝐵(𝑦0 ,Δ(𝑌)) of radius
Δ = Δ(𝑌) = max1≤𝑖≤𝑝 ∥𝑦 𝑖 − 𝑦0∥. Furthermore, assume that the function 𝑓 is twice continuously
differentiable in an open domain Ω containing 𝐵(𝑦0 ,Δ), with ∇2 𝑓 Lipschitz continuous in Ω

with constant 𝑣2 > 0. Let 𝑚 be the corresponding quadratic polynomial interpolation model
approximating 𝑓 . Then, for all points 𝑥 in 𝐵(𝑦0 ,Δ), we have

• the error between the Hessian of the model and the Hessian of the function satisfies

∥∇2 𝑓 (𝑥) − ∇2𝑚(𝑥)∥ ≤ 𝜅𝑒ℎΔ,

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ 𝑓 (𝑥) − ∇𝑚(𝑥)∥ ≤ 𝜅𝑒 𝑔Δ
2 ,

• the error between the model and the function satisfies

| 𝑓 (𝑥) − 𝑚(𝑥)| ≤ 𝜅𝑒 𝑓Δ
3 ,

where

𝜅𝑒ℎ = 3
√

2𝑝
1
2 𝑣2∥𝑀̂−1∥/2,

𝜅𝑒 𝑔 = 3(1 +
√

2)𝑝 1
2 𝑣2∥𝑀̂−1∥/2,

𝜅𝑒 𝑓 = (6 + 9
√

2)𝑝 1
2 𝑣2∥𝑀̂−1∥/4 + 𝑣2/6,

and

𝑀̂ = 𝑀

(
𝜙,

{
0,
𝑦1 − 𝑦0

Δ
, ...,

𝑦𝑝 − 𝑦0

Δ

})
.
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Both for linear and quadratic cases, there is the need for controlling the size of ∥𝐿̂−1∥
and ∥𝑀̂−1∥, guaranteeing the quality of the models in sufficiently small regions. In
the following, we will discuss the notion of Λ-poisedness, at first in terms of Lagrange
polynomials and then in terms of condition number, which will be adequate as measures
of poisedness.

2.3.2.1 Lagrange polynomials as measure of poisedness

Lagrange polynomials are defined to simplify the solution of the linear system used to
compute the model coefficients, by setting 𝑀(𝜙, 𝑌) equal to the identity matrix.

Definition 2.4. Given a set of interpolation points 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝}, a basis of 𝑝 + 1
polynomials, 𝑙𝑖(𝑥), 𝑖 = 0, . . . , 𝑝 in 𝒫𝑑

𝑛 is called a basis of Lagrange polynomials if it holds

𝑙𝑖(𝑦 𝑗) =


1 𝑖 = 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
𝑖, 𝑗 = 0, 1, . . . , 𝑝,

As previously mentioned, if 𝑌 is poised, then the basis of Lagrange polynomials
exists and is uniquely defined [8]. The following lemma [8] establishes how the unique
polynomial interpolation model 𝑚 can be expressed using Lagrange polynomials.

Lemma 2.2. For any function 𝑓 : R𝑛 → R and any poised set 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} ⊂ R𝑛 , the
unique polynomial 𝑚 that interpolates 𝑓 on 𝑌 can be expressed as

𝑚(𝑥) =
𝑝∑
𝑖=0

𝑓 (𝑦 𝑖)𝑙𝑖(𝑥),

where {𝑙𝑖(𝑥), 𝑖 = 0, . . . , 𝑝} is the basis of Lagrange polynomials for 𝑌 .

A measure of poisedness indicates how well an interpolation set 𝑌 spans the region
where interpolation is of interest. Obviously, this measure depends on 𝑌 and on the
region under consideration. For example, in the case of linear interpolation in R2, a set
𝑌 = {(0, 0), (0, 1), (1, 0)} is a well-poised set in 𝐵(0, 1), but it is not well-poised in 𝐵(0, 100)
[8]. Below, we provide the definition of Λ-poised sets, introduced in [8] to measure the
poisedness of a set of points.

Definition 2.5. Let Λ > 0 and a set 𝐵 ⊂ R𝑛 be given. A poised set 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} is said
to be Λ-poised in 𝐵 if for the basis of Lagrange polynomials associated with 𝑌,

Λ ≥ max
0≤𝑖≤𝑝

max
𝑥∈𝐵

|𝑙𝑖(𝑥)|. (2.5)

The following lemma states some basic properties of Λ-poisedness.

Lemma 2.3. The following statements hold:

• If 𝐵 contains a point in 𝑌 and 𝑌 is Λ-poised in 𝐵, then Λ ≥ 1.

15



CHAPTER 2. MATHEMATICAL BACKGROUND IN SINGLE-OBJECTIVE
OPTIMIZATION

• If 𝑌 is Λ-poised in a given set 𝐵, then it is Λ-poised (with the same constant) in any subset
of 𝐵.

• If 𝑌 is Λ-poised in 𝐵, then it is Λ̃-poised in 𝐵 for any Λ̃ ≥ Λ.

When the sample set 𝑌 is Λ-poised in a given region 𝐵, broadly speaking, a low value
of Λ illustrates a high measure of poisedness. So, the quality of the interpolation model
remarkably deteriorates as Λ becomes large [8].

2.3.2.2 Condition number as measure of poisedness

Generally, the condition number of 𝑀(𝜙, 𝑌) can not be considered as an appropriate
quantity to measure poisedness. It depends on the choice of the polynomial basis 𝜙, but
the poisedness of 𝑌 doesn’t. For a given poised interpolation set 𝑌, the condition number
of 𝑀(𝜙, 𝑌) can be equal to any number between 1 and +∞, depending on the selected
basis 𝜙. Furthermore, for a fixed 𝜙, the condition number of 𝑀(𝜙, 𝑌) also depends on the
scaling of 𝑌. However, the poisedness constant Λ remains unaffected by both the shifting
and the scaling of the sample set 𝑌. Indeed, if properly defined, the condition number
can be closely related to the concept of Λ-poisedness.

Given a sample set 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝}, let’s shift it and scale it as{
0,
𝑦1 − 𝑦0

Δ
, ...,

𝑦𝑝 − 𝑦0

Δ

}
,

where
Δ = max

1≤𝑖≤𝑝
∥𝑦 𝑖 − 𝑦0∥.

Define

𝑌̂ = {0, 𝑦̂1 , ..., 𝑦̂𝑝} =
{
0,
𝑦1 − 𝑦0

Δ
, ...,

𝑦𝑝 − 𝑦0

Δ

}
⊂ 𝐵(0, 1).

It is reasoned in [8, Lemma 3.9] that the poisedness constant Λ of an interpolation set
𝑌, and consequently the quality of the interpolation on 𝑌, doesn’t change under a shift of
the coordinates. Furthermore, the poisedness constant Λ does not depend on the scaling
of 𝑌, but it depends on the region 𝐵 in which the poisedness is considered [8], as stated in
[8, Lemma 3.8]. If 𝑌 is Λ-poised in 𝐵, then 𝑌/Δ is Λ-poised in 𝐵/Δ.

The worthy point is that, if we select the basis 𝜙 as the natural basis and consider 𝑌̂,
the shifted and scaled version of 𝑌 in the fixed region 𝐵(0, 1), the condition number of
𝑀(𝜙, 𝑌̂) is a meaningful measure of well poisedness. Let’s denote 𝑀(𝜙, 𝑌̂) by 𝑀̂, and
consider the condition number of 𝑀(𝜙, 𝑌̂), defined by 𝑐𝑜𝑛𝑑(𝑀̂) = ∥𝑀̂∥.∥𝑀̂−1∥.

The following theorem, which is presented in [8, Theorem 3.14], establishes the
relationship between the condition number of 𝑀̂ and the Λ-poisedness constant.

Theorem 2.10. If 𝑀̂ is nonsingular and ∥𝑀̂−1∥ ≤ Λ, then the set 𝑌̂ is √𝑝1Λ-poised in the ball
B(0,1). Conversely, if the set 𝑌̂ is Λ-poised in the ball B(0,1), then

∥𝑀̂−1∥ ≤ 𝜃
√
𝑝1Λ,
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where 𝜃 > 0 depends on 𝑛 and 𝑑, but it is independent of 𝑌̂ and Λ.

Since all points in 𝑌̂ belong to 𝐵(0, 1) and at least one of the interpolation points has
the norm equal to one, then

1 ≤ ∥𝑀̂∥ ≤ 𝑝
3
2
1 .

Therefore, smaller values of 𝑐𝑜𝑛𝑑(𝑀̂) illustrate higher levels of poisedness of 𝑌̂, and vice
versa. As a result, smaller values of 𝑐𝑜𝑛𝑑(𝑀̂) traduce into higher quality interpolation
sets.

Thus, it will be possible to use the matrix 𝑀̂ directly, without computing Lagrange
polynomials, and still be able to check and control well poisedness of the interpolation
sets by restricting 𝑐𝑜𝑛𝑑(𝑀̂) to some small user-defined values.

2.3.3 Fully linear and fully quadratic models

In model-based optimization algorithms, Taylor models are a reference, since they have the
right quality as approximations to the true functions, to ensure convergence to stationarity.

For interpolation models, this quality has been formalized into the concepts of fully
linear [8, Definition 6.1], and fully quadratic models [8, Definition 6.2], reproduced below.

Definition 2.6. Assume that 𝑓 : R𝑛 → R is a continuously differentiable function, with Lipschitz
continuous gradient. A set of model functions ℳ = {𝑚 : R𝑛 → R, 𝑚 ∈ 𝐶1} is called a fully
linear class of models if the following hold:

1. There exist positive constants 𝜅𝑒 𝑓 and 𝜅𝑒 𝑔 such that for any 𝑥 ∈ R𝑛 and Δ ∈ (0,Δ𝑚𝑎𝑥] there
exists a model function 𝑚(𝑥 + 𝑠) ∈ ℳ, with Lipschitz continuous gradient, such that

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ 𝑓 (𝑥 + 𝑠) − ∇𝑚(𝑥 + 𝑠)∥ ≤ 𝜅𝑒 𝑔Δ, ∀𝑠 ∈ 𝐵(0,Δ),

• the error between the model and the function satisfies

| 𝑓 (𝑥 + 𝑠) − 𝑚(𝑥 + 𝑠)| ≤ 𝜅𝑒 𝑓Δ
2 , ∀𝑠 ∈ 𝐵(0,Δ).

Such a model m is called fully linear on 𝐵(𝑥,Δ).

2. For this class ℳ there exists an algorithm, which we will call a ‘model-improvement’
algorithm, that in a finite, uniformly bounded (with respect to 𝑥 and Δ) number of steps can

• either establish that a given model 𝑚 ∈ ℳ is fully linear on 𝐵(𝑥,Δ) (we will say that
a certificate has been provided and the model is certifiably fully linear),

• or find a model 𝑚̄ ∈ ℳ that is fully linear on 𝐵(𝑥,Δ).

The fully quadratic class of models imposes stronger assumptions, enabling to establish
the second-order convergence results for algorithms that utilize these models. A fully
quadratic model accurately captures the second-order behavior of the objective function,
in addition to providing the first-order information.
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Definition 2.7. Assume that 𝑓 : R𝑛 → R is a twice continuously differentiable function with
Lipschitz continuous Hessian. A set of model functions ℳ = {𝑚 : R𝑛 → R, 𝑚 ∈ 𝐶2} is called a
fully quadratic class of models if the following hold:

1. There exist positive constants 𝜅𝑒 𝑓 , 𝜅𝑒 𝑔 , and 𝜅𝑒ℎ such that for any 𝑥 ∈ R𝑛 and Δ ∈ (0,Δ𝑚𝑎𝑥]
there exists a model function 𝑚(𝑥 + 𝑠) ∈ ℳ, with Lipschitz continuous Hessian, such that

• the error between the Hessian of the model and the Hessian of the function satisfies

∥∇2 𝑓 (𝑥 + 𝑠) − ∇2𝑚(𝑥 + 𝑠)∥ ≤ 𝜅𝑒ℎΔ, ∀𝑠 ∈ 𝐵(0,Δ),

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ 𝑓 (𝑥 + 𝑠) − ∇𝑚(𝑥 + 𝑠)∥ ≤ 𝜅𝑒 𝑔Δ
2 , ∀𝑠 ∈ 𝐵(0,Δ),

• the error between the model and the function satisfies

| 𝑓 (𝑥 + 𝑠) − 𝑚(𝑥 + 𝑠)| ≤ 𝜅𝑒 𝑓Δ
3 , ∀𝑠 ∈ 𝐵(0,Δ).

Such a model m is called fully quadratic on 𝐵(𝑥,Δ).

2. For this class ℳ there exists an algorithm, which we will call a ‘model-improvement’
algorithm, that in a finite, uniformly bounded (with respect to 𝑥 and Δ) number of steps can

• either establish that a given model 𝑚 ∈ ℳ is fully quadratic on 𝐵(𝑥,Δ) (we will say
that a certificate has been provided and the model is certifiably fully quadratic),

• or find a model 𝑚̄ ∈ ℳ that is fully quadratic on 𝐵(𝑥,Δ).

Linear (resp., quadratic) determined interpolation models, computed from Λ-poised
interpolation sets, create a class of fully linear (resp., fully quadratic) models and will be
particularly useful in Chapter 6 of this thesis, when we will focus on the derivative-free
case.

2.3.4 Regression models

There could be situations in which the number 𝑝 + 1 of points in the sample set is greater
than the dimension of 𝒫𝑑

𝑛 , making the linear system associated with the computation of
the model coefficients overdetermined.

Let 𝜙 = {𝜙0(𝑥), 𝜙1(𝑥), . . . , 𝜙𝑏(𝑥)} be a basis of 𝒫𝑑
𝑛 with dimension 𝑏1 = 𝑏+1 inR𝑛 , and

𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} ⊂ R𝑛 be a given set of 𝑝 + 1 sample points, but here 𝑝 > 𝑏. Consider
a polynomial 𝑚(𝑥) ∈ 𝒫𝑑

𝑛 , formulated as 𝑚(𝑥) =
∑𝑏
𝑗=0 𝛼 𝑗𝜙 𝑗(𝑥), where 𝛼 ∈ R𝑏1 are real

coefficients.
The coefficients 𝛼0 , 𝛼1 , ..., 𝛼𝑏 can be computed by solving the overdetermined system

𝑀(𝜙, 𝑌)𝛼 𝑙.𝑠.
= 𝑓 (𝑌),
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where

𝑀(𝜙, 𝑌) =


𝜙0(𝑦0) 𝜙1(𝑦0) . . . 𝜙𝑏(𝑦0)
𝜙0(𝑦1) 𝜙1(𝑦1) . . . 𝜙𝑏(𝑦1)
...

...
...

...

𝜙0(𝑦𝑝) 𝜙1(𝑦𝑝) . . . 𝜙𝑏(𝑦𝑝)


, 𝛼 =


𝛼0

𝛼1
...

𝛼𝑏


, 𝑓 (𝑌) =


𝑓 (𝑦0)
𝑓 (𝑦1)
...

𝑓 (𝑦𝑝)


,

using a least-squares approach

min
𝛼

∥𝑀(𝜙, 𝑌)𝛼 − 𝑓 (𝑌)∥2.

The next definition and lemma, originally stated in [8], declare that 𝑌 is poised if
𝑀(𝜙, 𝑌) has full column rank, independent of the selected basis. In this case, the least-
squares regression polynomial 𝑚 is unique. So, an interesting aspect of this system of
equations is that if 𝑀(𝜙, 𝑌) has full column rank for some basis 𝜙, then the same applies
to any basis of 𝒫𝑑

𝑛 .

Definition 2.8. The set 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} is poised for polynomial least-squares regression in
R𝑛 if the matrix 𝑀(𝜙, 𝑌) has full column rank for some basis 𝜙 in 𝒫𝑑

𝑛 .

Lemma 2.4. Given a function 𝑓 : R𝑛 → R and a poised set 𝑌, the least-squares regression
polynomial 𝑚 exists and is unique.

So, if 𝑌 is poised for polynomial least-squares regression, the least-squares regression
polynomial is independent of the choice of 𝜙.

Although using a sample set with more points than the required number for deter-
mined polynomial interpolation involves additional function evaluations, which may
not be suitable for derivative-free optimization, there are instances in optimization prob-
lems where utilizing regression techniques becomes essential. Generally, when function
evaluations are relatively less expensive to compute but noisy, regression techniques are
reasonable options.

2.3.4.1 Lagrange polynomials in the regression sense

The notions of Λ-poisedness and Lagrange polynomials can be extended to the case of
polynomial least-squares regression.

Consider a set of sample points𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} with 𝑝 > 𝑏. A set of 𝑝+1 regression
Lagrange polynomials 𝑙𝑖(𝑥), 𝑖 = 0, . . . , 𝑝, in 𝒫𝑑

𝑛 is defined as

𝑙𝑖(𝑦 𝑗)
𝑙.𝑠.
=


1 𝑖 = 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
𝑖, 𝑗 = 0, 1, . . . , 𝑝,

Since 𝑝 > 𝑏, these polynomials are no longer linearly independent. In [8], it is stated
that if 𝑌 is poised for polynomial least-squares regression, then the set of regression
Lagrange polynomials exists and is uniquely defined. It is also proved that in this case,
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the least-squares regression Lagrange polynomial model 𝑚 that approximates 𝑓 can be
uniquely expressed as

𝑚(𝑥) =
𝑝∑
𝑖=0

𝑓 (𝑦 𝑖)𝑙𝑖(𝑥).

Interested readers can find the Taylor-like error bounds for both linear and quadratic
regression models in [8], also depending on a Λ-poised constant of 𝑌, defined similarly
to (2.5) but now using regression Lagrange polynomials. Furthermore, linear (resp.,
quadratic) regression models built from Λ-poised sets create a class of fully linear (resp.,
fully quadratic) models, since they satisfy the error bounds of Definition 2.6 (resp., Defini-
tion 2.7).

2.3.5 Underdetermined interpolating models

In underdetermined interpolating, the number of points in the sample set is smaller than
the dimension of 𝒫𝑑

𝑛 , (𝑝 + 1 < 𝑏 + 1), causing the need to solve underdetermined linear
systems for computing the model coefficients.

Underdetermined interpolating techniques are very useful when function evalua-
tions are expensive and model-based derivative-free optimization algorithms are being
used. Imagine there is a budget of 500 function evaluations to solve a multiobjective
derivative-free optimization problem with 𝑛 = 30 variables. For this problem, 496 func-
tion evaluations are required to build a determined quadratic polynomial interpolation
model. Thus, using determined interpolation models will only allow an iteration for the
algorithm.

Efficient derivative-free optimization methods attempt to use a low number of new
function evaluations at each iteration, by reusing points and considering underdetermined
interpolating methods.

In this situation, linear models are reasonable options in the matter of computational
expense, but their quality isn’t always acceptable since they do not incorporate information
on the curvature of the function. Efficient derivative-free optimization methods use fewer
points than what is required by quadratic interpolation approaches, but more points than
the linear case, in an attempt to capture some of the curvature information and still having
an acceptable computational cost [8]. Here, we will focus on underdetermined quadratic
interpolation because it will be relevant to what follows.

Let𝜙 = {𝜙0(𝑥), 𝜙1(𝑥), . . . , 𝜙𝑏(𝑥)} be a basis of𝒫2
𝑛 with dimension 𝑏+1 =

(𝑛 + 1)(𝑛 + 2)
2 ,

and consider 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝}, with 𝑝 < 𝑏. The interpolation polynomial 𝑚, defined
by

𝑚(𝑦 𝑖) =
𝑏∑
𝑗=0

𝛼 𝑗𝜙 𝑗(𝑦 𝑖) = 𝑓 (𝑦 𝑖), 𝑖 = 0, . . . , 𝑝,

is no longer unique, because 𝑀(𝜙, 𝑌) has more columns than rows.
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A common approach in underdetermined interpolating techniques is based on the
minimum Frobenius norm1. Minimum Frobenius norm models have been successfully
employed in single-objective interpolation-based trust-region methods. These methods
require between 𝑛 + 1 and (𝑛 + 1)(𝑛 + 2)/2 points to build a quadratic model. The use
of these models provides a more accurate gradient approximation compared to linear
interpolation, while the accuracy of the Hessian approximation may be lower than the
one of determined quadratic interpolation. This approach strikes a balance between
accuracy and computational efficiency. By utilizing minimum Frobenius norm models,
interpolation-based trust-region methods can effectively capture the behavior of the
objective function, enabling improved convergence toward the optimal solution. The goal
is to develop derivative-free algorithms in which fewer expensive function evaluations
are required to build models, but the numerical results are still very satisfying.

To discuss the idea of minimum Frobenius norm models, we introduce the following
theorem, which states general error bounds for underdetermined quadratic polynomial
interpolation [8, Theorem 5.4].

Theorem 2.11. Assume that 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} ⊂ R𝑛 , with 𝑝 < 𝑏, is a Λ-poised set of sample
points in the linear interpolation sense, or in the linear regression sense if 𝑝 > 𝑛, contained in
the ball 𝐵(𝑦0 ,Δ(𝑌)) of radius Δ = Δ(𝑌) = max1≤𝑖≤𝑝 ∥𝑦 𝑖 − 𝑦0∥. Furthermore, assume that the
function 𝑓 is continuously differentiable in an open domain Ω containing 𝐵(𝑦0 ,Δ), ∇ 𝑓 is Lipschitz
continuous in Ω with constant 𝑣1 > 0, and 𝑚 is the corresponding quadratic underdetermined
interpolation model approximating 𝑓 . Then, for all points 𝑥 in 𝐵(𝑦0 ,Δ), we have:

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ 𝑓 (𝑥) − ∇𝑚(𝑥)∥ ≤ 𝐶𝑝Λ (𝑣1 + ∥𝐻∥)Δ,

• the error between the model and the function satisfies

| 𝑓 (𝑥) − 𝑚(𝑥)| ≤
(
𝐶𝑝Λ + 1

2

)
(𝑣1 + ∥𝐻∥)Δ2 ,

where 𝐻 is the Hessian matrix of 𝑚, and 𝐶𝑝 is a positive constant depending on 𝑝.

Therefore, given a sample set𝑌, regarding the accuracy of a quadratic underdetermined
interpolation model, it is reasonable to look for a model with minimum Frobenius norm
of the corresponding Hessian.

We split the natural basis 𝜙 into linear and quadratic parts, 𝜙𝐿 = {1, 𝑥1 , . . . , 𝑥𝑛} and
𝜙𝑄 =

{
𝑥2

1
2 , 𝑥1𝑥2 , . . . ,

𝑥𝑛2
2

}
, respectively. By defining 𝛼𝐿 and 𝛼𝑄 as the corresponding linear

1Frobenius norm is defined for squared matrices by ∥𝐴𝑛×𝑛 ∥2 =
∑𝑖=𝑛
𝑖=1

∑𝑗=𝑛

𝑗=1 𝑎
2
𝑖 𝑗

. Equivalently, the Frobenius
norm can be defined as the trace of a matrix’s inner product, ∥𝐴∥2 = 𝑡𝑟(𝐴⊤𝐴), remember that the trace of a
squared matrix is the sum of its diagonal entries.
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and quadratic parts of the coefficient vector 𝛼, respectively, the interpolation model can
be expressed by

𝑚(𝑥) = 𝛼⊤
𝐿 𝜙𝐿(𝑥) + 𝛼⊤

𝑄 𝜙𝑄(𝑥).
The solution of the problem

min 1
2 ∥𝛼𝑄 ∥2 ,

s.t. 𝑀(𝜙𝐿 , 𝑌)𝛼𝐿 +𝑀(𝜙𝑄 , 𝑌)𝛼𝑄 = 𝑓 (𝑌)

is called the minimum Frobenius norm solution. Considering the natural basis and the
separation of 𝛼, minimizing the norm of 𝛼𝑄 is equivalent to minimizing the Frobenius
norm of the Hessian of 𝑚 [8]. A sample set 𝑌 is poised in the minimum Frobenius norm
sense, or equivalently, the minimum Frobenius norm polynomial exists and is unique if
and only if the matrix 𝐹(𝜙, 𝑌), defined as follows, is nonsingular:

𝐹(𝜙, 𝑌) =

𝑀(𝜙𝑄 , 𝑌)𝑀(𝜙𝑄 , 𝑌)⊤ 𝑀(𝜙𝐿 , 𝑌)

𝑀(𝜙𝐿 , 𝑌)⊤ 0

 .
Poisedness in the minimum Frobenius norm sense implies poisedness in the linear
interpolation or regression senses [8]. To measure the level of poisedness, interested
readers can notice [8, Definition 5.6], defining Λ-poised in the minimum Frobenius norm
sense.

According to the following theorem, the Hessians of the minimum Frobenius norm
models are also bounded [8, Theorem 5.7].

Theorem 2.12. Let 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} ⊂ R𝑛 , with 𝑝 < 𝑏, be a set of sample points contained
in the ball 𝐵(𝑦0 ,Δ), where Δ = max1≤𝑖≤𝑝 ∥𝑦 𝑖 − 𝑦0∥. Assume that the function 𝑓 is continuously
differentiable in an open domain Ω containing 𝐵(𝑦0 ,Δ), ∇ 𝑓 is Lipschitz continuous in Ω with
constant 𝑣1 > 0, and let 𝑚 be the corresponding minimum Frobenius norm model approximating
𝑓 . If 𝑌 is Λ-poised in the minimum Frobenius norm sense then

∥𝐻∥ ≤ 𝐶𝑝,𝑏𝑣1Λ,

where 𝐻 is the Hessian matrix of 𝑚, and 𝐶𝑝,𝑏 is a positive constant depending on 𝑝 and 𝑏.

Incorporating this result in Theorem 2.11 allows us to obtain the Taylor-like error
bounds for minimum Frobenius norm models. Furthermore, minimum Frobenius norm
models based on a Λ-poised sample set in the minimum Frobenius norm sense are fully
linear, considering Definition 2.6, in which 𝜅𝑒 𝑓 and 𝜅𝑒 𝑔 depend on Λ, 𝑝, 𝑏, and on the
Lipschitz constant of ∇ 𝑓 [8].

There is an alternative kind of minimum Frobenius norm models, suggested by Powell
[28], in which the model with the Hessian matrix 𝐻 closest to a previous Hessian, in the
Frobenius norm sense, is selected.

The topic of minimum Frobenius norm models is a recurrent theme in derivative-free
optimization. We suggest [8, 10] for more comprehensive information.
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3

Single-objective numerical
optimization

In this chapter, we present the basic concepts and methodologies for single-objective
optimization. Readers who are familiar with these techniques may skip it.

Throughout this chapter, consider the following minimization problem

min
𝑥∈R𝑛

𝑓 (𝑥),

with 𝑓 : R𝑛 → R.
The chapter will be organized separately into two main parts: derivative-based and

derivative-free optimization. Section 3.1 will be dedicated to derivative-based methods.
Derivative-free methods are presented in Section 3.2. Line search, trust-region, and
direct search methods will be proposed in a brief review, given their role in optimization
algorithms. Comprehensive details can be found in [20, 27] and [2, 8], for derivative-based
and derivative-free optimization, respectively.

3.1 Derivative-based methods

In this section, we assume that derivatives are available and we can use quadratic Taylor
models, described in Subsection 2.3.1. Two well-known approaches will be introduced:
line search and trust-region methods, which will be discussed in Subsections 3.1.1 and
3.1.2, respectively.

Line search and trust-region methods have gained widespread usage in optimization.
Both are fundamental techniques employed by various optimization algorithms, including
gradient descent, Newton method, and quasi-Newton methods, among others.

One of the advantages of line search and trust-region methods is their ease of im-
plementation, making them accessible to a wide range of users and applications. These
methods offer effective strategies for solving optimization problems in various fields,
including engineering, finance, machine learning, and many others.
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3.1.1 Line search methods

Line search methods have indeed been extensively utilized in various optimization al-
gorithms [20, 27]. These methods offer a straightforward and practical approach to
optimizing objective functions.

Let 𝑥𝑘 be the current iterate and 𝑑𝑘 ∈ R𝑛 be the search direction selected at 𝑥𝑘 . The
new point is given by

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,

where 𝛼𝑘 is a positive scalar, called the step length, and it is required to satisfy

𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) < 𝑓 (𝑥𝑘).

The ideal choice for 𝛼𝑘 would be the global solution of a one-dimensional minimization
problem given by

min
𝛼>0

Φ(𝛼), (3.1)

where Φ(𝛼) = 𝑓 (𝑥𝑘 + 𝛼𝑑𝑘), for 𝛼 > 0. Usually, it is computationally too expensive, or even
impossible, to find this minimizer. So, in most line search algorithms, an approximation
to the solution is also accepted.

In order to ensure that the function 𝑓 is reduced along the search direction 𝑑𝑘 , it is
necessary for 𝑑𝑘 to be a descent direction. This means that 𝑑𝑘 must satisfy the condition:

𝑑⊤𝑘 ∇ 𝑓 (𝑥𝑘) < 0.

The search direction 𝑑𝑘 usually has the form

𝑑𝑘 = −𝐵−1
𝑘
∇ 𝑓 (𝑥𝑘),

where 𝐵𝑘 is some nonsingular and symmetric matrix of order 𝑛. When 𝐵𝑘 is positive
definite, then 𝑑𝑘 is a descent direction, since

𝑑⊤𝑘 ∇ 𝑓 (𝑥𝑘) = −∇ 𝑓 (𝑥𝑘)⊤𝐵−1
𝑘
∇ 𝑓 (𝑥𝑘) < 0.

The flexibility in choosing the matrix 𝐵𝑘 in optimization algorithms allows for a wide
variety of line search methods. Some of the most commonly used line search algorithms
include:

• Steepest descent method, where 𝐵𝑘 is simply the identity matrix 𝐼;

• Newton method, where 𝐵𝑘 is exactly the Hessian matrix ∇2 𝑓 (𝑥𝑘);

• Quasi-Newton methods, where 𝐵𝑘 is an approximation to the Hessian matrix
∇2 𝑓 (𝑥𝑘).
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To guarantee convergence, additional requirements should be applied to the search
direction. As mentioned, 𝑑𝑘 is required to be a descent direction, but this is not practically
enough. Because 𝑑𝑘 may be a descent direction but very close to being orthogonal to
∇ 𝑓 (𝑥𝑘) and thus the algorithm wouldn’t make noticeable progress toward a solution. To
handle this, 𝑑𝑘 is also required to produce sufficient descent that is denoted by

−
𝑑⊤
𝑘
∇ 𝑓 (𝑥𝑘)

∥𝑑𝑘 ∥.∥∇ 𝑓 (𝑥𝑘)∥
≥ 𝜖 > 0,

for all 𝑘, where 𝜖 is a positive tolerance.
To ensure convergence, additional assumptions on the step length are also required.

At first, 𝛼𝑘 should produce a sufficient decrease in the objective function value. To achieve
this, the following inequality, called the Armĳo condition, should be satisfied

𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓 (𝑥𝑘) + 𝜇𝛼𝑘𝑑
⊤
𝑘 ∇ 𝑓 (𝑥𝑘), (3.2)

for all 𝑘, where 𝜇 ∈ (0, 1) is some scalar. A small value of 𝜇 means that a small decrease in
the function value is enough for the new point to be accepted.

The sufficient decrease condition is satisfied for all sufficiently small values of 𝛼𝑘 . So, it
is not enough by itself to ensure that the algorithm makes reasonable progress, especially
when 𝛼𝑘 is too small. Therefore, another condition on 𝛼𝑘 is that it shouldn’t be too small.
A simple approach to handle this condition uses backtracking, in which 𝛼𝑘 can be chosen
as the first element of the sequence {

1, 1
2 ,

1
4 ,

1
8 , . . .

}
,

that satisfies the Armĳo condition (3.2).
One notable benefit of employing backtracking techniques in algorithms is their ease

of implementation. Moreover, it is possible to establish the convergence analysis [20].
However, the backtracking approaches are not recommended for practical algorithms
[20]. Although they can be applied to Newton method, they are less appropriate for
quasi-Newton methods [27].

Another strategy to guarantee that the step length 𝛼𝑘 is not too small, uses the so-called
curvature condition, which is formulated as

𝑑⊤𝑘 ∇ 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝜂𝑑⊤𝑘 ∇ 𝑓 (𝑥𝑘),

for all 𝑘, where 𝜂 ∈ (𝜇, 1) is some scalar, and 𝜇 is the constant from (3.2).
The combination of the Armĳo and curvature conditions is known as the Wolfe condi-

tions, which are used in most line search methods, leading to more effective algorithms.
The line search approach is detailed by Algorithm 1.
Theoretical results concerning the convergence analysis of line search methods have

been established independently for both the Armĳo-backtracking procedure and when
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Algorithm 1. Line search algorithm
Input

Initial point 𝑥0.

For 𝑘 = 0, 1, 2, . . .
1. Direction calculation
Compute 𝑑𝑘 = −𝐵−1

𝑘
∇ 𝑓 (𝑥𝑘), where 𝐵𝑘 is sufficiently positive definite.

2. Line search update
Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , where 𝛼𝑘 satisfies the Wolfe conditions
or is computed using an Armĳo-backtracking approach.

End For

applying the Wolfe conditions. The results are available in the case of the Armĳo-
backtracking approach in [20, Theorem 11.7]. Here, we consider the analysis for the Wolf
conditions, stated by the following theorem, where the detailed proofs are available in
[27, Section 3.2].

Theorem 3.1. Let 𝑓 : R𝑛 → R be a real-valued function and 𝑥0 be some given initial point.
Assume that the level set 𝑆 = {𝑥 ∈ R𝑛 : 𝑓 (𝑥) ≤ 𝑓 (𝑥0)} is bounded. Suppose that 𝑓 is continuously
differentiable in an open domain Ω containing 𝑆, with ∇ 𝑓 Lipschitz continuous on Ω. Let {𝑥𝑘}𝑘∈N
be the sequence of iterates generated by Algorithm 1, where 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , such that

• 𝑑𝑘 is a descent direction producing sufficient descent. So, there is a positive constant 𝜖 such
that

−
𝑑⊤
𝑘
∇ 𝑓 (𝑥𝑘)

∥𝑑𝑘 ∥.∥∇ 𝑓 (𝑥𝑘)∥
≥ 𝜖.

• 𝛼𝑘 satisfies the Wolfe conditions.

Then
lim
𝑘→+∞

∥∇ 𝑓 (𝑥𝑘)∥ = 0.

3.1.2 Trust-region derivative-based methods

Trust-region methods are powerful and efficient techniques that have been efficiently
used in optimization [7], and have led to practical implementations and commercial
software [25].

The general framework of a trust-region algorithm is relatively straightforward, yet
highly versatile and applicable to various optimization problems. Trust-region methods
provide a flexible approach by iteratively updating and minimizing a model of the objective
function within a limited trust region around the current iterate, where the model is
considered to be accurate enough. These methods dynamically adjust the solution and the
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size of the trust region based on the performance of the model and the objective function,
allowing for adaptive exploration and exploitation of the search space.

At iteration 𝑘, the model function 𝑚𝑘 is computed around the current iterate 𝑥𝑘 and
minimized in a trust region, typically a ball around the current iterate, with a given radius.
Depending on how well the model reduction predicts the actual decrease in the objective
function value, the model minimizer is accepted or rejected, and the trust-region radius
is updated.

The algorithmic structure of trust-region and line search algorithms are different. In a
trust-region step, we try to compute an appropriate descent direction inside a trust region.
On the other hand, a line search step generates a descent direction at first and then tries
to calculate the best step length along it.

In this section, the model 𝑚𝑘 is assumed to be a quadratic polynomial based on the
Taylor expansion of 𝑓 around 𝑥𝑘 , defined as

𝑚𝑘(𝑥𝑘 + 𝑑) = 𝑓 (𝑥𝑘) + 𝑑⊤𝑔𝑘 +
1
2𝑑

⊤𝐵𝑘𝑑,

where 𝑔𝑘 = ∇𝑚𝑘(𝑥𝑘) = ∇ 𝑓 (𝑥𝑘) and 𝐵𝑘 = ∇2𝑚𝑘(𝑥𝑘).
At iteration 𝑘, the trust-region subproblem

min
𝑑∈R𝑛

𝑚𝑘(𝑥𝑘 + 𝑑)

s.t. ∥𝑑∥ ≤ Δ𝑘 ,
(3.3)

is solved to compute the search direction 𝑑𝑘 , where Δ𝑘 > 0 is the trust-region radius. In
other words, we compute the direction 𝑑𝑘 ∈ R𝑛 , where 𝑥𝑘 + 𝑑𝑘 is inside the current trust
region, that is 𝑥𝑘 + 𝑑𝑘 ∈ 𝐵(𝑥𝑘 ,Δ𝑘) = {𝑥 ∈ R𝑛 | ∥𝑥 − 𝑥𝑘 ∥ ≤ Δ𝑘}.

Different choices of 𝐵𝑘 have led to the development of different trust-region algorithms.
Some of the most commonly used algorithms include:

• Trust-region steepest descent method, where 𝐵𝑘 = 0 and

𝑑𝑘 = −
Δ𝑘∇ 𝑓 (𝑥𝑘)
∥∇ 𝑓 (𝑥𝑘)∥

;

• Trust-region Newton method, where 𝐵𝑘 is exactly the Hessian matrix ∇2 𝑓 (𝑥𝑘);

• Trust-region quasi-Newton methods, where 𝐵𝑘 is an approximation to the Hessian
matrix ∇2 𝑓 (𝑥𝑘).

The essential aspect of any trust-region algorithm is the trust-region management,
involving whether to accept or reject the new point and how to update the trust-region
radius. Generally, if the reduction obtained in the true function is not too small compared
to the reduction of the model, then the new point is accepted and the trust-region radius
can be increased; this is a successful iteration. Otherwise, the new point is rejected and the
trust-region radius is decreased to allow more accurate models in the remaining iterations;
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this is an unsuccessful iteration. For this purpose, the ratio 𝜌𝑘 is computed to measure the
agreement between the model 𝑚𝑘 and the real objective function 𝑓 , as

𝜌𝑘 =
𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝑑𝑘)

𝑚𝑘(𝑥𝑘) − 𝑚𝑘(𝑥𝑘 + 𝑑𝑘)
.

A high value of 𝜌𝑘 means that the model adequately predicts the reduction in the function
value, and vice versa.

The trust-region approach is described by Algorithm 2.

Algorithm 2. Trust-region algorithm
Input

Initial point 𝑥0, initial trust-region radius Δ0,
values for the parameters 0 < 𝜂1 ≤ 𝜂2 < 1 and 0 < 𝜇1 < 1 < 𝜇2.

For 𝑘 = 0, 1, 2, . . .
1. Step calculation
Obtain 𝑑𝑘 by solving the trust-region subproblem (3.3).

Compute 𝜌𝑘 =
𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝑑𝑘)

𝑚𝑘(𝑥𝑘) − 𝑚𝑘(𝑥𝑘 + 𝑑𝑘)
.

2. Trial point acceptance and trust-region update
If 𝜌𝑘 ≥ 𝜂1 then:

Set 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘 .
If 𝜌𝑘 ≥ 𝜂2 and ∥𝑑𝑘 ∥ = Δ𝑘 then set Δ𝑘+1 = 𝜇2 ∗ Δ𝑘 .

Else, set 𝑥𝑘+1 = 𝑥𝑘 and Δ𝑘+1 = 𝜇1 ∗ Δ𝑘 .
End For

Some techniques to solve subproblem (3.3) are detailed in [7, 27]. Indeed, in most
trust-region algorithms, finding an exact solution to the trust-region subproblem is com-
putationally expensive or even impossible, especially for large-scale problems. Therefore,
most trust-region algorithms only find an approximate solution to this subproblem. How-
ever, to guarantee convergence, it is required to compute 𝑑𝑘 , an approximate solution of
the subproblem (3.3), that lies within the trust region and provides a sufficient reduction
in the model function 𝑚𝑘 :

𝑚𝑘(𝑥𝑘) − 𝑚𝑘(𝑥𝑘 + 𝑑𝑘) ≥ 𝜅 ∥𝑔𝑘 ∥ min
{ ∥𝑔𝑘 ∥
∥𝐵𝑘 ∥

,Δ𝑘

}
, (3.4)

for some constant 𝜅 ∈ (0, 1].
Let’s quantify the model reduction along the steepest descent direction

𝑑𝑆
𝑘
= − Δ𝑘

∥𝑔𝑘 ∥
𝑔𝑘 .

Define the Cauchy point as the minimizer of 𝑚𝑘 along 𝑑𝑆
𝑘

by

𝑥𝐶
𝑘
= 𝑥𝑘 + 𝑑𝐶𝑘 ,
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where 𝑑𝐶
𝑘
= 𝛼𝑘𝑑𝑆𝑘 and 𝛼𝑘 is computed by solving

min
𝛼≥0

{
𝑚𝑘(𝑥𝑘 + 𝛼𝑑𝑆

𝑘
) : ∥𝛼𝑑𝑆

𝑘
∥ ≤ Δ𝑘

}
.

The minimizer 𝛼𝑘 depends on the value of 𝑔⊤
𝑘
𝐵𝑘 𝑔𝑘 , as

𝛼𝑘 =


1 𝑔⊤

𝑘
𝐵𝑘 𝑔𝑘 ≤ 0,

min
{

∥𝑔𝑘 ∥3

△𝑘 𝑔⊤𝑘 𝐵𝑘 𝑔𝑘
, 1

}
otherwise.

It can be proved that 𝑑𝐶
𝑘

satisfies (3.4) with 𝜅 = 1
2 , [27, Lemma 4.3], that is

𝑚𝑘(𝑥𝑘) − 𝑚𝑘(𝑥𝑘 + 𝑑𝐶𝑘 ) ≥
1
2 ∥𝑔𝑘 ∥ min

{ ∥𝑔𝑘 ∥
∥𝐵𝑘 ∥

,Δ𝑘

}
.

It is clear that the exact solution 𝑑∗
𝑘

of (3.3) also satisfies (3.4) with 𝜅 = 1
2 , because

𝑚𝑘(𝑥𝑘) − 𝑚𝑘(𝑥𝑘 + 𝑑∗𝑘) ≥ 𝑚𝑘(𝑥𝑘) − 𝑚𝑘(𝑥𝑘 + 𝑑𝐶𝑘 ).

However, for approximately solving the subproblem (3.3), a fixed positive fraction of the
Cauchy decrease is enough.

In this section, we consider that 𝐵𝑘 = ∇2 𝑓 (𝑥𝑘). The case of quasi-Newton methods is
also well-discussed in [7, 27].

The convergence analysis for trust-region methods is stated by the following theorem.
The proof of this theorem is available in [20, Theorem 11.11].

Theorem 3.2. Let 𝑓 : R𝑛 → R be a real-valued function, 𝑥0 be some given initial point, and
{𝑥𝑘}𝑘∈N be the sequence generated by Algorithm 2. Assume that the level set 𝑆, defined by
𝑆 = {𝑥 ∈ R𝑛 : 𝑓 (𝑥) ≤ 𝑓 (𝑥0)} is bounded. Furthermore, suppose that ∇2 𝑓 exists and is continuous
for all 𝑥 ∈ 𝑆. Then

lim
𝑘→+∞

∥∇ 𝑓 (𝑥𝑘)∥ = 0.

3.2 Derivative-free optimization

In this section, we focus on optimization problems where derivative information is not
available and cannot be estimated. In derivative-free optimization, the use of Taylor
models, which rely on derivative information, is not possible. Thus, alternative techniques
need to be employed to make progress toward the optimal solution.

Derivative-free optimization methods often rely on strategies such as direct search
or surrogate modeling to optimize the objective function without explicitly calculating
derivatives. These approaches aim to explore the search space efficiently, make use
of limited function evaluations, and iteratively refine the solution without relying on
gradient information. We consider two popular and widely used approaches for solving
derivative-free problems: directional direct search and trust-region methods.
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In Subsection 3.2.1, we introduce directional direct search methods that explore the
search space by evaluating the objective function at a set of candidate points, without
relying on derivative information.

In Subsection 3.2.2, we discuss trust-region methods for derivative-free optimization.
These methods aim to find a solution inside a trust region that provides a sufficient
reduction in the objective function, without requiring derivative information.

Both direct search and trust-region methods are effective in handling optimization
problems when derivative information is unavailable or expensive to compute. They
provide robust and efficient approaches for exploring and optimizing the objective function
in the absence of derivatives.

3.2.1 Directional direct search methods

Directional direct search methods proceed with sampling the objective function at a finite
number of points along specified directions, scaled by a step size, from the current iterate.

During each iteration, directional direct search methods generate candidate points by
moving the current iterate along predetermined directions. The objective function is then
evaluated at these candidate points to gain insight into its local behavior. Based on these
evaluations, the algorithm determines how to update the current iterate and the step size
parameter in order to potentially improve the solution.

The selection of the search directions is crucial, as it influences the algorithm’s ability
to explore and exploit the search space effectively. Common choices include random
directions, coordinate directions, or other systematic patterns. By iteratively sampling
the objective function at different candidate points, directional direct search methods aim
to converge toward an optimal or near-optimal solution, without relying on derivative
information.

One of the simplest directional direct search methods is the coordinate search method,
also known as compass search. The corresponding algorithm is outlined in Algorithm 3.

At iteration 𝑘, coordinate search evaluates the function 𝑓 at the set of poll points 𝑃𝑘 ,
defined by

𝑃𝑘 = {𝑥𝑘 + 𝛼𝑘𝑑 : 𝑑 ∈ 𝐷⊕} ,

where 𝑥𝑘 is the current iterate, 𝛼𝑘 is the current step size, and 𝐷⊕ is the maximal positive
basis given by

𝐷⊕ = [𝐼𝑛 − 𝐼𝑛] ,

with 𝐼𝑛 as the identity matrix of order 𝑛.
If some points in 𝑃𝑘 lead to a decrease in the value of 𝑓 , the iteration is declared

successful and the step size remains unchanged. Otherwise, the iteration is unsuccessful
and the step size is decreased.

The convergence analysis for the presented coordinate search algorithm is stated by
the following theorem. A detailed proof of this theorem can be found in [2, Theorem 3.4].
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Algorithm 3. Coordinate search algorithm
Input

Initial point 𝑥0 and initial step size 𝛼0.

For 𝑘 = 0, 1, 2, . . .
1. Poll step
Evaluate 𝑓 at the poll points 𝑃𝑘 = {𝑥𝑘 + 𝛼𝑘𝑑 : 𝑑 ∈ 𝐷⊕},

following a pre-determined order, until a point 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ∈ 𝑃𝑘 is found
such that 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) < 𝑓 (𝑥𝑘).

If such a point 𝑥𝑘 + 𝛼𝑘𝑑𝑘 is found, then:
Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 .
Declare the iteration and the poll step as successful.
Stop poll step.

Otherwise:
Set 𝑥𝑘+1 = 𝑥𝑘 .
Declare the iteration and the poll step as unsuccessful.

2. Parameter update
If the iteration is successful, set 𝛼𝑘+1 = 𝛼𝑘 .
Otherwise, set 𝛼𝑘+1 = 1

2𝛼𝑘 .
End For

Theorem 3.3. Let 𝑓 : R𝑛 → R be a real-valued function and 𝑥0 be some given initial point.
Let {𝑥𝑘}𝑘∈N be the sequence of points generated by Algorithm 3. Assume that the level set
𝑆 = {𝑥 ∈ R𝑛 : 𝑓 (𝑥) ≤ 𝑓 (𝑥0)} is bounded. Furthermore, suppose that 𝑓 is continuously
differentiable in an open domain Ω containing 𝑆. Then

lim
𝑘→+∞

∥∇ 𝑓 (𝑥𝑘)∥ = 0.

For a comprehensive understanding of directional direct search methods, interested
readers can refer to the details provided in [2, 8].

3.2.2 Trust-region derivative-free methods

The trust-region approach was discussed in Section 3.1.2, and the corresponding algorith-
mic structure was presented by Algorithm 2. In Section 3.1.2, the quadratic model 𝑚𝑘

was assumed to be based on the Taylor expansion of 𝑓 around 𝑥𝑘 which here is no longer
possible, because derivatives are not available.

In this section, models will be built using polynomial interpolation, regression, or
minimum Frobenius norm approaches, discussed in Section 2.3.

The model 𝑚𝑘 is assumed to be a quadratic polynomial model based on interpolation
techniques, approximating 𝑓 around 𝑥𝑘 , defined as

𝑚𝑘(𝑥𝑘 + 𝑑) = 𝑓 (𝑥𝑘) + 𝑑⊤𝑔𝑘 +
1
2𝑑

⊤𝐵𝑘𝑑,
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where 𝑔𝑘 = ∇𝑚𝑘(𝑥𝑘) and 𝐵𝑘 = ∇2𝑚𝑘(𝑥𝑘).
A sample set

𝑌𝑘 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} ⊂ R𝑛 ,

for which the corresponding function values are known, is required to compute the
interpolating polynomial model 𝑚𝑘 , modeling 𝑓 at the points in 𝑌𝑘 . Generally, the first
element is equal to the current iterate, that is 𝑦0 = 𝑥𝑘 .

At each iteration 𝑘, 𝑌𝑘 should be updated, depending on whether the iteration is
successful (𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘) or unsuccessful (𝑥𝑘+1 = 𝑥𝑘). To update 𝑌𝑘 , most trust-region
derivative-free algorithms consider 𝑥𝑘+1 as the first element in 𝑌𝑘+1 and then discard the
furthest point from 𝑥𝑘+1 or don’t discard any point.

Generally, there is a restriction on the points in the sample set 𝑌𝑘 considering their
distance from 𝑥𝑘 . In this case, a sample point 𝑦 ∈ 𝑌𝑘 should satisfy

∥𝑦 − 𝑥𝑘 ∥ ≤ 𝑟Δ𝑘 ,

where Δ𝑘 > 0 is the trust-region radius, and 𝑟 > 0 is a user-defined parameter. All points
outside the ball 𝐵(𝑥𝑘 , 𝑟Δ𝑘) are discarded.

The important issue here is whether the poisedness of 𝑌𝑘 , discussed in Section 2.3,
should be checked and controlled or not. Appropriately poised sample sets result in
high-quality models and consequently good solutions. On the other hand, controlling
the geometry of sample sets at each iteration is computationally very expensive and may
finally lead to inadequate numerical results, especially in derivative-free optimization
algorithms with a restricted budget of function evaluations.

Regarding the poisedness of sample sets, different strategies have been used. In [16],
the authors present a trust-region algorithm and state that ignoring the control of the
geometry of sample sets does not harm the efficiency and robustness of their algorithm,
which is competitive with other model-based algorithms that use a geometry phase. On the
other hand, the role of geometry in model-based derivative-free optimization algorithms
is emphasized in [32], in which they believe that when the model gradient is small, the
sufficient poisedness of the model is necessarily required.

In the literature [8], interested readers can find algorithms that address the completion
of nonpoised sample sets or improve their poisedness using techniques such as Lagrange
polynomials or LU factorization. These algorithms provide strategies to enhance the
quality and properties of sample sets in optimization problems. By completing or improv-
ing the poisedness of the sample sets, the algorithms aim to improve the accuracy and
efficiency of optimization algorithms that rely on these sample sets.

Derivative-free trust-region algorithms are introduced in both first-order and second-
order cases with convergence analysis in [8, Chapter 10].
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4

Multiobjective numerical optimization

A multiobjective optimization problem is defined by

min
𝑥∈𝑋

𝐹(𝑥) =
(
𝑓1(𝑥), ..., 𝑓𝑞(𝑥)

)
, (4.1)

where 𝐹 : R𝑛 → R𝑞 , with 𝑛, 𝑞 ∈ N, 𝑞 ≥ 2, and the feasible region 𝑋 ⊆ R𝑛 .
The objective function components 𝑓𝑖 : R𝑛 → R, where 𝑖 ∈ {1, ..., 𝑞}, are considered

to be conflicting among each other. This means that improving one objective function
component leads to the deterioration of at least another one, resulting in a trade-off
between different optimization goals.

The conflicting nature of the objective function components makes the multiobjec-
tive optimization problem challenging and requires specialized algorithms to efficiently
explore and approximate the solution, providing a set of points that represent different
trade-offs among the conflicting objectives.

In Section 4.1, we willdelve into the fundamental aspects ofmultiobjective optimization.
Afterward, in Section 4.2, we will outline the optimality conditions associated with
multiobjective optimization problems. Section 4.3 will provide an overview of derivative-
based algorithms, while Section 4.4 will present derivative-free methods. Finally, Section
4.5 will address the topic of multiobjective metrics.

4.1 Fundamentals of multiobjective optimization

In multiobjective optimization, due to the conflicting objective function components, the
optimal solution can no longer be represented by a single point. Instead, it is represented
by a set of points known as the Pareto front. Any point on the Pareto front is considered
to be an efficient or Pareto optimal solution. A point is called efficient if it is not possible
to improve one objective function component, without deteriorating the value of at least
another one.

Definition 4.1. A point 𝑥 ∈ 𝑋 is called efficient or Pareto optimal for Problem (4.1) if and only if
there exists no point 𝑥 ∈ 𝑋, such that 𝐹(𝑥) ≤ 𝐹(𝑥), and 𝐹(𝑥) ≠ 𝐹(𝑥).
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In equivalent terms, an efficient point is not dominated by any other point, so it is
called nondominated. In practical applications of multiobjective optimization, finding an
efficient solution can be computationally expensive, if not impossible. Therefore, some
algorithms aim to provide solutions that are weakly efficient.

Definition 4.2. A point 𝑥 ∈ 𝑋 is called weakly efficient for Problem (4.1) if and only if there exists
no point 𝑥 ∈ 𝑋, such that 𝐹(𝑥) < 𝐹(𝑥).

Every efficient point is also weakly efficient. However, the reverse is not always true.
In multiobjective optimization, similar to the single-objective case, obtaining a global

solution can be challenging, computationally expensive, or even impossible. In such cases,
it may be more practical to focus on finding and evaluating local solutions as an alternative
approach.

Definition 4.3. A point 𝑥 ∈ 𝑋 is called locally (weakly) efficient for Problem (4.1) if and only if
there exists a neighborhoodΩ ⊂ 𝑋 of 𝑥 such that 𝑥 is (weakly) efficient for the problem min𝑥∈Ω 𝐹(𝑥).

4.2 Optimality conditions

In this section, we explore and generalize the optimality conditions for the following
unconstrained multiobjective optimization problem,

min
𝑥∈R𝑛

𝐹(𝑥) =
(
𝑓1(𝑥), ..., 𝑓𝑞(𝑥)

)
, (4.2)

with 𝐹 : R𝑛 → R𝑞 , 𝑛, 𝑞 ∈ N, 𝑞 ≥ 2, and 𝑓𝑖 : R𝑛 → R, 𝑖 ∈ {1, ..., 𝑞}.
First, let us generalize the concept of descent directions in the context of multiobjective

optimization. Next, we will establish a connection between these generalized descent
directions and the concept of Pareto criticality.

Definition 4.4. A vector 𝑑 ∈ R𝑛 is called a descent direction for the function 𝐹 at 𝑥 ∈ R𝑛 if there
exists a scalar 𝑡0 > 0 such that 𝑓𝑖(𝑥 + 𝑡𝑑) < 𝑓𝑖(𝑥) for all 𝑡 ∈ (0; 𝑡0], and for all 𝑖 ∈ {1, ..., 𝑞}.

The following lemma establishes sufficient and necessary conditions for descent direc-
tions in the context of multiobjective optimization.

Lemma 4.1. Let 𝑓𝑖 : R𝑛 → R, 𝑖 ∈ {1, ..., 𝑞}, be continuously differentiable functions. The vector
𝑑 ∈ R𝑛 is a descent direction for the function 𝐹 at 𝑥 ∈ R𝑛 if and only if ∇ 𝑓𝑖(𝑥)⊤𝑑 < 0, for all
𝑖 ∈ {1, ..., 𝑞}.

The concept of optimality conditions in multiobjective optimization is indeed more
intricate compared to the single-objective case, as it involves trade-offs and conflicts
between multiple objectives. However, it provides a generalization of the optimality
conditions from single-objective optimization. Pareto criticality is formalized in the
following definition.
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Definition 4.5. Let 𝑓𝑖 : R𝑛 → R be continuously differentiable functions, for 𝑖 ∈ {1, ..., 𝑞}. A
point 𝑥∗ ∈ R𝑛 is called Pareto critical for Problem (4.2) if

∀𝑑 ∈ R𝑛 , ∃𝑖 ∈ {1, ..., 𝑞} : ∇ 𝑓𝑖(𝑥∗)⊤𝑑 ≥ 0.

Pareto criticality and descent directions are connected concepts in multiobjective
optimization. If 𝑥 is not Pareto critical for Problem (4.2), then there must exist a descent
direction for 𝐹 at 𝑥. On the other hand, there exists no descent direction for 𝐹 at Pareto
critical points. Obviously, the minimizer of each objective function component 𝑓𝑖 , 𝑖 ∈
{1, ..., 𝑞}, is also a Pareto critical point for Problem (4.2).

Pareto criticality serves as a necessary condition for locally weak efficiency, as stated
by the following lemma [21].

Lemma 4.2. If 𝑥 is locally weakly efficient for Problem (4.2), then it is Pareto critical for this
problem.

The following lemma, originally stated in [18], indicates a criticality measure for
multiobjective optimization.

Lemma 4.3. Let 𝑓𝑖 : R𝑛 → R be continuously differentiable functions, for 𝑖 ∈ {1, ..., 𝑞}. Define

𝜔(𝑥) = − min
∥𝑑∥≤1

max
𝑖=1,...,𝑞

∇ 𝑓𝑖(𝑥)⊤𝑑.

The following statements hold:

• The mapping 𝑥 ↦→ 𝜔(𝑥) is continuous;

• 𝜔(𝑥) ≥ 0 for all 𝑥 ∈ R𝑛 ;

• A point 𝑥∗ ∈ R𝑛 is Pareto critical for Problem (4.2) if and only if 𝜔(𝑥∗) = 0.

The following lemma, introduced in [33], states some useful characteristics of the
function 𝜔. It also indicates the connection between this function and descent directions.

Lemma 4.4. Let 𝑥 ∈ R𝑛 be given, and 𝑑𝜔 be a minimizer for the optimization problem

− min
∥𝑑∥≤1

max
𝑖=1,...,𝑞

∇ 𝑓𝑖(𝑥)⊤𝑑,

denoted by 𝜔(𝑥). There exist scalars 𝛼𝑖 ∈ [0, 1] for 𝑖 ∈ {1, 2, ..., 𝑞} with
∑𝑞

𝑖=1 𝛼𝑖 = 1 and 𝜇 ≥ 0,
such that

𝑑𝜔 = −𝜇
𝑞∑
𝑖=1

𝛼𝑖∇ 𝑓𝑖(𝑥)

and

𝜔(𝑥) ≤





 𝑞∑
𝑖=1

𝛼𝑖∇ 𝑓𝑖(𝑥)







hold.

• If 𝑥 is not Pareto critical for Problem (4.2), then 𝑑𝜔 is a descent direction, and ∥𝑑𝜔∥ = 1.

• If 𝑥 is Pareto critical for Problem (4.2), then 𝑑𝜔 =
∑𝑞

𝑖=1 𝛼𝑖∇ 𝑓𝑖(𝑥) = 0 holds.

35



CHAPTER 4. MULTIOBJECTIVE NUMERICAL OPTIMIZATION

4.3 Derivative-based algorithms

A wide variety of techniques have been established to solve multiobjective optimization
problems. Typical approaches to this class of problems include the use of aggregation
techniques, that combine the different objectives into a single function, which is then
optimized, generating a single point in the Pareto front of the problem [15, 23]. Regarding
these techniques, if the goal is to compute an approximation to the complete Pareto front,
care must be taken in the selection of an adequate scalarization technique, since the
Pareto front cannot be simply retrieved with linear combinations of the corresponding
objectives [11, 12]. Recently, some algorithms based on SQP techniques have also been
proposed for this task [1, 19] which use derivative information of functions.

In the literature, there are several methods that just attempt to compute a single
Pareto point. These techniques include Steepest Descent [18], Newton method [17],
Quasi-Newton approaches [26], among many others, which are applicable to derivative-
based problems. Often, in numerical experiments, algorithms are run from different
initializations in an attempt to generate different points in the Pareto front. However, there
is no guarantee of success and the algorithms do not incorporate any explicit mechanism
for that purpose.

In [29], an algorithm based on trust-region methods for solving multiobjective opti-
mization problems is proposed, assuming the positive definiteness of the Hessians of the
models. In [5], the authors present a trust-region globalization strategy for nonconvex
unconstrained multiobjective optimization problems, which is a generalization of the
algorithm proposed by [17] for convex problems. An additional set of linear inequality
constraints is considered in the scalarization problem to address the nonconvex case.
Recent work is a trust-region algorithm based on a nonmonotone technique [30], where
the extra set of linear inequality constraints of [5] is also used. However, all algorithms
presented in the mentioned papers [5, 17, 29, 30] are designed to obtain a single stationary
point of the problem.

In Chapter 5, a strategy based on trust-region methods will be presented to generate an
approximation to the complete Pareto front of a general derivative-based multiobjective
optimization problem [24]. Neither additional assumptions nor any extra conditions are
considered by this method. Convergence analysis will be stated. Additionally, it will be
indicated in the numerical results that this technique is numerically competitive.

4.4 Derivative-free algorithms

Multiobjective derivative-free optimization is a challenging area, where objectives are
black-box functions, which are not given analytically and are the result of some time-
consuming experiments. In this scenario, the evaluation of these functions is numerically
expensive. Their derivatives would not exist and could be impossible to be numerically
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approximated. The use of derivative-based techniques is not applicable and derivative-free
methods are required.

A common approach to handle multiobjective derivative-free optimization problems is
based on direct search techniques [8, 9]. In this approach, only function values are required.
The direct multisearch framework (DMS) [9] is a well-known class of multiobjective
optimization methods. Polynomial interpolation models were already incorporated in
this multiobjective framework under the denomination of BoostDMS [4]. A recent work
in this class is based on a mesh adaptive direct search approach, called DMultiMADS [3].
Implicit filtering methods have also been generalized for multiobjective derivative-free
optimization [6]. However, trust-region methods have not yet been properly addressed.

Although trust-region algorithms with a well-established convergence analysis have
already been proposed for multiobjective derivative-based optimization [5, 29, 30], this
approach has not yet been properly generalized to multiobjective derivative-free optimiza-
tion problems. A trust-region algorithm is proposed in [31] for biobjective derivative-free
problems, which approximates the Pareto front. However, the extension to a general
number of objectives is not straightforward. A trust-region algorithm is also presented
for multiobjective heterogeneous optimization in which only one of the objective function
components is expensive, without derivative information [33]. All other objective func-
tion components are given analytically, where derivatives can easily be computed. The
algorithm presented in [33] is designed to obtain a single Pareto stationary point for a
multiobjective problem.

In Chapter 6, a modified technique based on trust-region methods will be proposed to
generate an approximation to the complete Pareto front of a general derivative-free multi-
objective optimization problem. This algorithm is an adaptation of the derivative-based
multiobjective method. The proposed algorithm uses a technique based on quadratic
polynomial interpolation or minimum Frobenius norm approaches to build models that
approximate the objective function components. Convergence analysis will be estab-
lished. Furthermore, the numerical results will indicate that the algorithm is numerically
competitive against other derivative-free multiobjective optimization methods.

4.5 Multiobjective metrics

To compare different algorithms, we consider the performance profiles proposed by Dolan
and Moré [14], which allow assessing the numerical performance of different solvers,
considering different metrics. The performance of solver 𝑠 ∈ 𝑆 on a given set of problems
𝑃 is represented by a cumulative function

𝜌𝑠(𝜏) =
1
|𝑃 |

��{𝑝 ∈ 𝑃 : 𝑟𝑝,𝑠 ≤ 𝜏}
�� ,

where 𝜏 ≥ 1 and the performance ratio is defined by

𝑟𝑝,𝑠 =
𝑡𝑝,𝑠

min{𝑡𝑝,𝑠 : 𝑠 ∈ 𝑆} .
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Here 𝑡𝑝,𝑠 represents the value of the selected metric, obtained by solver 𝑠 ∈ 𝑆when solving
problem 𝑝 ∈ 𝑃. Larger values of 𝜌𝑠(𝜏) indicate a better numerical performance of solver
𝑠. In particular, the solver with the largest value of 𝜌𝑠(1) is the most efficient. Indeed, the
value of 𝜌𝑠(1) indicates the probability of the solver 𝑠 winning over the remaining solvers.
On the other hand, the solver with the largest value of 𝜌𝑠(𝜏) for large values of 𝜏 is the
most robust.

Selecting a single metric to compare the performance of multiobjective optimization
solvers isn’t always fair. To have a comprehensive evaluation, considering that a good
multiobjective optimization solver should be able to generate a large percentage of non-
dominated points and should also be able to capture the extent of the Pareto front of the
multiobjective optimization problem, we decided to consider four metrics that attempt to
quantify these features, namely purity, hypervolume, and spread metrics Γ and Δ.

Purity measures the percentage of nondominated points generated by a given solver

𝑡𝑝,𝑠 = 𝑃𝑢𝑟𝑝,𝑠 =
|𝐹𝑝,𝑠 ∩ 𝐹𝑝 |

|𝐹𝑝,𝑠 |
,

where 𝐹𝑝,𝑠 represents the approximation to the Pareto front of problem 𝑝 computed by
solver 𝑠 and 𝐹𝑝 is a reference Pareto front for problem 𝑝, computed by considering the
union of the Pareto approximations corresponding to all solvers, ∪𝑠∈𝑆𝐹𝑝,𝑠 , and discarding
from it all the dominated points [9].

Hypervolume [35], in addition to nondominance, attempts to capture spread, by
measuring the volume of the region dominated by the current approximation to the
Pareto front and a reference point 𝑈𝑝 ∈ R𝑞 , that is dominated by all points belonging to
the different approximations computed for the Pareto front of problem 𝑝 ∈ 𝑃 by all solvers
tested. Mathematically, it can be formalized as

𝑡𝑝,𝑠 = 𝐻𝑉𝑝,𝑠 = 𝑉𝑜𝑙{𝑦 ∈ R𝑞 | 𝑦 ≤ 𝑈𝑝 ∧ ∃𝑥 ∈ 𝐹𝑝,𝑠 : 𝑥 ≤ 𝑦} = 𝑉𝑜𝑙 ©­«
⋃
𝑥∈𝐹𝑝,𝑠

[𝑥,𝑈𝑝]ª®¬ ,
where 𝑉𝑜𝑙(.) denotes the Lebesgue measure of a 𝑞-dimensional set of points and [𝑥,𝑈𝑝]
denotes the interval box with lower corner 𝑥 and upper corner𝑈𝑝 .

To compute the performance profiles for purity and hypervolume metrics, since larger
values indicate better performance, the inverse value of each one of the metrics is used
(𝑡𝑝,𝑠 = 1/𝑡𝑝,𝑠).

Finally, to directly assess the spread across the Pareto front, two additional metrics
were considered: the Γ metric, that measures the size of the largest gap in the approxi-
mation to the Pareto front computed, and the Δ metric, that assesses how uniformly the
nondominated points are distributed along the approximation generated. In a simplified
way, consider that solver 𝑠 ∈ 𝑆 has computed, for problem 𝑝 ∈ 𝑃, an approximated Pareto
front with points 𝑦1 , 𝑦2 , . . . , 𝑦𝑁 , to which we add the so-called extreme points, 𝑦0 and 𝑦𝑁+1,
corresponding to the points with the best and worst values for each objective function
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component. Then

Γ𝑝,𝑠 = max
𝑗∈{1,...,𝑞}

(
max

𝑖∈{0,...,𝑁}
{𝛿 𝑗 ,𝑖}

)
, (4.3)

where 𝛿 𝑗 ,𝑖 = 𝑓𝑗(𝑦𝑖+1) − 𝑓𝑗(𝑦𝑖), assuming that the objective function values have been sorted
by increasing order for each objective function component 𝑗. The metricΔ [13] is computed
by

Δ𝑝,𝑠 = max
𝑗∈{1,...,𝑞}

(
𝛿 𝑗 ,0 + 𝛿 𝑗 ,𝑁 +∑𝑁−1

𝑖=1 |𝛿 𝑗 ,𝑖 − 𝛿̄ 𝑗 |
𝛿 𝑗 ,0 + 𝛿 𝑗 ,𝑁 + (𝑁 − 1)𝛿̄ 𝑗

)
, (4.4)

where 𝛿̄ 𝑗 , for 𝑗 = 1, . . . , 𝑞, indicates the average of the distances 𝛿 𝑗 ,𝑖 , 𝑖 = 1, . . . , 𝑁 − 1.
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5

A general framework for
multiobjective optimization

In this chapter, we address the multiobjective optimization problem defined as

min 𝐹(𝑥) =
(
𝑓1(𝑥), ..., 𝑓𝑞(𝑥)

)
s.t. 𝑥 ∈ R𝑛 ,

(5.1)

where 𝐹 : R𝑛 → R𝑞 , 𝑛, 𝑞 ∈ N, and 𝑞 ≥ 2. The objective function components 𝑓𝑖 :
R𝑛 → R, 𝑖 = 1, . . . , 𝑞, are assumed to be twice continuously differentiable, with available
gradients and Hessians, and conflicting with each other, meaning that it is not possible
to find a single point that simultaneously minimizes all objective function components.
The problem solution will be the so-called Pareto front of the problem, namely a set of
efficient or nondominated points.

In Section 5.1, we will present an algorithm for solving the multiobjective optimization
problem by approximating the Pareto front of Problem (5.1). We will then conduct a
convergence analysis of this algorithm in Section 5.2. By Section 5.3, we will provide the
numerical results demonstrating the efficiency and robustness of this algorithm.

The primary goal of this thesis addresses multiobjective derivative-free optimization.
Our intention was to develop an algorithm capable of generating approximations to the
complete Pareto front of multiobjective derivative-free optimization problems. During the
initial formulation of the algorithm, we opted to assess its performance using Taylormodels
due to their highly precise approximations of the true objective function components.
Once we established confidence in the foundational algorithmic structure, we proceeded to
modify it forderivative-free problems by incorporating quadratic polynomial interpolation
orminimum Frobenius norm models. Remarkably, the algorithm demonstrated impressive
performance in resolving problems that rely on derivatives, leading to a publication [24].
The derivative-based algorithm is comprehensively presented in this chapter.
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5.1 Algorithmic structure

Two key goals should be considered when developing an algorithm to approximate the
Pareto front of a multiobjective optimization problem:

• The algorithm should aim to capture the extent of the Pareto front by being able
to approximate its extreme points. As previously mentioned, these extreme points
correspond to the individual minimization of each component of the objective
function.

• The algorithm should focus on the density of the Pareto front. This involves the ability
of the algorithm to fill in the gaps between points in the computed approximation,
resulting in a more comprehensive representation of the Pareto front.

The proposed Multiobjective Trust-Region (MOTR) algorithm achieves these goals
through two distinguished steps: the extreme point step for trying to capture the extent of
the Pareto front and the scalarization step for enhancing the density of the approximation
[24].

Within the scalarization step, an additional step called the middle point step is utilized
to determine the initial points at which scalarization problems will be solved. It will be
demonstrated through numerical results that this intermediate step, which was developed
for the first time in the context of MOTR, plays an important role in the algorithm’s process.

MOTR keeps a list of nondominated points and associated quantities, defined as

𝐿 = {(𝑥 𝑗 , 𝐹(𝑥 𝑗),Δ𝑗
𝑒𝑝 ,Δ

𝑗
𝑠𝑐) | 𝑗 ∈ 𝐽}, (5.2)

where 𝐽 ⊂ N is the set of indexes of the points in the list, Δ𝑗
𝑒𝑝 is a 𝑞×1 vector storing at each

component the trust-region radius associated with 𝑥 𝑗 and the corresponding component
of the objective function, to be used at the extreme point step, and Δ

𝑗
𝑠𝑐 represents the

trust-region radius to be used at the scalarization step.
Each time that a new point is added to the list, all dominated points are removed from

it. Through this thesis, in a clear abuse of notation but to enhance the clarity and ease of
presentation, it will often be stated 𝑥 𝑗 ∈ 𝐿, meaning that (𝑥 𝑗 , 𝐹(𝑥 𝑗),Δ𝑗

𝑒𝑝 ,Δ
𝑗
𝑠𝑐) ∈ 𝐿.

In any of the two main steps, points are selected from this list and quadratic Taylor
models are built centered at the selected points, to replace the components of the objective
function. For 𝑖 = 1, . . . , 𝑞, the quadratic model 𝑚𝑖 approximating 𝑓𝑖 around a given point
𝑥𝑠𝑡𝑒𝑝 is defined as follows,

𝑚𝑖(𝑥) = 𝑓𝑖(𝑥𝑠𝑡𝑒𝑝) + ∇ 𝑓𝑖(𝑥𝑠𝑡𝑒𝑝)⊤(𝑥 − 𝑥𝑠𝑡𝑒𝑝) +
1
2 (𝑥 − 𝑥𝑠𝑡𝑒𝑝)

⊤∇2 𝑓𝑖(𝑥𝑠𝑡𝑒𝑝)(𝑥 − 𝑥𝑠𝑡𝑒𝑝), (5.3)

where ∇ 𝑓𝑖(𝑥𝑠𝑡𝑒𝑝) and ∇2 𝑓𝑖(𝑥𝑠𝑡𝑒𝑝) represent the gradient vector and the Hessian matrix of
𝑓𝑖 computed at 𝑥𝑠𝑡𝑒𝑝 , respectively.

Algorithm 4 formalizes the main procedure, where the extreme point and scalarization
steps are executed in alternating iterations.

Sections 5.1.1 and 5.1.2 detail the extreme point and the scalarization steps, respectively.
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Algorithm 4. MOTR
Input

Initial list of nondominated points 𝐿0 defined by (5.2).

For 𝑘 = 0, 1, 2, . . .
If 𝑚𝑜𝑑(𝑘, 2) = 0, then go to the Extreme Point Step.
Else go to the Scalarization Step.
If some stopping criterion is met, then return.

End For

5.1.1 Extreme point step

The main goal of the extreme point step is to expand the approximation to the Pareto front
by moving towards the extreme points of it, corresponding to the individual minimization
of each objective function component.

At each iteration 𝑘 associated with the extreme point step, for each component of the
objective function 𝑓𝑖 , 𝑖 = 1, ..., 𝑞, the point 𝑥 𝑖 ,𝑘𝑒𝑝 , corresponding to the minimum value
of 𝑓𝑖 for the points in the list, is selected. Ties are broken by the largest extreme point
trust-region radius corresponding to 𝑓𝑖 , encouraging successful iterations by favoring
larger trust-region radii, which indicate points that have not been selected or have been
successful in their exploration so far.

Once that 𝑥 𝑖 ,𝑘𝑒𝑝 is selected, the extreme point trust-region radius corresponding to 𝑓𝑖 is
set equal to zero for all the other points in the list. This strategy causes the other points in
the list to no longer be candidates for the extreme point step corresponding to the selected
objective function component.

The quadratic Taylormodel𝑚𝑘
𝑖

(5.3), centered at 𝑥 𝑖 ,𝑘𝑒𝑝 , is computed and then one iteration
of a single objective trust-region algorithm is performed. The model is minimized in
𝐵(𝑥 𝑖 ,𝑘𝑒𝑝 ,Δ𝑖 ,𝑘𝑒𝑝 (𝑖)), the closed ball centered at 𝑥 𝑖 ,𝑘𝑒𝑝 with radius Δ𝑖 ,𝑘𝑒𝑝 (𝑖), to compute the minimizer
𝑥 𝑖 ,𝑘∗𝑒𝑝 .

Then, 𝜌𝑖 ,𝑘𝑒𝑝 is computed, denoting the ratio of agreement between the decrease obtained
in the model 𝑚𝑘

𝑖
and the variation obtained in the corresponding objective function

component. Based on the value of the ratio 𝜌𝑖 ,𝑘𝑒𝑝 , the decision to accept or reject the model
minimizer 𝑥 𝑖 ,𝑘∗𝑒𝑝 , as well as the update strategy for the trust-region radius, are determined
according to the identical rules applied in single-objective trust-region methods.

Having 𝑚𝑘
𝑖
(𝑥 𝑖 ,𝑘𝑒𝑝 ) − 𝑚𝑘

𝑖
(𝑥 𝑖 ,𝑘∗𝑒𝑝 ) = 0 means that the current model center 𝑥 𝑖 ,𝑘𝑒𝑝 is the model

minimizer. In this situation, 𝜌𝑖 ,𝑘𝑒𝑝 is set equal to zero, which results in the decrease of
the corresponding trust-region radius. Consequently, this will lead to an increase in the
agreement between the Taylor model and the objective function component.
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Otherwise, 𝑚𝑘
𝑖
(𝑥 𝑖 ,𝑘𝑒𝑝 ) − 𝑚𝑘

𝑖
(𝑥 𝑖 ,𝑘∗𝑒𝑝 ) > 0 and we set

𝜌𝑖 ,𝑘𝑒𝑝 =
𝑓𝑖(𝑥 𝑖 ,𝑘𝑒𝑝 ) − 𝑓𝑖(𝑥 𝑖 ,𝑘∗𝑒𝑝 )

𝑚𝑘
𝑖
(𝑥 𝑖 ,𝑘𝑒𝑝 ) − 𝑚𝑘

𝑖
(𝑥 𝑖 ,𝑘∗𝑒𝑝 )

.

A high value of 𝜌𝑖 ,𝑘𝑒𝑝 indicates that the model is adequately predicting the reduction
in the function value. In such cases, the model minimizer will be accepted and the trust-
region radius will be increased, considering a successful iteration. Consequently, the point
𝑥 𝑖 ,𝑘∗𝑒𝑝 is added to the list, and all dominated points are removed from it. In fact, when
𝜌𝑖 ,𝑘𝑒𝑝 > 0, the value of the objective function 𝑓𝑖(𝑥 𝑖 ,𝑘∗𝑒𝑝 ) is smaller than 𝑓𝑖(𝑥 𝑖 ,𝑘𝑒𝑝 ). Thus, it is clear
that 𝑥 𝑖 ,𝑘∗𝑒𝑝 is nondominated by all points in the list 𝐿𝑘 .

In successful iterations, there is the possibility of 𝑥 𝑖 ,𝑘𝑒𝑝 continuing to be a nondominated
point and still remaining in the list. In this situation, it will no longer be a candidate in any
extreme point step corresponding to the objective function component 𝑓𝑖 . Consequently,
Δ
𝑖 ,𝑘
𝑒𝑝 (𝑖) is set equal to zero.

If 𝜌𝑖 ,𝑘𝑒𝑝 is low, then 𝑥 𝑖 ,𝑘∗𝑒𝑝 will not be accepted and the trust-region radius Δ𝑖 ,𝑘𝑒𝑝 (𝑖) will be
decreased, considering an unsuccessful iteration. By aiming to enhance the quality of
the Taylor model, as an approximation to the real function component, this approach is
undertaken.

The extreme point step is outlined within Algorithm 5.

5.1.2 Scalarization step

In the scalarization step, there is an attempt to fill the gaps in the current approximation
to the Pareto front. An initial point associated with the largest gap, corresponding
to the objective function component under analysis, is selected. Then, an appropriate
scalarization problem is solved and the corresponding minimizer is added to the list if it
is nondominated.

In each scalarization step iteration 𝑘, for each component of the objective function, 𝑓𝑖 ,
𝑖 = 1, ..., 𝑞, an initial point 𝑥 𝑖 ,𝑘𝑠𝑐 is selected or computed. Once that 𝑥 𝑖 ,𝑘𝑠𝑐 is obtained, models
are built for each objective function component, centered at 𝑥 𝑖 ,𝑘𝑠𝑐 . A joint minimization of
the models is performed, by solving the following scalarization problem, computing the
new point 𝑥 𝑖 ,𝑘∗𝑠𝑐 :

min 𝑡

s.t. 𝑚𝑘
𝑙
(𝑥) − 𝑚𝑘

𝑙
(𝑥 𝑖 ,𝑘𝑠𝑐 ) ≤ 𝑡 , 𝑙 = 1, ..., 𝑞,

𝑥 ∈ 𝐵(𝑥 𝑖 ,𝑘𝑠𝑐 ,Δ𝑖 ,𝑘𝑠𝑐 ),
𝑡 ∈ R.

(5.4)

A similar scalarization approach was considered in [5] and [29]. In the first case, it was
incorporated with an extra set of linear inequality constraints. The algorithm proposed
by [29] requires positive definite Hessians for the theoretical analysis. In both cases, the
algorithms aim to generate a single point as a solution, without explicitly attempting to
compute any approximation of the complete Pareto front of the problem.
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Algorithm 5. Extreme point step
Input

Current list of nondominated points 𝐿𝑘 , defined by (5.2).
The minimum trust-region radius value Δ𝑚𝑖𝑛𝑒𝑝 .
Values for the parameters 0 < 𝜂1

𝑒𝑝 ≤ 𝜂2
𝑒𝑝 < 1 and 0 < 𝜇1 < 1 < 𝜇2.

𝐿 = 𝐿𝑘
For 𝑖 = 1, ..., 𝑞

1. Selection of an iterate point
Select (𝑥 𝑖 ,𝑘𝑒𝑝 , 𝐹(𝑥 𝑖 ,𝑘𝑒𝑝 ),Δ𝑖 ,𝑘𝑒𝑝 ,Δ𝑖 ,𝑘𝑠𝑐 ) ∈ 𝐿 such that 𝑥 𝑖 ,𝑘𝑒𝑝 ∈ arg min𝑥∈𝐿 𝑓𝑖(𝑥). Break ties by
selecting the point with the maximum extreme point trust-region radius corresponding to 𝑓𝑖 .
For all points 𝑥 𝑗 in 𝐿, except the selected one, set Δ𝑗

𝑒𝑝(𝑖) = 0.
If Δ𝑖 ,𝑘𝑒𝑝 (𝑖) < Δ𝑚𝑖𝑛𝑒𝑝 , stop the procedure and continue to the next 𝑖.

2. Step calculation
Compute the model function 𝑚𝑘

𝑖
, centered at 𝑥 𝑖 ,𝑘𝑒𝑝 , and 𝑥 𝑖 ,𝑘∗𝑒𝑝 ∈ arg min

𝑥∈𝐵(𝑥 𝑖 ,𝑘𝑒𝑝 ,Δ𝑖 ,𝑘𝑒𝑝 (𝑖))
𝑚𝑘
𝑖
(𝑥).

If 𝑚𝑘
𝑖
(𝑥 𝑖 ,𝑘𝑒𝑝 ) − 𝑚𝑘

𝑖
(𝑥 𝑖 ,𝑘∗𝑒𝑝 ) = 0 then set 𝜌𝑖 ,𝑘𝑒𝑝 = 0. Else, set 𝜌𝑖 ,𝑘𝑒𝑝 =

𝑓𝑖(𝑥 𝑖 ,𝑘𝑒𝑝 )− 𝑓𝑖(𝑥 𝑖 ,𝑘∗𝑒𝑝 )
𝑚𝑘
𝑖
(𝑥 𝑖 ,𝑘𝑒𝑝 )−𝑚𝑘

𝑖
(𝑥 𝑖 ,𝑘∗𝑒𝑝 )

.

3. Trial point acceptance and trust-region update
If 𝜌𝑖 ,𝑘𝑒𝑝 ≥ 𝜂1

𝑒𝑝 then:
Set Δ𝑖 ,𝑘∗𝑒𝑝 = Δ

𝑖 ,𝑘
𝑒𝑝 and Δ

𝑖 ,𝑘∗
𝑠𝑐 = Δ

𝑖 ,𝑘
𝑠𝑐 .

If 𝜌𝑖 ,𝑘𝑒𝑝 ≥ 𝜂2
𝑒𝑝 then set Δ𝑖 ,𝑘∗𝑒𝑝 (𝑖) = 𝜇2 ∗ Δ𝑖 ,𝑘𝑒𝑝 (𝑖).

Set Δ𝑖 ,𝑘𝑒𝑝 (𝑖) = 0.
Add the new point to the list, by setting 𝐿 = 𝐿 ∪ {(𝑥 𝑖 ,𝑘∗𝑒𝑝 , 𝐹(𝑥 𝑖 ,𝑘∗𝑒𝑝 ),Δ𝑖 ,𝑘∗𝑒𝑝 ,Δ

𝑖 ,𝑘∗
𝑠𝑐 )} and

delete the dominated points from it.
Else, set Δ𝑖 ,𝑘𝑒𝑝 (𝑖) = 𝜇1 ∗ Δ𝑖 ,𝑘𝑒𝑝 (𝑖).

End For
𝐿𝑘+1 = 𝐿

After computing the new point in the scalarization step, it is evaluated to determine if
it should be accepted or rejected. The trust-region radius associated with the scalarization
step is then updated accordingly. Algorithm 6 provides the details of the scalarization
step.

5.1.2.1 Initial point at the scalarization step

The procedure for selecting or computing an initial point at the scalarization step depends
on the number of nondominated points in the list with scalarization step trust-region
radii greater than or equal to the minimum associated value Δ𝑚𝑖𝑛𝑠𝑐 . In scalarization step
iteration 𝑘, for each objective function 𝑓𝑖 , 𝑖 = 1, ..., 𝑞, one of the following steps are taken:

• If there are no points in the list that satisfy the minimum trust-region radius criterion,
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Algorithm 6. Scalarization step
Input

Current list of nondominated points 𝐿𝑘 , defined by (5.2).
The minimum trust-region radius value Δ𝑚𝑖𝑛𝑠𝑐 .
Values for the parameters 0 < 𝜂1

𝑠𝑐 ≤ 𝜂2
𝑠𝑐 < 1 and 0 < 𝜇1 < 1 < 𝜇2.

𝐿 = 𝐿𝑘
For 𝑖 = 1, ..., 𝑞

1. Selection of an iterate point
Compute 𝑝 = |{𝑥 ∈ 𝐿 : Δ𝑠𝑐 ≥ Δ𝑚𝑖𝑛𝑠𝑐 }|.
If 𝑝 = 0 then stop the procedure and move on to the next extreme point step.
If 𝑝 = 1 then set 𝑥 𝑖 ,𝑘𝑠𝑐 equal to the point in 𝐿 satisfying Δ𝑠𝑐 ≥ Δ𝑚𝑖𝑛𝑠𝑐 .
If 𝑝 ≥ 2 then go to the middle point step to compute 𝑥 𝑖 ,𝑘𝑠𝑐 .

2. Step calculation
Compute the model functions 𝑚𝑘

𝑙
, 𝑙 = 1, ..., 𝑞, centered at 𝑥 𝑖 ,𝑘𝑠𝑐 , and 𝑥 𝑖 ,𝑘∗𝑠𝑐 by

solving the scalarization Problem (5.4).
Define 𝜙(𝑥) = max𝑗=1,...,𝑞 𝑓𝑗(𝑥) and 𝜙𝑘𝑚(𝑥) = max𝑗=1,...,𝑞 𝑚

𝑘
𝑗
(𝑥).

If 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) = 0 then set 𝜌𝑖 ,𝑘𝑠𝑐 = 0. Else compute 𝜌𝑖 ,𝑘𝑠𝑐 =
𝜙(𝑥 𝑖 ,𝑘𝑠𝑐 )−𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 )

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 )−𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 )
.

3. Trial point acceptance and trust-region update
If 𝜌𝑖 ,𝑘𝑠𝑐 ≥ 𝜂1

𝑠𝑐 and 𝑥 𝑖 ,𝑘∗𝑠𝑐 is nondominated then:
If 𝜌𝑖 ,𝑘𝑠𝑐 ≥ 𝜂2

𝑠𝑐 then set Δ𝑖 ,𝑘𝑠𝑐 = 𝜇2 ∗ Δ𝑖 ,𝑘𝑠𝑐 .
Set Δ𝑖 ,𝑘∗𝑒𝑝 = Δ

𝑖 ,𝑘
𝑒𝑝 and Δ

𝑖 ,𝑘∗
𝑠𝑐 = Δ

𝑖 ,𝑘
𝑠𝑐 .

Add the new point to the list, by setting 𝐿 = 𝐿 ∪ {(𝑥 𝑖 ,𝑘∗𝑠𝑐 , 𝐹(𝑥 𝑖 ,𝑘∗𝑠𝑐 ),Δ𝑖 ,𝑘∗𝑒𝑝 ,Δ
𝑖 ,𝑘∗
𝑠𝑐 )} and

delete the dominated points from it.
Else, set Δ𝑖 ,𝑘𝑠𝑐 = 𝜇1 ∗ Δ𝑖 ,𝑘𝑠𝑐 .

End For
𝐿𝑘+1 = 𝐿

the scalarization step is discarded, and we move on to the next extreme point step;

• If there is only one point in the list that meets the minimum trust-region radius
criterion, that point is selected as the initial point 𝑥 𝑖 ,𝑘𝑠𝑐 ;

• If there are two or more points in the list that satisfy the minimum trust-region
radius criterion, the point 𝑥 𝑖 ,𝑘𝑠𝑐 is computed using a procedure called the middle
point step, described in Algorithm 7.

The middle point step is a straightforward and efficient procedure. First, all points in
the list 𝐿 are sorted based on their 𝑓𝑖 values. Then, the gaps between consecutive points
are computed and sorted. In cases where there are ties between gaps, priority is given
to gaps associated with a larger scalarization step trust-region radius. This prioritization
promotes the progress and success of the algorithm.
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Starting from the largest gap, if at least one of the two consecutive points defining
the current gap satisfies the minimum trust-region radius criterion, the middle point
between these two points is computed in the variable space. However, if none of these
two consecutive points satisfies the minimum trust-region radius criterion, the algorithm
proceeds to the next gap.

If the computed middle point already exists in the list and satisfies the minimum
trust-region radius criterion, it is selected as the point 𝑥 𝑖 ,𝑘𝑠𝑐 , and the algorithm returns to
the scalarization step.

On the other hand, if the computed middle point does not already belong to the list
and is nondominated, it is added to the list as the point 𝑥 𝑖 ,𝑘𝑠𝑐 , and dominated points are
deleted from the list. The algorithm then returns to the scalarization step.

If none of these conditions occur for any of the gaps, the algorithm proceeds to the
next objective function component, and the scalarization step for the current objective
function component is discarded.

To the best of our knowledge, this strategy has not been previously presented in the
literature of multiobjective or single-objective optimization. As it will be illustrated in
the numerical results, reported in Section 5.3, this strategy stands out as one of the key
features of MOTR.

5.1.2.2 New point acceptance and trust-region updates at the scalarization step

The criterion for accepting 𝑥 𝑖 ,𝑘∗𝑠𝑐 and updating the scalarization step trust-region radius
requires computing the ratio 𝜌𝑖 ,𝑘𝑠𝑐 . For this purpose, the auxiliary functions 𝜙(𝑥) and 𝜙𝑘𝑚(𝑥)
are defined by

𝜙(𝑥) = max
𝑗=1,...,𝑞

𝑓𝑗(𝑥),

and
𝜙𝑘𝑚(𝑥) = max

𝑗=1,...,𝑞
𝑚𝑘
𝑗 (𝑥).

When 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) is equal to zero, 𝜌𝑖 ,𝑘𝑠𝑐 is set equal to zero. This forces a decrease
in the trust-region radius, leading to an increase in the agreement between the models
and the objective function components. Otherwise, 𝜌𝑖 ,𝑘𝑠𝑐 is computed by

𝜌𝑖 ,𝑘𝑠𝑐 =
𝜙(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 )

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 )
.

In [33] it is established that when 𝜌𝑖 ,𝑘𝑠𝑐 > 0, descent is guaranteed for at least one
component of the objective function.

After computing the value of 𝜌𝑖 ,𝑘𝑠𝑐 , the strategy for accepting or rejecting the new point
and updating the trust-region radius follows the standard approach used in any trust-
region method. The key difference is that the new point must be nondominated with
respect to the list of existing nondominated points. If 𝜌𝑖 ,𝑘𝑠𝑐 is sufficiently large, but the
new point is dominated, the trust-region radius is reduced to improve the quality of the
models’ approximation.
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Algorithm 7. Middle point step
Input

Current list of nondominated points 𝐿, defined by (5.2).
Current objective function component 𝑖 ∈ {1, ..., 𝑞}.
The minimum trust-region radius value Δ𝑚𝑖𝑛𝑠𝑐 .
The initial trust-region radius values Δ𝑖𝑛𝑖𝑡𝑒𝑝 and Δ𝑖𝑛𝑖𝑡𝑠𝑐 .

1. Compute and sort the gaps
Sort { 𝑓𝑖(𝑥) | 𝑥 ∈ 𝐿} by increasing value.
Compute the gaps between consecutive values of the sorted 𝑓𝑖
and order them by decreasing value.
Break ties according to the largest scalarization step trust-region radius,
corresponding to the points associated with the gaps.

For all gaps, starting from the largest one
2. Compute the middle point
If for at least one point of the pair associated with the gap, the corresponding
trust-region radius associated with the scalarization step satisfies Δ𝑠𝑐 ≥ Δ𝑚𝑖𝑛𝑠𝑐 then:

Compute 𝑥𝑚𝑖𝑑𝑑𝑙𝑒 , the middle point of the pair in the variable space.
Else, continue to the next gap.

3. Test the middle point
If 𝑥𝑚𝑖𝑑𝑑𝑙𝑒 ∈ 𝐿, with the corresponding trust-region radius associated to the
scalarization step satisfying Δ𝑠𝑐 ≥ Δ𝑚𝑖𝑛𝑠𝑐 then:

Set 𝑥 𝑖 ,𝑘𝑠𝑐 = 𝑥𝑚𝑖𝑑𝑑𝑙𝑒 and return.
Else if 𝑥𝑚𝑖𝑑𝑑𝑙𝑒 ∉ 𝐿 and is nondominated then:

Set 𝑥 𝑖 ,𝑘𝑠𝑐 = 𝑥𝑚𝑖𝑑𝑑𝑙𝑒 ,
add it to the list by setting 𝐿 = 𝐿 ∪ {(𝑥 𝑖 ,𝑘𝑠𝑐 , 𝐹(𝑥 𝑖 ,𝑘𝑠𝑐 ),Δ𝑖𝑛𝑖𝑡𝑒𝑝 ,Δ𝑖𝑛𝑖𝑡𝑠𝑐 )},
delete the dominated points from the list, and return.

Else, continue to the next gap.
End For

5.2 Convergence analysis

To analyze the theoretical behavior of MOTR, we will consider that no stopping criteria
are defined. In particular, Δ𝑚𝑖𝑛𝑒𝑝 = Δ𝑚𝑖𝑛𝑠𝑐 = 0. Convergence will be established for linked
sequences of points {𝑥𝑘}𝑘∈𝐾 generated by the algorithm.

Definition 5.1. Consider {𝐿𝑘}𝑘∈N as the sequence of sets of nondominated points generated by
Algorithm 4. A linked sequence is a sequence {𝑥𝑘}𝑘∈𝐾 , where𝐾 ⊆ N denotes the indexes of the points
belonging to the linked sequence, such that for any 𝑘 ∈ 𝐾, the element (𝑥𝑘 , 𝐹(𝑥𝑘),Δ𝑘𝑒𝑝 ,Δ𝑘𝑠𝑐) ∈ 𝐿𝑘
is generated from the element (𝑥𝑘−1 , 𝐹(𝑥𝑘−1),Δ𝑘−1

𝑒𝑝 ,Δ
𝑘−1
𝑠𝑐 ) ∈ 𝐿𝑘−1.

An initial point of a linked sequence can be one of the following:

• A point in the initial list, provided by the user;
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• Middle points generated by MOTR in the middle point step, such that these points
are not currently in the list and are added to the list by the algorithm.

Every time that a new middle point is generated a linked sequence is initialized. We
are going to establish that every linked sequence generated by MOTR converges to a Pareto
critical point, a necessary condition for being a solution of Problem (5.1), formalized in
Definition 4.5.

The following lemma provides a criticality measure for multiobjective optimization.
This lemma was also presented in Section 4.2. Due to its importance in our theoretical
analysis and to maintain the coherence of this chapter, we present it again here.

Lemma 5.1. Let 𝑓𝑖 : R𝑛 → R be continuously differentiable functions, for 𝑖 ∈ {1, ..., 𝑞}. Define

𝜔(𝑥) = − min
∥𝑑∥≤1

max
𝑖=1,...,𝑞

∇ 𝑓𝑖(𝑥)⊤𝑑. (5.5)

The following statements hold:

• The mapping 𝑥 ↦→ 𝜔(𝑥) is continuous;

• 𝜔(𝑥) ≥ 0 for all 𝑥 ∈ R𝑛 ;

• A point 𝑥∗ ∈ R𝑛 is Pareto critical if and only if 𝜔(𝑥∗) = 0.

Under reasonable assumptions, we are going to establish that for every linked sequence
{𝑥𝑘}𝑘∈𝐾 generated by MOTR,

lim
𝑘→+∞ ; 𝑘∈𝐾

𝜔(𝑥𝑘) = 0.

For each 𝑖 ∈ {1, ..., 𝑞}, we assume that the objective function component 𝑓𝑖 is lower
boundedandtwice continuously differentiable. Consequently, function𝜙(𝑥) = max𝑖=1,...,𝑞 𝑓𝑖(𝑥)
is also lower bounded.

Assumption 5.1. For 𝑖 ∈ {1, ..., 𝑞}, the Hessian matrix of the objective function component 𝑓𝑖 is
uniformly bounded, meaning that there is a constant 𝜅ℎ > 0 such that

∥∇2 𝑓𝑖(𝑥)∥ ≤ 𝜅ℎ

for all 𝑥 ∈ R𝑛 and for all 𝑖 ∈ {1, ..., 𝑞}.

Assumption 5.1 implies that ∇ 𝑓𝑖 is Lipschitz continuous, for each 𝑖 ∈ {1, ..., 𝑞}. From
it, we can deduce that function 𝜔, defined by (5.5), is uniformly continuous [34].

At each iteration 𝑘, for 𝑖 ∈ {1, ..., 𝑞}, model 𝑚𝑘
𝑖
, centered at 𝑥𝑘 , is a quadratic Taylor

model, defined by (5.3), again twice continuously differentiable and satisfying:

𝑚𝑘
𝑖 (𝑥

𝑘) = 𝑓𝑖(𝑥𝑘),

∇𝑚𝑘
𝑖 (𝑥

𝑘) = ∇ 𝑓𝑖(𝑥𝑘),

∇2𝑚𝑘
𝑖 (𝑥

𝑘) = ∇2 𝑓𝑖(𝑥𝑘).
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In this chapter, 𝐵𝑘 denotes the current iteration ball, defined as follows

𝐵𝑘 = 𝐵(𝑥𝑘 ,Δ𝑘) =
{
𝑥 ∈ R𝑛 | ∥𝑥 − 𝑥𝑘 ∥ ≤ Δ𝑘

}
,

where 𝑥𝑘 is the current iterate and Δ𝑘 represents the current trust-region radius.
Assumption 5.1 allows us to establish the well-known error bounds for Taylor models.

Lemma 5.2. Let Assumption 5.1 hold. At every iteration 𝑘, the model 𝑚𝑘
𝑖

is valid for 𝑓𝑖 in 𝐵𝑘 , for
all 𝑖 ∈ {1, ..., 𝑞}, that is, there exists a constant 𝜅 𝑓 𝑚 > 0 such that

| 𝑓𝑖(𝑥) − 𝑚𝑘
𝑖 (𝑥)| ≤ 𝜅 𝑓 𝑚Δ

2
𝑘

holds for all 𝑥 ∈ 𝐵𝑘 .

Function 𝜔, defined by equation (5.5), can be generalized to models through

𝜔𝑚𝑘 (𝑥) = − min
∥𝑑∥≤1

max
𝑖=1,...,𝑞

∇𝑚𝑘
𝑖 (𝑥)

⊤𝑑.

The use of quadratic Taylor models guarantees that 𝜔𝑚𝑘 (𝑥𝑘) = 𝜔(𝑥𝑘), at each iteration
𝑘, where 𝑥𝑘 represents the point where the model was built. This equality ensures that
when the iteration point 𝑥𝑘 is Pareto critical or close to criticality for the model, the same
applies to the objective function.

To prove convergence, model minimization should provide a sufficient decrease at
each iteration. Following [34], for the scalarization step, we quantify the best model
reduction obtained along a direction belonging to 𝒟(𝑥), the set of directions associated
with the solution of (5.5), within the trust-region 𝐵𝑘 . For 𝑖 ∈ {1, ..., 𝑞}, let 𝑑∗

𝑘
∈ 𝒟(𝑥 𝑖 ,𝑘𝑠𝑐 ) and

compute 𝛼𝑘 by solving

min
𝛼≥0

{𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘) : 𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘 ∈ 𝐵𝑘}. (5.6)

The Pareto-Cauchy point is defined as

𝑥𝐶
𝑘
= 𝑥 𝑖 ,𝑘𝑠𝑐 + 𝑑𝐶

𝑘
, (5.7)

where 𝑑𝐶
𝑘

:= 𝛼𝑘𝑑∗𝑘 and 𝐵𝑘 = 𝐵(𝑥 𝑖 ,𝑘𝑠𝑐 ,Δ𝑖 ,𝑘𝑠𝑐 ).

Lemma 5.3. Let Assumption 5.1 hold. For 𝑖 ∈ {1, ..., 𝑞} and 𝑘 ∈ N, the Pareto-Cauchy point
𝑥𝐶
𝑘
= 𝑥 𝑖 ,𝑘𝑠𝑐 + 𝑑𝐶

𝑘
, defined by (5.7), satisfies

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥𝐶𝑘 ) ≥
1
2𝜔(𝑥

𝑖 ,𝑘
𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
. (5.8)

Proof. Since 𝑑∗
𝑘
∈ 𝒟(𝑥 𝑖 ,𝑘𝑠𝑐 ), we have ∥𝑑∗

𝑘
∥ ≤ 1, which implies that, for all 𝛼 ∈ [0,Δ𝑖 ,𝑘𝑠𝑐 ],

𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗
𝑘
∈ 𝐵𝑘 . Problem (5.6) has the same solution as

max
0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘)}.
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On the other hand, for all 𝛼 ≥ 0, we have

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘) = max
𝑗=1,...,𝑞

𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘
𝑠𝑐 ) − max

𝑗=1,...,𝑞
𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘
𝑠𝑐 + 𝛼𝑑∗𝑘)

≥ − max
𝑗=1,...,𝑞

𝛼∇𝑚𝑘
𝑗

⊤(𝑥 𝑖 ,𝑘𝑠𝑐 )𝑑∗𝑘 − max
𝑗=1,...,𝑞

1
2𝛼

2𝑑∗
⊤
𝑘 ∇2𝑚𝑘

𝑗 (𝑥
𝑖 ,𝑘
𝑠𝑐 )𝑑∗𝑘 .

According to (5.5), Assumption 5.1, ∥𝑑∗
𝑘
∥ ≤ 1, and the Cauchy-Schwarz inequality we have

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘) ≥ 𝛼𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) −
1
2𝛼

2𝜅ℎ .

Then, it is clear that

max
0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘)} ≥ max
0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{
𝛼𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2𝛼

2𝜅ℎ

}
.

In other words,

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝑑𝐶
𝑘
) ≥ max

0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{
𝛼𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2𝛼

2𝜅ℎ

}
.

Let us consider the concave function 𝑔, defined by 𝑔(𝛼) = 𝛼𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) −
1
2𝛼

2𝜅ℎ , with un-

constrained maximizer 𝛼∗ =
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

≥ 0, corresponding to the optimum value 𝑔(𝛼∗) =

1
2
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )2

𝜅ℎ
≥ 0. Two cases can occur:

• If 0 ≤ 𝛼∗ ≤ Δ
𝑖 ,𝑘
𝑠𝑐 then max

0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{
𝛼𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2𝛼

2𝜅ℎ

}
=

1
2
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )2

𝜅ℎ
;

• If 𝛼∗ > Δ
𝑖 ,𝑘
𝑠𝑐 then max

0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{
𝛼𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2𝛼

2𝜅ℎ

}
= Δ

𝑖 ,𝑘
𝑠𝑐 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2 (Δ

𝑖 ,𝑘
𝑠𝑐 )2𝜅ℎ .

In this last case, since 𝛼∗ =
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

> Δ
𝑖 ,𝑘
𝑠𝑐 , we have Δ𝑖 ,𝑘𝑠𝑐 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2 (Δ

𝑖 ,𝑘
𝑠𝑐 )2𝜅ℎ ≥ 1

2Δ
𝑖 ,𝑘
𝑠𝑐 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ),

resulting in

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥𝐶𝑘 ) ≥ min

{
1
2
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )2

𝜅ℎ
,
1
2Δ

𝑖 ,𝑘
𝑠𝑐 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )

}
=

1
2𝜔(𝑥

𝑖 ,𝑘
𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
.

□

Let (𝑥 𝑖 ,𝑘∗𝑠𝑐 , 𝑡
∗) be the solution of Problem (5.4). The following lemma states an important

property of 𝑡∗.

Lemma 5.4. At each iteration 𝑘 and for each 𝑖 ∈ {1, ..., 𝑞}, 𝑥 𝑖 ,𝑘𝑠𝑐 is not a Pareto critical point for
min𝑥∈𝐵𝑘 (𝑚𝑘

1 (𝑥), ..., 𝑚𝑘
𝑞 (𝑥)), if and only if 𝑡∗ < 0.
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Proof. Since (𝑥 𝑖 ,𝑘𝑠𝑐 , 0) is feasible for Problem (5.4), 𝑡∗ ≤ 0. It is clear that 𝑥 𝑖 ,𝑘𝑠𝑐 is not a Pareto
critical point when 𝑡∗ < 0.

Now, assume that 𝑥 𝑖 ,𝑘𝑠𝑐 is not a Pareto critical point. Then, it is not a weakly efficient point,
meaning that there exists a point 𝑥′ ∈ 𝐵𝑘 such that for all 𝑗 ∈ {1, ..., 𝑞}, 𝑚𝑘

𝑗
(𝑥′) < 𝑚𝑘

𝑗
(𝑥 𝑖 ,𝑘𝑠𝑐 ).

So,
𝑚𝑘
𝑗 (𝑥

′) − 𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘
𝑠𝑐 ) < 0, ∀𝑗 ∈ {1, ..., 𝑞}.

Considering 𝑡′ = max𝑗=1,...,𝑞(𝑚𝑘
𝑗
(𝑥′) − 𝑚𝑘

𝑗
(𝑥 𝑖 ,𝑘𝑠𝑐 )) , we have

𝑚𝑘
𝑗 (𝑥

′) − 𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘
𝑠𝑐 ) ≤ 𝑡

′
< 0, ∀𝑗 ∈ {1, ..., 𝑞}.

Hence, 𝑡∗ should be strictly negative because (𝑥′
, 𝑡

′) is feasible for Problem (5.4). □

Now, we can obtain a more precise understanding of the descent that occurs for 𝜙𝑘𝑚 .

Lemma 5.5. Let Assumption 5.1 hold. At each iteration 𝑘 and for each 𝑖 ∈ {1, ..., 𝑞}, there exists
𝑗 ∈ N such that

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥
(
1
2

) 𝑗
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
,

where (𝑥 𝑖 ,𝑘∗𝑠𝑐 , 𝑡
∗) is the solution of Problem (5.4).

Proof. Two different cases need to be analyzed. Assume that 𝑥 𝑖 ,𝑘𝑠𝑐 is not Pareto critical.
According to Lemma 5.4, 𝑡∗ is strictly negative. So, for each 𝑙 ∈ {1, ..., 𝑞}, we have

𝑚𝑘
𝑙
(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝑚𝑘

𝑙
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ −𝑡∗ > 0.

By considering 𝜙𝑘𝑚(𝑥) = max𝑙=1,...,𝑞 𝑚
𝑘
𝑙
(𝑥), it results

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝑚𝑘
𝑙
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 𝑚𝑘

𝑙
(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝑚𝑘

𝑙
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ), for all 𝑙 ∈ {1, ..., 𝑞}.

Let 𝑗 be the index such that 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) = 𝑚𝑘
𝑗
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ). Then

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘
𝑠𝑐 ) − 𝑚𝑘

𝑗 (𝑥
𝑖 ,𝑘∗
𝑠𝑐 ).

Hence,
𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ −𝑡∗ > 0. (5.9)

Since 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥𝐶𝑘 ) ≥ 0, there must exist 𝑗 ∈ N such that

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥
(
1
2

) 𝑗−1
(𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥𝐶𝑘 )).

Hence, considering (5.8), it implies

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥
(
1
2

) 𝑗
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
.

If 𝑥 𝑖 ,𝑘𝑠𝑐 is Pareto critical, then 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) = 0. So, the right side of this inequality is equal to
zero, and since 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 0, the inequality holds. □
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The last three lemmas motivate us to consider the following assumption, stating that,
at each scalarization step, a sufficient reduction in the model space is ensured.

Assumption 5.2. There is a constant 𝜅𝜙 ∈ (0, 1) such that at each iteration 𝑘, where the
scalarization step is performed, for all 𝑖 ∈ {1, ..., 𝑞}, we have

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 𝜅𝜙 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
. (5.10)

As long as 𝑥 𝑖 ,𝑘𝑠𝑐 is not Pareto critical, the left side of (5.10) is strictly positive.
The following lemma plays a key role in establishing convergence and provides an

error bound for 𝜙𝑘𝑚 as an approximation of 𝜙.

Lemma 5.6. Let Assumption 5.1 hold. At every iteration 𝑘, the model 𝜙𝑘𝑚 is valid for 𝜙 at 𝑥 𝑖 ,𝑘∗𝑠𝑐 ,
for all 𝑖 ∈ {1, ..., 𝑞}, that is

|𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 )| ≤ 𝜅 𝑓 𝑚(Δ𝑖 ,𝑘𝑠𝑐 )2 ,

where 𝜅 𝑓 𝑚 is defined in Lemma 5.2.

Proof. Two situations should be analyzed. Assume that 𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ). Consider
𝑗 ∈ {1, ..., 𝑞} such that 𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) = 𝑓𝑗(𝑥 𝑖 ,𝑘∗𝑠𝑐 ). Using Lemma 5.2 and the fact that 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥
𝑚𝑘
𝑗
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ), we have

|𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 )| = 𝑓𝑗(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≤ 𝑓𝑗(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) − 𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘∗
𝑠𝑐 ) ≤ 𝜅 𝑓 𝑚(Δ𝑖 ,𝑘𝑠𝑐 )2.

Assume now that 𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) < 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ). Consider 𝑗 ∈ {1, ..., 𝑞} such that 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) =
𝑚𝑘
𝑗
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ). Again, Lemma 5.2 and the fact that 𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 𝑓𝑗(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) allow us to conclude that

|𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 )| = 𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘∗
𝑠𝑐 ) − 𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≤ 𝑚𝑘

𝑗 (𝑥
𝑖 ,𝑘∗
𝑠𝑐 ) − 𝑓𝑗(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≤ 𝜅 𝑓 𝑚(Δ𝑖 ,𝑘𝑠𝑐 )2.

□

In the remaining of the analysis, we categorize the successful scalarization step itera-
tions:

• The set of indexes of successful scalarization step iterations is denoted by

𝑆 = {(𝑘, 𝑖), 𝑘 ∈ N, 𝑖 ∈ {1, ..., 𝑞} : 𝑘 is a scalarization step iteration and 𝜌𝑖 ,𝑘𝑠𝑐 ≥ 𝜂1
𝑠𝑐}.

• The set of indexes of very successful scalarization step iterations corresponds to

𝑉 = {(𝑘, 𝑖), 𝑘 ∈ N, 𝑖 ∈ {1, ..., 𝑞} : 𝑘 is a scalarization step iteration and 𝜌𝑖 ,𝑘𝑠𝑐 ≥ 𝜂2
𝑠𝑐}.

For each linked sequence of points {𝑥𝑘}𝑘∈𝐾 generated by MOTR, one of the two different
scenarios will occur, as outlined below:
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1. There exists 𝑖 ∈ {1, ..., 𝑞}, such that for each 𝑘 ∈ N,

Δ
𝑖 ,𝑘
𝑒𝑝 > 0.

2. For each 𝑖 ∈ {1, ..., 𝑞}, there exists 𝑘𝑖 ∈ N, such that for all 𝑘 > 𝑘𝑖 ,

Δ
𝑖 ,𝑘
𝑒𝑝 = 0.

Remark 5.1. In the first scenario, the linked sequence, updated at the extreme point step, matches
the set of iterates generated by a single-objective trust-region method, when applied to the objective
function component 𝑓𝑖 . Stationarity is then guaranteed for 𝑓𝑖 and the corresponding limit point is
a Pareto critical point. The proof is similar to the single-objective trust-region case (see [7, 20, 27]).

Remark 5.2. In the second scenario, define 𝑘𝑒𝑝 = max{𝑘𝑖 | 𝑖 = 1, ..., 𝑞}. For 𝑘 > 𝑘𝑒𝑝 , it holds
Δ
𝑖 ,𝑘
𝑒𝑝 = 0, ∀𝑖 = 1, ..., 𝑞. Therefore, for 𝑘 > 𝑘𝑒𝑝 , all points of the linked sequence have been generated

in the scalarization step. The remaining analysis focuses on this situation.

The following two lemmas clarify the behavior of MOTR when the current point is not
Pareto critical.

Lemma 5.7. Let Assumptions 5.1 and 5.2 hold. Suppose that at the scalarization step iteration 𝑘,
for 𝑖 ∈ {1, ..., 𝑞}, 𝑥 𝑖 ,𝑘𝑠𝑐 is not a Pareto critical point and

Δ
𝑖 ,𝑘
𝑠𝑐 ≤

𝜅𝜙𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )(1 − 𝜂2
𝑠𝑐)

𝜅𝑣
, (5.11)

with 𝜅𝑣 = max{𝜅 𝑓 𝑚 , 𝜅ℎ}. Then the pair (𝑘, 𝑖) corresponds to a very successful scalarization step
iteration, and Δ

𝑖 ,𝑘∗
𝑠𝑐 > Δ

𝑖 ,𝑘
𝑠𝑐 .

Proof. According to Lemma 5.1, 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) > 0, because 𝑥 𝑖 ,𝑘𝑠𝑐 is not a Pareto critical point. On
the other hand, 𝜅𝜙 , 𝜂2

𝑠𝑐 ∈ (0, 1). Thus, 𝜅𝜙(1 − 𝜂2
𝑠𝑐) ∈ (0, 1) and

Δ
𝑖 ,𝑘
𝑠𝑐 ≤

𝜅𝜙𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )(1 − 𝜂2
𝑠𝑐)

𝜅𝑣
<

𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅𝑣

.

From Assumption 5.2, we have

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 𝜅𝜙𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
= 𝜅𝜙𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )Δ𝑖 ,𝑘𝑠𝑐 .

Considering this inequality, the equation 𝜌𝑖 ,𝑘𝑠𝑐 =
𝜙(𝑥 𝑖 ,𝑘𝑠𝑐 )−𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 )

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 )−𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 )
, Lemma 5.6, and (5.11), we

have

|𝜌𝑖 ,𝑘𝑠𝑐 − 1| =
����� 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) − 𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 )
𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 )

����� ≤ 𝜅 𝑓 𝑚

𝜅𝜙𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
Δ
𝑖 ,𝑘
𝑠𝑐 ≤ 𝜅𝑣

𝜅𝜙𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
Δ
𝑖 ,𝑘
𝑠𝑐 ≤ (1 − 𝜂2

𝑠𝑐).

Consequently, 𝜌𝑖 ,𝑘𝑠𝑐 ≥ 𝜂2
𝑠𝑐 . So, the pair (𝑘, 𝑖) corresponds to a very successful scalariza-

tion step iteration and Δ
𝑖 ,𝑘∗
𝑠𝑐 > Δ

𝑖 ,𝑘
𝑠𝑐 . □
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The following lemma states that, as long as 𝑥 𝑖 ,𝑘𝑠𝑐 is not Pareto critical, the scalarization
step trust-region radius can not be too small. In fact, it should be lower bounded by a
strictly positive constant.

Lemma 5.8. Let Assumptions 5.1 and 5.2 hold, and consider the constant 𝜎 > 0. If 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) ≥ 𝜎

holds for the pair (𝑘, 𝑖), with 𝑘 a scalarization step iteration and 𝑖 ∈ {1, ..., 𝑞}, then there is a
constant Δ > 0, depending on 𝜎, such that Δ𝑖 ,𝑘𝑠𝑐 ≥ Δ.

Proof. Assume, as a mean of contradiction, that for each Δ > 0 there is a pair (𝑘, 𝑖), with 𝑘
a scalarization step iteration and 𝑖 ∈ {1, ..., 𝑞}, satisfying 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) ≥ 𝜎 > 0, such that

Δ
𝑖 ,𝑘
𝑠𝑐 < Δ.

In particular, consider

Δ =
𝜇1𝜎𝜅𝜙(1 − 𝜂2

𝑠𝑐)
𝜅𝑣

,

with 𝜅𝑣 = max{𝜅 𝑓 𝑚 , 𝜅ℎ}. Let (𝑘, 𝑖) be the first pair such that 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) ≥ 𝜎 > 0 and

Δ
𝑖 ,𝑘

∗

𝑠𝑐 <
𝜇1𝜎𝜅𝜙(1 − 𝜂2

𝑠𝑐)
𝜅𝑣

.

Then, it holds Δ𝑖 ,𝑘
∗

𝑠𝑐 < Δ
𝑖 ,𝑘
𝑠𝑐 . Thus,

Δ
𝑖 ,𝑘
𝑠𝑐 =

Δ
𝑖 ,𝑘

∗

𝑠𝑐

𝜇1
<

𝜎𝜅𝜙(1 − 𝜂2
𝑠𝑐)

𝜅𝑣
≤

𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )𝜅𝜙(1 − 𝜂2
𝑠𝑐)

𝜅𝑣
.

Since point 𝑥 𝑖 ,𝑘𝑠𝑐 is not Pareto critical, according to Lemma 5.7, the pair (𝑘, 𝑖) corresponds to
a very successful scalarization step iteration, and Δ

𝑖 ,𝑘
∗

𝑠𝑐 > Δ
𝑖 ,𝑘
𝑠𝑐 . This contradicts Δ𝑖 ,𝑘

∗

𝑠𝑐 < Δ
𝑖 ,𝑘
𝑠𝑐

and the initial assumption. □

Considering Remarks 5.1 and 5.2, the following lemma states the first convergence
result for linked sequences of MOTR, having only a finite number of successful iterations
performed at the scalarization step.

Lemma 5.9. Suppose that Assumptions 5.1 and 5.2 hold. Let {𝑥𝑘}𝑘∈𝐾 be a linked sequence
generated by MOTR at the scalarization step, with finitely many successful iterations at the
scalarization step. Then this linked sequence converges to a Pareto critical point.

Proof. Assume that 𝑥𝑘0+𝑙 = 𝑥∗ for all 𝑙 ∈ N, where 𝑘0 = max{𝑘𝑠 , 𝑘𝑒𝑝}, 𝑘𝑠 is the index of
the last successful scalarization step iteration and 𝑘𝑒𝑝 is defined as in Remark 5.2. So,
Δ
𝑘0+𝑙
𝑠𝑐 converges to zero, because in the scalarization step all iterations are unsuccessful for

sufficiently large 𝑙.
Suppose that 𝑥∗ is not a Pareto critical point. According to Lemma 5.7, there must

be a very successful scalarization step iteration, with an index larger than 𝑘0, which is
a contradiction because all iterations after 𝑘0 are unsuccessful. Therefore, 𝑥∗ is a Pareto
critical point. □
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The following lemma clarifies the behavior of MOTR when a linked sequence has an
infinite number of distinct points generated at the scalarization step.

Lemma 5.10. Suppose that Assumptions 5.1 and 5.2 hold. Let {𝑥𝑘}𝑘∈𝐾 be a linked sequence of
points generated by MOTR, with infinitely many successful iterations at the scalarization step.
Then

lim inf
𝑘→+∞ ; 𝑘∈𝐾

𝜔(𝑥𝑘) = 0.

Proof. Suppose that lim inf
𝑘→+∞ ; 𝑘∈𝐾

𝜔(𝑥𝑘) ≠ 0. So, there must exist a constant 𝜖 > 0 such that

for all 𝑘 ∈ 𝐾,
𝜔(𝑥𝑘) ≥ 𝜖.

Lemma 5.8 guarantees the existence of Δ > 0 such that Δ𝑘𝑠𝑐 ≥ Δ, for all 𝑘 ∈ 𝐾.
Consider 𝑆, the set of indexes of successful scalarization step iterations, 𝑘 ∈ 𝑆∩𝐾, and

𝑘 > 𝑘𝑒𝑝𝑠 , where 𝑘𝑒𝑝𝑠 is the index of the first successful scalarization step iteration after 𝑘𝑒𝑝 ,
and 𝑘𝑒𝑝 is defined as in Remark 5.2. Thus, 𝜌𝑘𝑠𝑐 ≥ 𝜂1

𝑠𝑐 . According to Assumption 5.2, we
have

𝜙(𝑥𝑘) − 𝜙(𝑥𝑘+1) ≥ 𝜂1
𝑠𝑐(𝜙𝑘𝑚(𝑥𝑘) − 𝜙𝑘𝑚(𝑥𝑘+1))

≥ 𝜂1
𝑠𝑐𝜅𝜙𝜔(𝑥𝑘)min

{
𝜔(𝑥𝑘)
𝜅ℎ

,Δ𝑘𝑠𝑐

}
≥ 𝜂1

𝑠𝑐𝜅𝜙𝜖 min
{
𝜖
𝜅ℎ
,Δ

}
.

Summing over all successful iterations at the scalarization step, from 𝑘𝑒𝑝𝑠 to 𝑘 results
in

𝜙(𝑥𝑘𝑒𝑝𝑠 ) − 𝜙(𝑥𝑘+1) =
𝑘∑

𝑖=𝑘𝑒𝑝𝑠 ,𝑖∈𝑆∩𝐾
𝜙(𝑥 𝑖) − 𝜙(𝑥 𝑖+1)

≥ 𝜎𝑘 𝜂
1
𝑠𝑐 𝜅𝜙 𝜖 min

{
𝜖
𝜅ℎ
,Δ

}
,

where 𝜎𝑘 represents the number of successful scalarization step iterations in the linked
sequence from 𝑘𝑒𝑝𝑠 to 𝑘. It is clear that lim

𝑘→+∞ ; 𝑘∈𝐾
𝜎𝑘 = +∞, because there are infinitely

many such iterations. Thus, 𝜙(𝑥𝑘𝑒𝑝 ) − 𝜙(𝑥𝑘+1) is unbounded. So, 𝜙(𝑥) can not be bounded
from below and this is a contradiction. Therefore, lim inf

𝑘→+∞ ; 𝑘∈𝐾
𝜔(𝑥𝑘) = 0. □

We are now ready to prove the main result, for the linked sequences generated by
MOTR.

Theorem 5.1. Let Assumptions 5.1 and 5.2 hold. For every linked sequence of points {𝑥𝑘}𝑘∈𝐾
generated by MOTR, we have

lim
𝑘→+∞ ; 𝑘∈𝐾

𝜔(𝑥𝑘) = 0.
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Proof. Let {𝑥𝑘}𝑘∈𝐾 be a linked sequence generated by MOTR. If there exists 𝑖 ∈ {1, ..., 𝑞},
such that for each 𝑘 ∈ N,Δ𝑖 ,𝑘𝑒𝑝 > 0 or if for each 𝑖 ∈ {1, ..., 𝑞}, there exists 𝑘𝑖 ∈ N, such
that for all 𝑘 > 𝑘𝑖 ,Δ

𝑖 ,𝑘
𝑒𝑝 = 0, but there are only finitely many successful iterations at the

scalarization step, Remarks 5.1, 5.2, and Lemma 5.9 guarantee lim
𝑘→+∞ ; 𝑘∈𝐾

𝜔(𝑥𝑘) = 0 by
Lemma 5.1.

Now, assume that for all 𝑘 > 𝑘𝑖 ,Δ
𝑖 ,𝑘
𝑒𝑝 = 0 and there is an infinite number of success-

ful scalarization step iterations. Suppose that there exists a subsequence of successful
scalarization step iterations, indexed by {𝑡 𝑗 > 𝑘𝑒𝑝} ⊂ 𝑆 ∩ 𝐾, such that

𝜔(𝑥𝑡 𝑗 ) ≥ 2𝜖 > 0, (5.12)

for some 𝜖 > 0 and for all 𝑗, where 𝑘𝑒𝑝 is defined as in Remark 5.2.
From Lemma 5.10, for each 𝑡 𝑗 , there exists a first successful scalarization step iteration

𝑙 𝑗 > 𝑡 𝑗 such that 𝜔(𝑥 𝑙𝑗 ) < 𝜖. Thus, there exists another subsequence of 𝑆 ∩ 𝐾, indexed by
{𝑙 𝑗}, such that

𝜔(𝑥𝑘) ≥ 𝜖 for 𝑡 𝑗 ≤ 𝑘 < 𝑙 𝑗 and 𝜔(𝑥 𝑙𝑗 ) < 𝜖. (5.13)

Consider the successful iterates whose indexes are in

𝒦 = {𝑘 ∈ 𝑆 ∩ 𝐾 | ∃𝑗 ∈ N : 𝑡 𝑗 ≤ 𝑘 < 𝑙 𝑗},

where 𝑡 𝑗 and 𝑙 𝑗 belong to the two subsequences defined above.
Assumption 5.2, the fact that 𝒦 ⊂ 𝑆 ∩ 𝐾, and inequalities (5.13) guarantee that, for

𝑘 ∈ 𝒦 ,

𝜙(𝑥𝑘) − 𝜙(𝑥𝑘+1) ≥ 𝜂1
𝑠𝑐(𝜙𝑘𝑚(𝑥𝑘) − 𝜙𝑘𝑚(𝑥𝑘+1))

≥ 𝜂1
𝑠𝑐𝜅𝜙𝜔(𝑥𝑘)min

{
𝜔(𝑥𝑘)
𝜅ℎ

,Δ𝑘𝑠𝑐

}
≥ 𝜂1

𝑠𝑐𝜅𝜙𝜖 min
{
𝜖
𝜅ℎ
,Δ𝑘𝑠𝑐

}
.

(5.14)

The sequence {𝜙(𝑥𝑘)}𝑘∈𝐾 is convergent, since it is monotonically decreasing and
bounded from below. Thereby, lim

𝑘→+∞ ; 𝑘∈𝐾

(
𝜙(𝑥𝑘) − 𝜙(𝑥𝑘+1)

)
= 0. Consequently, consid-

ering the minimum part in the last term of (5.14), for 𝑘 ∈ 𝒦 sufficiently large, it implies
that

Δ𝑘𝑠𝑐 ≤
1

𝜂1
𝑠𝑐𝜅𝜙𝜖

(𝜙(𝑥𝑘) − 𝜙(𝑥𝑘+1)).

Therefore, for 𝑗 sufficiently large, it holds that

∥𝑥𝑡 𝑗 − 𝑥 𝑙𝑗 ∥ ≤
𝑙𝑗−1∑

𝑖=𝑡 𝑗 ,𝑖∈𝒦
∥𝑥 𝑖 − 𝑥 𝑖+1∥

≤
𝑙𝑗−1∑

𝑖=𝑡 𝑗 ,𝑖∈𝒦
Δ𝑖𝑠𝑐

≤ 1
𝜂1
𝑠𝑐𝜅𝜙𝜖

(𝜙(𝑥𝑡 𝑗 ) − 𝜙(𝑥 𝑙𝑗 )).
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Again, the convergence of {𝜙(𝑥𝑘)}𝑘∈𝐾 implies

lim
𝑗→+∞

∥𝑥𝑡 𝑗 − 𝑥 𝑙𝑗 ∥ = 0.

Assumption 5.1 and the uniform continuity of 𝜔 allow us to conclude that

lim
𝑗→+∞

|𝜔(𝑥𝑡 𝑗 ) − 𝜔(𝑥 𝑙𝑗 )| = 0,

contradicting the fact that |𝜔(𝑥𝑡 𝑗 )−𝜔(𝑥 𝑙𝑗 )| ≥ 𝜖, a consequence of the definition of sequences
{𝑡 𝑗} and {𝑙 𝑗}, in (5.12) and (5.13).

So, no subsequence of successful iterations satisfying (5.12) can exist, and subsequently

lim
𝑘→+∞ ; 𝑘∈𝐾

𝜔(𝑥𝑘) = 0.

□

5.3 Numerical results

The numerical experiments were performed with two main goals. The first was to illustrate
the importance of each of the key algorithmic features of MOTR, namely the extreme point
step, the scalarization step, and the middle point strategy, corresponding to Algorithms 5, 6,
and 7, respectively.

To achieve this purpose, three different versions of MOTR were implemented, with
each version omitting one of the aforementioned strategies:

• MOTRep: MOTR without the extreme point step;

• MOTRsc: MOTR without the scalarization step;

• MOTRmiddle: MOTR using a different strategy than the one described in Algo-
rithm 7 to select the point where to solve the scalarization problem.

In the MOTRmiddle algorithm, instead of using the middle point step, a different
strategy is employed to select a point from the current list of nondominated points for
solving the scalarization problem. By this strategy, all points are first sorted according to
the value of the objective function component under analysis. Average distances are then
computed for each point by considering the distances to its two closest neighboring points
from the sorted set. The average distances of the first and last points correspond to the
distances of these points to the next or previous points, respectively. The selected point
is the one with the largest average distance, given that its scalarization step trust-region
radius is greater than or equal to the minimum allowed value.

The second goal of the numerical section was to compare the performance of MOTR
against other derivative-based multiobjective optimization solvers that intrinsically at-
tempt to generate approximations to the complete Pareto front of a multiobjective optimiza-
tion problem. With this purpose, the Multiobjective Sequential Quadratic Programming
(MOSQP) algorithm [19] was selected.

57



CHAPTER 5. A GENERAL FRAMEWORK FOR MULTIOBJECTIVE
OPTIMIZATION

All codes were implemented in MATLAB (version R2021b was considered). The
minimization subproblems of MOTR, defined at the extreme point and scalarization steps,
were solved with the MATLAB function fmincon.m.

MOTR was initially designed and analyzed for unconstrained multiobjective optimiza-
tion. However, it can be easily adapted to incorporate bound constraints, by including
these constraints in the subproblems to be solved. Notice that for convex feasible regions,
like the case of bound constraints, the middle point, computed by using Algorithm 7, will
remain feasible.

Test problems

As a test set, we utilized 54 twice continuously differentiable bound constrained multiob-
jective optimization problems, available at

https://docentes.fct.unl.pt/algb/pages/problems-collections,

encompassing a range of variables from 1 to 30, involving 2 or 3 objective function
components. Table 5.1 contains a comprehensive list of the problems along with their
respective dimensions.

Table 5.1: The set of problems considered in the numerical experiments. For each problem,
𝑛 represents the number of variables and 𝑞 is the number of components of the objective
function.

Problem 𝑛 𝑞 Problem 𝑛 𝑞 Problem 𝑛 𝑞

BK1 2 2 CL1 4 2 Deb41 2 2
Deb513 2 2 Deb521b 2 2 DG01 1 2
DPAM1 10 2 DTLZ1 7 3 DTLZ1n2 2 2
DTLZ2 12 3 DTLZ2n2 2 2 DTLZ3 12 3
DTLZ3n2 2 2 DTLZ4 12 3 DTLZ4n2 2 2
DTLZ6 22 3 DTLZ6n2 2 2 ex005 2 2
Far1 2 2 Fonseca 2 2 IKK1 2 3
IM1 2 2 Jin1 2 2 Jin3 2 2
L2ZDT2 30 2 L3ZDT2 30 2 lovison1 2 2
lovison2 2 2 lovison3 2 2 lovison4 2 2
lovison5 3 3 lovison6 3 3 LRS1 2 2
MHHM1 1 3 MHHM2 2 3 MLF1 1 2
MLF2 2 2 MOP1 1 2 MOP2 4 2
MOP3 2 2 MOP5 2 3 MOP6 2 2
MOP7 2 3 SK1 1 2 SK2 4 2
SP1 2 2 SSFYY1 2 2 SSFYY2 1 2
TKLY1 4 2 VFM1 2 3 VU1 2 2
VU2 2 2 ZDT2 30 2 ZLT1 10 3
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Numerical settings of MOTR

MOTR was run with the parameters 𝜇1 = 0.5, 𝜇2 = 2, 𝜂1
𝑒𝑝 = 𝜂1

𝑠𝑐 = 0.001, 𝜂2
𝑒𝑝 = 𝜂2

𝑠𝑐 = 0.9,
Δ𝑖𝑛𝑖𝑡𝑒𝑝 = (1, ..., 1)⊤ ∈ R𝑞 , and Δ𝑖𝑛𝑖𝑡𝑠𝑐 = 1. Regarding the update of the trust-region radius at
very successful iterations, it was only increased if the boundary of the trust region was
reached. In this case, a maximum value of Δ𝑚𝑎𝑥 = ∥𝑢 − 𝑙∥/2 is allowed, where 𝑢 and
𝑙 represent the upper and lower bounds of the problem variables. The algorithm was
always initialized with a single point, namely the centroid of the feasible region.

As stopping criteria, the minimum trust-region radius values Δ𝑚𝑖𝑛𝑒𝑝 = Δ𝑚𝑖𝑛𝑠𝑐 = 10−5

were allowed, componentwise in the case of Δ𝑒𝑝 . Three different budgets were taken into
account in terms of function evaluations, with values of 500, 5000, and 20000. For each
problem, the approximation to the Pareto front generated by each algorithm corresponds
to all the current feasible nondominated points, stored in the list 𝐿.

5.3.1 Performance assessment and metrics

The performance profiles proposed by Dolan and Moré [14], described in Section 4.5, were
utilized as a performance tool. These profiles enable the simultaneous evaluation of the
numerical performance of various solvers across different metrics.

In a simplified way, the performance of solver 𝑠 on the given set of problems is denoted
by 𝜌𝑠(𝜏), where 𝜏 ≥ 1. Higher values of 𝜌𝑠(𝜏) indicate better numerical performance for
solver 𝑠. Specifically, a solver with a larger value of 𝜌𝑠(1) is considered to be more efficient,
while a solver with a larger value of 𝜌𝑠(𝜏) for large 𝜏 values is deemed to be more robust.

To evaluate the effectiveness and robustness of a multiobjective optimization solver,
it is important to assess its ability to generate a large percentage of well-distributed
nondominated points and also be able to capture the extent of the Pareto front of the
multiobjective optimization problem. For this purpose, we considered four metrics that
aim to quantify these characteristics, called purity, hypervolume, and the spread metrics
Γ and Δ, described in Section 4.5.

5.3.2 Adequacy of the algorithmic structure of MOTR

Figures 5.1 and 5.2 depict performance profiles comparing MOTR and MOTRep, where
MOTRep is a version of MOTR that excludes the extreme point step.

Figures 5.3 and 5.4 report the comparison between MOTR and MOTRsc, where the
latter algorithm corresponds to a version of MOTR omitting the scalarization step.

Finally, MOTR numerical performance is evaluated against MOTRmiddle, where, in
MOTRmiddle, the use of Algorithm 7 is replaced by the strategy described in Section 5.3
to select points to solve the scalarization problems. The results of this assessment can be
found in Figures 5.5 and 5.6.

It is clear the advantage of MOTR over each one of its variants, both in terms of
efficiency and robustness, for each one of the metrics considered, independently of the
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Figure 5.1: Comparing MOTR and MOTRep based on performance profiles of purity and
hypervolume metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

budget of function evaluations allowed. The exception appears in the results for the
Δ metric, when comparing MOTR with MOTRsc or MOTRmiddle, where MOTR still
continues to present a better performance in terms of efficiency, but is not competitive in
the case of robustness.

Considering these results, all parts are extremely essential and crucial for the good
numerical performance of MOTR. Based on the obtained results, we are not only confident
about MOTR but also encouraged to compare it with another state-of-the-art solver.

5.3.3 Comparing MOTR with MOSQP

MOSQP was proposed in [19], based on sequential quadratic programming techniques,
incorporating in its algorithmic structure strategies to compute approximations to the
complete Pareto front of a given multiobjective optimization problem. The solver also
keeps a list of points that is updated at each iteration by solving single-objective constrained
optimization problems derived as SQP problems.

In [19], the authors compared the solver against a classical scalarization approach for
biobjective problems and also genetic algorithms. The reported numerical results establish
the superiority of MOSQP over the remaining solvers tested.

A MATLAB implementation of MOSQP is distributed by the authors, providing
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Figure 5.2: Comparing MOTR and MOTRep based on performance profiles of Γ and Δ

metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

different algorithmic choices. We selected MOSQP (𝐻 = (𝐼 ,∇2 𝑓 ), 𝑙𝑖𝑛𝑒), which corresponds
to a line initialization strategy, by computing 200 initial points evenly spaced in the line
segment joining the lowerand upperbounds of the variables, and where the identity matrix
and the true Hessians are used in the second and third algorithmic stages, respectively [19].
This version is reported in [19] as the one that presents the best computational performance.
In regard to stopping criteria, we kept all the default values but experimented with the
three different budgets for function evaluations.

For each problem, the approximation to the Pareto front generated by each one of the
solvers corresponds to all current feasible nondominated points, stored in the correspond-
ing lists. Figures 5.7 and 5.8 display the performance profiles for purity, hypervolume,
and the spread metrics, showcasing the comparison between MOTR and MOSQP.

MOTR is clearly competitive, with remarkably good results in terms of efficiency
and robustness for purity, hypervolume, and Γ metrics. Regarding the uniformity of the
distribution of points across the approximation to the Pareto front, MOSQP presents a
better performance. These conclusions hold, independently of the budget of function
evaluations considered.

Table 5.2 reports the number of feasible nondominated points obtained by each solver,
for a maximum budget of 5000 function evaluations, after joining the lists of nondominated
points corresponding to both solvers for each problem and removing the dominated points.
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Figure 5.3: Comparing MOTR and MOTRsc based on performance profiles of purity and
hypervolume metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

Figures 5.9 and 5.10 illustrate the final approximations to the Pareto fronts obtained
by MOTR and MOSQP on two biobjective and two triobjective problems, respectively.
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Figure 5.4: Comparing MOTR and MOTRsc based on performance profiles of Γ and Δ

metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.
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Figure 5.5: Comparing MOTR and MOTRmiddle based on performance profiles of purity
and hypervolume metrics. Budgets of 500, 5000, and 20000 function evaluations were
allowed.
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Figure 5.6: Comparing MOTR and MOTRmiddle based on performance profiles of Γ and
Δ metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.
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Figure 5.7: Comparing MOTR and MOSQP based on performance profiles of purity and
hypervolume metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.
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Figure 5.8: Comparing MOTR and MOSQP based on performance profiles of Γ and Δ

metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.
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Figure 5.9: Approximations to the Pareto fronts of problems ZDT2 and MOP1, obtained
by solvers MOTR and MOSQP, for a budget of 5000 function evaluations.
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Table 5.2: Number of feasible nondominated points in the final approximation of the
Pareto front, generated for each problem by MOTR and MOSQP, considering a budget of
5000 function evaluations.

Problem MOTR MOSQP Problem MOTR MOSQP

BK1 5000 66 CL1 4827 89
Deb41 2197 64 Deb513 1 2
Deb521b 4477 1 DG01 77 25
DPAM1 2496 7 DTLZ1 4999 1
DTLZ1n2 4998 0 DTLZ2 4991 16
DTLZ2n2 4989 16 DTLZ3 4989 1
DTLZ3n2 4988 2 DTLZ4 1 8
DTLZ4n2 1 6 DTLZ6 950 1
DTLZ6n2 2497 1 ex005 4976 67
Far1 1726 52 Fonseca 4996 0
IKK1 3922 36 IM1 4982 90
Jin1 4997 87 Jin3 4834 2
L2ZDT2 0 2 L3ZDT2 752 1
lovison1 4942 93 lovison2 1 8
lovison3 4871 97 lovison4 4373 81
lovison5 412 18 lovison6 269 9
LRS1 4998 1 MHHM1 3936 8
MHHM2 4994 0 MLF1 0 17
MLF2 4938 34 MOP1 5000 0
MOP2 5000 24 MOP3 1610 19
MOP5 2535 12 MOP6 1 2
MOP7 4302 1 SK1 3960 88
SK2 1632 6 SP1 4952 59
SSFYY1 5000 1 SSFYY2 2502 1
TKLY1 595 68 VFM1 4997 49
VU1 0 90 VU2 2498 24
ZDT2 4936 2 ZLT1 383 1
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(a) Problem: ZLT1 (b) Problem: IKK1

Figure 5.10: Approximations to the Pareto fronts of problems ZLT1 and IKK1, obtained
by solvers MOTR and MOSQP, for a budget of 5000 function evaluations.
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6

A class of trust-region methods for
multiobjective derivative-free

optimization

In this chapter, we focus on solving the multiobjective derivative-free optimization problem
defined as follows

min 𝐹(𝑥) =
(
𝑓1(𝑥), ..., 𝑓𝑞(𝑥)

)
s.t. 𝑥 ∈ R𝑛 ,

(6.1)

where 𝐹 : R𝑛 → R𝑞 , 𝑛, 𝑞 ∈ N, and 𝑞 ≥ 2. The objective function components 𝑓𝑖 : R𝑛 →
R, 𝑖 = 1, . . . , 𝑞, are assumed to be expensive to evaluate and conflicting with each other,
meaning that it is not possible to find a single point that simultaneously minimizes all
objective function components. Derivatives of the components of the objective function
are not available and also it is not possible to approximate them. The problem solution is
referred to as the Pareto front, which consists of a set of nondominated points.

In Section 6.1, a modified algorithm will be presented for solving the multiobjective
derivative-free optimization problem. This algorithm aims to approximate the Pareto front
of Problem (6.1) and incorporates new techniques for building models approximating
the objective function components. The convergence analysis of this algorithm will be
discussed in Section 6.2. Furthermore, Section 6.3 will present numerical results that
showcase the efficiency and robustness of the proposed method.

6.1 Algorithmic structure

In this chapter, we introduce the Multiobjective Trust-Region Derivative-Free Optimization
(MOTRDFO) algorithm as a modified approach. The original algorithmic structure was
thoroughly explained in Chapter 5, focusing on multiobjective trust-region methods.
MOTRDFO maintains exactly the same algorithmic framework as the one described in
Chapter 5, except for its adjustment to derivative-free problems. In this context, it entirely
disregards derivative information associated with the objective function components, in
contrast to the utilization of Taylor-based models in Chapter 5.
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To obtain comprehensive details about the algorithm, please refer to Chapter 5. How-
ever, to maintain the coherence of this chapter, here we provide a brief overview of the
algorithmic structure. Subsequently, we will provide a comprehensive discussion of our
methods for building models when derivatives are not available. In this context, new
techniques based on polynomial interpolation and minimum Frobenius norm approaches
are proposed to build models which approximate the objective function components.

The purpose is to approximate the complete Pareto front of Problem (6.1). The
algorithm aims to achieve a comprehensive, dense, and uniformly spread approximation
by iteratively performing two main steps: the extreme point step and the scalarization step.
These steps continue until certain stopping criteria are met. The extreme point step expands
the approximation by moving towards the extreme points of the Pareto front, delineated
by Algorithm 5. On the other hand, the scalarization step focuses on reducing gaps in the
Pareto front approximation, outlined by Algorithm 6. The scalarization step incorporates
an additional step known as the middle point step, detailed by Algorithm 7. This
intermediate step is employed to determine the initial points for solving the scalarization
problems.

In MOTRDFO, a list of nondominated points and their associated quantities is main-
tained throughout the algorithm. This list, denoted as 𝐿, is defined as follows:

𝐿 = {(𝑥 𝑗 , 𝐹(𝑥 𝑗),Δ𝑗
𝑒𝑝 ,Δ

𝑗
𝑠𝑐) | 𝑗 ∈ 𝐽}, (6.2)

where, 𝐽 represents the set of indexes of the points in the list, Δ𝑗
𝑒𝑝 is a 𝑞×1 vector that stores,

for each component, the trust-region radius associated with 𝑥 𝑗 and the corresponding
component of the objective function, used during the extreme point step of the algorithm.
Additionally, Δ𝑗

𝑠𝑐 represents the trust-region radius utilized in the scalarization step.
Algorithm 8 outlines the main procedure of the MOTRDFO algorithm. In any of the two

main steps, points are either selected or computed from the list𝐿, and quadratic polynomial
models are constructed around these points. These models serve as replacements for the
components of the objective function.

Algorithm 8. MOTRDFO
Input

Initial list of nondominated points 𝐿0 defined by (6.2).

For 𝑘 = 0, 1, 2, . . .
If 𝑚𝑜𝑑(𝑘, 2) = 0, then go to the Extreme Point Step.
Else go to the Scalarization Step.
If some stopping criterion is met, then return.

End For

At iteration 𝑘, for each 𝑖, 𝑖 ∈ {1, . . . , 𝑞}, the quadratic model 𝑚𝑘
𝑖

approximating the
objective function component 𝑓𝑖 around a given point 𝑥step is defined as:
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𝑚𝑘
𝑖 (𝑥) = 𝑓𝑖(𝑥step) + (𝑥 − 𝑥step)⊤𝑔𝑘𝑖 +

1
2 (𝑥 − 𝑥step)⊤𝐻 𝑘

𝑖 (𝑥 − 𝑥step),

where 𝑔𝑘
𝑖

represents the gradient vector and 𝐻 𝑘
𝑖

represents the Hessian matrix of the
model 𝑚𝑘

𝑖
.

6.1.1 Building models

In this context, we provide clarification on the process of building model𝑚𝑘
𝑖

to approximate
the objective function component 𝑓𝑖 , where 𝑘 ∈ N and 𝑖 ∈ {1, . . . , 𝑞}, during the extreme
point and scalarization steps. In a broader perspective, we present a method for computing
a quadratic polynomial model 𝑚 : R𝑛 → R that serves as an approximation for a general
single-objective function 𝑓 : R𝑛 → R.

To build the model 𝑚, we use a set of sample points𝑌. All points in 𝑌 should be inside
the ball 𝐵(𝑥step , 𝑟Δstep) defined as

𝐵(𝑥step , 𝑟Δstep) =
{
𝑥 ∈ R𝑛 | ∥𝑥 − 𝑥step∥ ≤ 𝑟Δstep

}
, (6.3)

in which 𝑥step is the current iterate, 𝑟 ≥ 1 is a user-defined parameter to control the
distance of the sample points from the current iterate, andΔstep represents the trust-region
radius associated with the current step. Therefore, any points located outside this ball are
disregarded during the current iteration.

Let𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑝} be the sample set of 𝑝1 = 𝑝 + 1 points satisfying (6.3), in which
the first point 𝑦0 is equal to the current iterate point 𝑥step, where we want to build model𝑚
around it. As a general rule, the first point of each sample set is always the current iterate.
Furthermore, a distinct sample set is assigned to each point in the list of nondominated
points.

At the beginning of the algorithm, for each initial point 𝑥0, the initial sample set is a
set of 2𝑛 + 1 points defined by

{
𝑥0 , 𝑥0 + Δ[𝐼𝑛 − 𝐼𝑛]

}
, in which Δ = 1

2 min
{
Δ𝑖𝑛𝑖𝑡𝑒𝑝 ,Δ𝑖𝑛𝑖𝑡𝑠𝑐

}
and

𝐼𝑛 denotes the 𝑛 × 𝑛 identity matrix.
In both the extreme point and scalarization steps, the new evaluated points are added

to the corresponding sample sets without discarding any of the available points. In the
middle point step, every time that a new middle point is computed and added to the list,
the initial sample set is the union of the sample sets of two points associated with the
corresponding gap.

The fact that points are never discarded may be surprising. However, in the context
of expensive function evaluation, we should take all possible advantages from previously
evaluated points. We also ensure the sample sets are computed in a way that the sample
points are not very far from the current iterate, an important feature when building a local
model.

The quadratic model 𝑚 with gradient 𝑔 and Hessian 𝐻 is defined in the form

𝑚(𝑥) = 𝑓 (𝑦0) + (𝑥 − 𝑦0)⊤𝑔 + 1
2 (𝑥 − 𝑦

0)⊤𝐻(𝑥 − 𝑦0),
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where 𝑦0 is the current iterate.
To build this model, 𝑔 and 𝐻 are required to be computed. The specific technique

used in this chapter for building 𝑚 depends on 𝑝1, which represents the number of points
in 𝑌.

Before delving further into this topic, interested readers can refer to Section 2.3 for
additional background information. We will only review and discuss the necessary topics
here as required to adequately formalize our technique.

Throughout this chapter, let 𝒫2
𝑛 be the space of polynomials of degree less than or

equal to 2 in R𝑛 , and 𝑏1 =
(𝑛+1)(𝑛+2)

2 be the dimension of this space.
Consider the natural basis that can be written as

𝜙 =
{
𝜙0(𝑥), 𝜙1(𝑥), . . . , 𝜙𝑏(𝑥)

}
=

{
1, 𝑥1 , . . . , 𝑥𝑛 ,

𝑥2
1

2 , 𝑥1𝑥2 , . . . , 𝑥𝑛−1𝑥𝑛 ,
𝑥2
𝑛

2

}
.

where 𝑥 ∈ R𝑛 and 𝑏1 = 𝑏 + 1.
The interpolating polynomial 𝑚(𝑥) ∈ 𝒫2

𝑛 can be formulated as

𝑚(𝑥) =
𝑏∑
𝑗=0

𝛼 𝑗𝜙 𝑗(𝑥),

where 𝛼 ∈ R𝑏1 is a vector of real coefficients.
If 𝑝1 = 𝑏1, the interpolating polynomial model 𝑚 is built by computing the coefficients

𝛼0 , 𝛼1 , ..., 𝛼𝑝 , satisfying the interpolation conditions

𝑚(𝑦 𝑖) = 𝑓 (𝑦 𝑖), 𝑖 = 0, . . . , 𝑝.

It can be rephrased as follows

𝑚(𝑦 𝑖) =
𝑝∑
𝑗=0

𝛼 𝑗𝜙 𝑗(𝑦 𝑖) = 𝑓 (𝑦 𝑖), 𝑖 = 0, .., 𝑝.

This system of linear equations can be rewritten in matrix form as

𝑀(𝜙, 𝑌)𝛼 = 𝑓 (𝑌),

where,

𝑀(𝜙, 𝑌) =



1 𝑦0
1 . . . 𝑦0

𝑛

(𝑦0
1)

2

2 𝑦0
1𝑦

0
2 . . . 𝑦0

𝑛−1𝑦
0
𝑛

(𝑦0
𝑛)2
2

1 𝑦1
1 . . . 𝑦1

𝑛

(𝑦1
1)

2

2 𝑦1
1𝑦

1
2 . . . 𝑦1

𝑛−1𝑦
1
𝑛

(𝑦1
𝑛)2
2

...
...

...
...

...
...

...
...

1 𝑦
𝑝

1 . . . 𝑦
𝑝
𝑛

(𝑦𝑝1 )
2

2 𝑦
𝑝

1 𝑦
𝑝

2 . . . 𝑦
𝑝

𝑛−1𝑦
𝑝
𝑛

(𝑦𝑝𝑛 )2
2


,
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𝛼 =


𝛼0

𝛼1
...

𝛼𝑝


, 𝑓 (𝑌) =


𝑓 (𝑦0)
𝑓 (𝑦1)
...

𝑓 (𝑦𝑝)


.

If more than (𝑛+1)×(𝑛+2)
2 points are available, indicated by 𝑝 > 𝑏, MOTRDFO utilizes an

efficient selection strategy, outlined by Algorithm 9.
Let 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑏 , 𝑦𝑏+1 , . . . , 𝑦𝑝}, where 𝑝 > 𝑏, be the set of sample points, in

which all points are sorted according to their distance from 𝑦0. At first, we select the first
𝑏 + 1 points, 𝑌𝑏 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑏}, as the sample set, then the geometry of 𝑌𝑏 is checked,
using the notion of poisedness which illustrates how well the interpolation set 𝑌𝑏 spans
the region where interpolation is of interest.

To check and control the geometry of𝑌𝑏 , we use the notion of condition number. Recall
from Section 2.3 that if we select the natural basis and if 𝑌𝑏 denotes the shifted and scaled
version of 𝑌𝑏 in the ball 𝐵(0, 1), then the condition number of 𝑀(𝜙, 𝑌𝑏) is a meaningful
measure of poisedness. Smaller values of the condition number of 𝑀(𝜙, 𝑌𝑏) illustrate
higher levels of poisedness of 𝑌𝑏 , associated with higher quality of interpolation models,
and vice versa.

In this chapter, 𝑐𝑜𝑛𝑑(𝑀(𝜙, 𝑌𝑏)) remarks the condition number of matrix 𝑀(𝜙, 𝑌𝑏) and
the set 𝑌𝑏 is expressed by

𝑌𝑏 = {0, 𝑦̂1 , ..., 𝑦̂𝑏} =
{
0,
𝑦1 − 𝑦0

Δ
, ...,

𝑦𝑏 − 𝑦0

Δ

}
⊂ 𝐵(0, 1),

where 𝐵(0, 1) is the ball centered at the origin, of radius equal to 1, and

Δ = max
1≤𝑖≤𝑏

∥𝑦 𝑖 − 𝑦0∥.

To improve the geometry of 𝑌𝑏 , we use the basis of quadratic Lagrange polynomials
{𝑙𝑖(𝑥), 𝑖 = 0, . . . , 𝑏}, expressed by

𝑙𝑖(𝑦 𝑗) =


1 𝑖 = 𝑗

0 otherwise.

The basis of Lagrange polynomials is commonly used for measuring poisedness in the
multivariate polynomial interpolation literature [8, Chapter 3].

The geometry of 𝑌𝑏 is controlled by a parameter called 𝑐𝑜𝑛𝑑𝑡𝑜𝑙. If 𝑐𝑜𝑛𝑑(𝑀(𝜙, 𝑌𝑏)) is
equal to or smaller than 𝑐𝑜𝑛𝑑𝑡𝑜𝑙, then we accept the geometry of 𝑌𝑏 and build the model
𝑚, using 𝑌𝑏 . Otherwise, we improve the level of poisedness by updating 𝑌𝑏 , via using the
Lagrange polynomials, as it is illustrated in Algorithm 9.

On the other hand, if 𝑛 + 1 < 𝑝1 < 𝑏1, meaning that there are more points than the
ones necessary for linear interpolation but fewer than the ones required for determined
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Algorithm 9. Checking and improving the level of poisedness of an interpola-
tion set

Input
The list of sample points 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑏 , 𝑦𝑏+1 , . . . , 𝑦𝑝} in which all points are sorted
according to their distance from 𝑦0, where 𝑏 + 1 is the dimension of 𝒫2

𝑛 , and 𝑝 > 𝑏.
Value for the parameter 𝑐𝑜𝑛𝑑𝑡𝑜𝑙 > 1.

1. Check the geometry
Select the first 𝑏 + 1 points, 𝑌𝑏 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑏}, as the sample set.
If 𝑐𝑜𝑛𝑑(𝑀(𝜙, 𝑌𝑏)) ≤ 𝑐𝑜𝑛𝑑𝑡𝑜𝑙, then return.

2. Improve the geometry
For 𝑖 = 𝑏 + 1, ..., 𝑝

Define 𝑌𝑏𝑛𝑒𝑤 = 𝑌𝑏\{𝑦𝑠} ∪ {𝑦 𝑖}, where 𝑠 ∈ arg max𝑗=1,...,𝑏 |𝑙 𝑗(𝑦0)|,
and {𝑙 𝑗(𝑥), 𝑗 = 0, . . . , 𝑏} is the basis of Lagrange polynomials for 𝑌𝑏 .

If 𝑐𝑜𝑛𝑑(𝑀(𝜙, 𝑌𝑏𝑛𝑒𝑤)) < 𝑐𝑜𝑛𝑑(𝑀(𝜙, 𝑌𝑏)), then set 𝑌𝑏 = 𝑌𝑏𝑛𝑒𝑤 .
If 𝑐𝑜𝑛𝑑(𝑀(𝜙, 𝑌𝑏)) ≤ 𝑐𝑜𝑛𝑑𝑡𝑜𝑙, then return.

End For

quadratic interpolation, we compute a minimum Frobenius norm model by solving

min 1
2 ∥𝐻∥2 ,

s.t.
𝑚(𝑦 𝑗) = 𝑓 (𝑦 𝑗), 𝑗 = 1, ..., 𝑝.

Finally, if fewer than 𝑛 + 2 points are available, new points are added to the sample
set by considering the extreme points or mid-points of the set

{
𝑦0 + 1

2Δstep[𝐼𝑛 − 𝐼𝑛]
}
, to

reach a total of 𝑛 + 2 points, in which again 𝑦0 is the current iterate, Δstep represents the
trust-region radius of the current step and 𝐼𝑛 is 𝑛 × 𝑛 identity matrix.

We assume that at each iteration, every model is built by using a Λ-poised sample set
that holds a sufficient level of poisedness. Furthermore, at each iteration, every model that
we build is at least a minimum Frobenius norm model. As a result, the models are fully
linear [8, 10], detailed in Section 2.3, allowing to establish the following error bounds:

∥∇ 𝑓 (𝑥 + 𝑠) − ∇𝑚(𝑥 + 𝑠)∥ ≤ 𝜅𝑒 𝑔Δ, ∀𝑠 ∈ 𝐵(0,Δ), (6.4)

| 𝑓 (𝑥 + 𝑠) − 𝑚(𝑥 + 𝑠)| ≤ 𝜅𝑒 𝑓Δ
2 , ∀𝑠 ∈ 𝐵(0,Δ), (6.5)

where 𝜅𝑒 𝑔 and 𝜅𝑒 𝑓 are positive constants, depending on Λ, 𝑝, 𝑏, and the Lipschitz constant
of the gradient of 𝑓 .
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To achieve convergence to a first-order critical point in model-based optimization
algorithms, it is necessary for the models to be fully linear [8]. Consequently, we will
incorporate this characteristic when conducting our convergence analysis.

6.2 Convergence analysis

In order to analyze the theoretical behavior of MOTRDFO, we will assume that no stopping
criteria are defined, specifically Δ𝑚𝑖𝑛𝑒𝑝 = Δ𝑚𝑖𝑛𝑠𝑐 = 0. Convergence will again be established
for linked sequences of points {𝑥𝑘}𝑘∈𝐾 generated by MOTRDFO. A linked sequence is
defined as follows.

Definition 6.1. Consider {𝐿𝑘}𝑘∈N as the sequence of sets of nondominated points generated by
Algorithm 8. A linked sequence is a sequence {𝑥𝑘}𝑘∈𝐾 , where𝐾 ⊆ N denotes the indexes of the points
belonging to the linked sequence, and such that for any 𝑘 ∈ 𝐾, the element (𝑥𝑘 , 𝐹(𝑥𝑘),Δ𝑘𝑒𝑝 ,Δ𝑘𝑠𝑐) ∈ 𝐿𝑘
is generated from the element (𝑥𝑘−1 , 𝐹(𝑥𝑘−1),Δ𝑘−1

𝑒𝑝 ,Δ
𝑘−1
𝑠𝑐 ) ∈ 𝐿𝑘−1.

Like the derivative-based case, an initial point of a linked sequence can take one of the
following forms:

• A point in the initial list, provided by the user;

• Middle points generated by MOTRDFO in the middle point step, such that these
points are not currently in the list and are added to the list by the algorithm.

We are going to establish that every limit point of a linked sequence generated by
MOTRDFO is a Pareto critical point, defined by Definition 4.5.

According to Lemma 4.3, by reasonable assumptions, we are going to establish that for
every linked sequence {𝑥𝑘}𝑘∈𝐾 generated by MOTRDFO, the following statement holds:

lim
𝑘→+∞ ; 𝑘∈𝐾

𝜔(𝑥𝑘) = 0,

where
𝜔(𝑥) = − min

∥𝑑∥≤1
max
𝑖=1,...,𝑞

∇ 𝑓𝑖(𝑥)⊤𝑑. (6.6)

For each 𝑖 ∈ {1, ..., 𝑞}, we assume that the objective function component 𝑓𝑖 is lower
bounded and twice continuously differentiable. In each iteration 𝑘, all models 𝑚𝑘

𝑖
are

quadratic polynomials, implying that they are twice continuously differentiable for 𝑖 ∈
{1, ..., 𝑞}.

Assumption 6.1. The Hessians of the objective function 𝑓𝑖 and model function 𝑚𝑘
𝑖

are uniformly
bounded. So, there exists a constant 𝜅ℎ > 0 satisfying

∥∇2𝑚𝑘
𝑖 (𝑥)∥ ≤ 𝜅ℎ

and
∥∇2 𝑓𝑖(𝑥)∥ ≤ 𝜅ℎ

for all 𝑘 ∈ N, 𝑖 ∈ {1, ..., 𝑞}, and 𝑥 ∈ R𝑛 .
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Assumption 6.1 implies that ∇ 𝑓𝑖 is Lipschitz continuous, for each 𝑖 ∈ {1, ..., 𝑞}. From
it, we can deduce that function 𝜔, defined by (6.6), is uniformly continuous [34].

As usual, 𝐵𝑘 denotes the current iteration ball, defined as follows:

𝐵𝑘 = 𝐵(𝑥𝑘 ,Δ𝑘) =
{
𝑥 ∈ R𝑛 | ∥𝑥 − 𝑥𝑘 ∥ ≤ Δ𝑘

}
,

where 𝑥𝑘 is the current iterate and Δ𝑘 represents the current trust-region radius.
In a model-based trust-region algorithm, it is important to have good local accuracy of

model functions compared to real functions in every iteration. So, the following lemma
ensures the accuracy of models.

Lemma 6.1. Assume that Assumption 6.1 holds. In every iteration 𝑘, the model 𝑚𝑘
𝑖

is valid for 𝑓𝑖
in 𝐵𝑘 , for all 𝑖 ∈ {1, ..., 𝑞}. That is, there exists a constant 𝜅 𝑓 𝑚 > 0 such that

| 𝑓𝑖(𝑥) − 𝑚𝑘
𝑖 (𝑥)| ≤ 𝜅 𝑓 𝑚Δ

2
𝑘

holds for all 𝑘 ∈ N, 𝑖 ∈ {1, ..., 𝑞}, and 𝑥 ∈ 𝐵𝑘 .

Proof. For each 𝑖 ∈ {1, ..., 𝑞}, it is clear that 𝑓𝑖 is continuously differentiable with Lipschitz
continuous gradient. Furthermore, for each 𝑘 ∈ N, 𝑚𝑘

𝑖
is at least a minimum Frobenius

norm model built from a poised set of sample points in 𝐵(𝑥𝑘 , 𝑟Δ𝑘) defined by (6.3). So,
𝑚𝑘
𝑖

is at least fully linear at 𝐵(𝑥𝑘 , 𝑟Δ𝑘). Therefore, according to (6.5), for each 𝑖 ∈ {1, ..., 𝑞}
there exists a positive constant 𝜅𝑖

𝑒 𝑓
such that

| 𝑓𝑖(𝑥) − 𝑚𝑘
𝑖 (𝑥)| ≤ 𝜅𝑖

𝑒 𝑓
𝑟2Δ2

𝑘
, ∀𝑥 ∈ 𝐵(𝑥𝑘 , 𝑟Δ𝑘).

Hence, with 𝜅 𝑓 𝑚 = 𝑟2 max𝑖=1,...,𝑞 𝜅𝑖𝑒 𝑓 we have

| 𝑓𝑖(𝑥) − 𝑚𝑘
𝑖 (𝑥)| ≤ 𝜅 𝑓 𝑚Δ

2
𝑘
, ∀ 𝑖 ∈ {1, ..., 𝑞} and 𝑥 ∈ 𝐵(𝑥𝑘 , 𝑟Δ𝑘).

Considering the fact that 𝐵𝑘 ⊆ 𝐵(𝑥𝑘 , 𝑟Δ𝑘), the proof is over. □

Following the same reasoning, we can prove the accuracy of the gradients of models,
formalized in the following lemma.

Lemma 6.2. Suppose that Assumption 6.1 holds. There exists a constant 𝜅𝑔𝑟𝑎𝑑 > 0 such that

∥∇ 𝑓𝑖(𝑥) − ∇𝑚𝑘
𝑖 (𝑥)∥ ≤ 𝜅𝑔𝑟𝑎𝑑Δ𝑘 (6.7)

holds for all 𝑘 ∈ N, 𝑖 ∈ {1, ..., 𝑞}, and 𝑥 ∈ 𝐵𝑘 .

Function 𝜔, defined by (6.6), is again generalized to incorporate models using the
following formulation:

𝜔𝑚𝑘 (𝑥) = − min
∥𝑑∥≤1

max
𝑖=1,...,𝑞

∇𝑚𝑘
𝑖 (𝑥)

⊤𝑑. (6.8)

The following lemma ensures the accuracy of 𝜔𝑚𝑘 , as an approximation to 𝜔, when
the trust-region radius is small enough.
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Lemma 6.3. In every iteration 𝑘,

|𝜔(𝑥) − 𝜔𝑚𝑘 (𝑥)| ≤ 𝜅𝑔𝑟𝑎𝑑Δ𝑘

holds for all 𝑥 ∈ 𝐵𝑘 , where 𝜅𝑔𝑟𝑎𝑑 is defined in Lemma 6.2.

Proof. For 𝑥 ∈ 𝐵𝑘 , according to (6.6), (6.7), and the fact that ∥𝑑∥ ≤ 1 we have

−𝜔(𝑥) = min
∥𝑑∥≤1

max
𝑖=1,...,𝑞

∇ 𝑓𝑖(𝑥)⊤𝑑

= min
∥𝑑∥≤1

max
𝑖=1,...,𝑞

{
(∇ 𝑓𝑖(𝑥) − ∇𝑚𝑘

𝑖 (𝑥))
⊤𝑑 + ∇𝑚𝑘

𝑖 (𝑥)
⊤𝑑

}
≤ min

∥𝑑∥≤1
max
𝑖=1,...,𝑞

{
∥∇ 𝑓𝑖(𝑥) − ∇𝑚𝑘

𝑖 (𝑥)∥ ∥𝑑∥ + ∇𝑚𝑘
𝑖 (𝑥)

⊤𝑑
}

≤ min
∥𝑑∥≤1

max
𝑖=1,...,𝑞

{
∥∇ 𝑓𝑖(𝑥) − ∇𝑚𝑘

𝑖 (𝑥)∥ + ∇𝑚𝑘
𝑖 (𝑥)

⊤𝑑
}

≤ min
∥𝑑∥≤1

max
𝑖=1,...,𝑞

{
𝜅𝑔𝑟𝑎𝑑Δ𝑘 + ∇𝑚𝑘

𝑖 (𝑥)
⊤𝑑

}
= 𝜅𝑔𝑟𝑎𝑑Δ𝑘 + min

∥𝑑∥≤1
max
𝑖=1,...,𝑞

{
∇𝑚𝑘

𝑖 (𝑥)
⊤𝑑

}
= 𝜅𝑔𝑟𝑎𝑑Δ𝑘 − 𝜔𝑚𝑘 (𝑥).

Therefore 𝜔𝑚𝑘 (𝑥)−𝜔(𝑥) ≤ 𝜅𝑔𝑟𝑎𝑑Δ𝑘 holds. Equivalently, we can prove that 𝜔(𝑥)−𝜔𝑚𝑘 (𝑥) ≤
𝜅𝑔𝑟𝑎𝑑Δ𝑘 . So, |𝜔(𝑥) − 𝜔𝑚𝑘 (𝑥)| ≤ 𝜅𝑔𝑟𝑎𝑑Δ𝑘 holds. □

In particular, in every iteration 𝑘, we have

|𝜔(𝑥𝑘) − 𝜔𝑚𝑘 (𝑥𝑘)| ≤ 𝜅𝑔𝑟𝑎𝑑Δ𝑘 .

This inequality inspires us to have the following assumption. This assumption is also
presented by [33, Assumption 4.8]. What we insist on demonstrating is that when we are
approaching a Pareto critical point, the attitudes of 𝜔(𝑥𝑘) and 𝜔𝑚𝑘 (𝑥𝑘) are the same.

Assumption 6.2. There exists a constant 𝜅𝜔 > 0 such that, for every 𝑘 ∈ N,

|𝜔(𝑥𝑘) − 𝜔𝑚𝑘 (𝑥𝑘)| ≤ 𝜅𝜔𝜔𝑚𝑘 (𝑥𝑘).

This assumption ensures that when the iteration point 𝑥𝑘 is Pareto critical or close to
criticality in the model space, the same applies to the main optimization problem.

Similar to Chapter 5, the functions 𝜙(𝑥) and 𝜙𝑘𝑚(𝑥) are defined by

𝜙(𝑥) = max
𝑗=1,...,𝑞

𝑓𝑗(𝑥),

and
𝜙𝑘𝑚(𝑥) = max

𝑗=1,...,𝑞
𝑚𝑘
𝑗 (𝑥).

To prove convergence, model minimization should provide a sufficient decrease at
each iteration, here quantified using the function 𝜙𝑘𝑚 . Following [34], for the scalarization
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step, we quantify the best model reduction obtained along a direction belonging to 𝒟(𝑥),
the set of directions associated with the solution of (6.6), within the trust-region 𝐵𝑘 . For
𝑖 ∈ {1, ..., 𝑞}, let 𝑑∗

𝑘
∈ 𝒟(𝑥 𝑖 ,𝑘𝑠𝑐 ) and compute 𝛼𝑘 by solving

min
𝛼≥0

{𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘) : 𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘 ∈ 𝐵𝑘}. (6.9)

The Pareto-Cauchy point is defined as

𝑥𝐶
𝑘
= 𝑥 𝑖 ,𝑘𝑠𝑐 + 𝑑𝐶

𝑘
, (6.10)

where 𝑑𝐶
𝑘

:= 𝛼𝑘𝑑∗𝑘 and 𝐵𝑘 = 𝐵(𝑥 𝑖 ,𝑘𝑠𝑐 ,Δ𝑖 ,𝑘𝑠𝑐 ).

Lemma 6.4. Let Assumptions 6.1 and 6.2 hold. There exists a constant 𝜅̄𝜙 ∈ (0, 1) such that for
𝑖 ∈ {1, ..., 𝑞} and 𝑘 ∈ N, the Pareto-Cauchy point 𝑥𝐶

𝑘
= 𝑥 𝑖 ,𝑘𝑠𝑐 + 𝑑𝐶

𝑘
, defined by (6.10), satisfies

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥𝐶𝑘 ) ≥
1
2 𝜅̄𝜙𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
. (6.11)

Proof. Since 𝑑∗
𝑘
∈ 𝒟(𝑥 𝑖 ,𝑘𝑠𝑐 ), we have ∥𝑑∗

𝑘
∥ ≤ 1, which implies that, for all 𝛼 ∈ [0,Δ𝑖 ,𝑘𝑠𝑐 ],

𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗
𝑘
∈ 𝐵𝑘 . Problem (6.9) can be reformulated as follows:

max
0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘)}

On the other hand, for all 𝛼 ≥ 0, we have

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘) = max
𝑗=1,...,𝑞

𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘
𝑠𝑐 ) − max

𝑗=1,...,𝑞
𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘
𝑠𝑐 + 𝛼𝑑∗𝑘)

≥ − max
𝑗=1,...,𝑞

𝛼∇𝑚𝑘
𝑗

⊤(𝑥 𝑖 ,𝑘𝑠𝑐 )𝑑∗𝑘 − max
𝑗=1,...,𝑞

1
2𝛼

2𝑑∗
⊤
𝑘 ∇2𝑚𝑘

𝑗 (𝑥
𝑖 ,𝑘
𝑠𝑐 )𝑑∗𝑘 .

According to (6.8), Assumption 6.1, ∥𝑑∗
𝑘
∥ ≤ 1, and the Cauchy-Schwarz inequality we have

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘) ≥ 𝛼𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ) −
1
2𝛼

2𝜅ℎ .

Then, it is clear that

max
0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝛼𝑑∗𝑘)} ≥ max
0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{
𝛼𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2𝛼

2𝜅ℎ

}
.

In other words,

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 + 𝑑𝐶
𝑘
) ≥ max

0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{
𝛼𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2𝛼

2𝜅ℎ

}
.

Let us consider the concave function 𝑔, defined by 𝑔(𝛼) = 𝛼𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ) −
1
2𝛼

2𝜅ℎ , with

unconstrained maximizer 𝛼∗ =
𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 )

𝜅ℎ
≥ 0, corresponding to the optimum value

𝑔(𝛼∗) = 1
2
𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 )2

𝜅ℎ
≥ 0. Two cases can occur:
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• If 0 ≤ 𝛼∗ ≤ Δ
𝑖 ,𝑘
𝑠𝑐 then max

0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{
𝛼𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2𝛼

2𝜅ℎ

}
=

1
2
𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 )2

𝜅ℎ
;

• If 𝛼∗ > Δ
𝑖 ,𝑘
𝑠𝑐 then max

0≤𝛼≤Δ𝑖 ,𝑘𝑠𝑐

{
𝛼𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2𝛼

2𝜅ℎ

}
= Δ

𝑖 ,𝑘
𝑠𝑐 𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2 (Δ

𝑖 ,𝑘
𝑠𝑐 )2𝜅ℎ .

In this last case, since 𝛼∗ =
𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 )

𝜅ℎ
> Δ

𝑖 ,𝑘
𝑠𝑐 , we have Δ

𝑖 ,𝑘
𝑠𝑐 𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ) −

1
2 (Δ

𝑖 ,𝑘
𝑠𝑐 )2𝜅ℎ ≥

1
2Δ

𝑖 ,𝑘
𝑠𝑐 𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ), resulting in

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥𝐶𝑘 ) ≥ min

{
1
2
𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 )2

𝜅ℎ
,
1
2Δ

𝑖 ,𝑘
𝑠𝑐 𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 )

}
=

1
2𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 )

𝜅ℎ
,Δ𝑖 ,𝑘𝑠𝑐

}
.

According to assumption 6.2, we have

𝜔𝑚𝑘 (𝑥 𝑖 ,𝑘𝑠𝑐 ) ≥
1

1 + 𝜅𝜔
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )

So for every iteration 𝑘,

𝜙𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑚(𝑥𝐶𝑘 ) ≥
1
2 𝜅̄𝜙𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
holds, with 𝜅̄𝜙 = 1

(1+𝜅𝜔)2 ∈ (0, 1). □

Let (𝑥 𝑖 ,𝑘∗𝑠𝑐 , 𝑡
∗) represent the solution of Problem (5.4), with the quadratic polynomial

models computed by numerical interpolation or using a minimum Frobenius norm ap-
proach. The subsequent lemma highlights an important characteristic of 𝑡∗. The proof is
omitted since it is equal to the one of Lemma 5.4.

Lemma 6.5. At each iteration 𝑘 and for each 𝑖 ∈ {1, ..., 𝑞}, 𝑥 𝑖 ,𝑘𝑠𝑐 is not a Pareto critical point for
min𝑥∈𝐵𝑘 (𝑚𝑘

1 (𝑥), ..., 𝑚𝑘
𝑞 (𝑥)), if and only if 𝑡∗ < 0.

Now, we can gain a more precise understanding of the descent that occurs in 𝜙𝑘𝑚 .

Lemma 6.6. Let Assumptions 6.1 and 6.2 hold. At each iteration 𝑘 and for each 𝑖 ∈ {1, ..., 𝑞},
there exists 𝑗 ∈ N such that

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥
(
1
2

) 𝑗
𝜅̄𝜙 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
,

where (𝑥 𝑖 ,𝑘∗𝑠𝑐 , 𝑡
∗) is the solution of Problem (5.4), considering quadratic polynomial interpolation or

minimum Frobenius norm models, and 𝜅̄𝜙 is defined in Lemma 6.4.
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Proof. Two different cases need to be analyzed. Assume that 𝑥 𝑖 ,𝑘𝑠𝑐 is not Pareto critical.
According to Lemma 6.5, 𝑡∗ is strictly negative. So, for each 𝑙 ∈ {1, ..., 𝑞}, we have

𝑚𝑘
𝑙
(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝑚𝑘

𝑙
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ −𝑡∗ > 0.

By considering 𝜙𝑘𝑚(𝑥) = max𝑙=1,...,𝑞 𝑚
𝑘
𝑙
(𝑥), it results

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝑚𝑘
𝑙
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 𝑚𝑘

𝑙
(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝑚𝑘

𝑙
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ), for all 𝑙 ∈ {1, ..., 𝑞}.

Let 𝑗 be the index such that 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) = 𝑚𝑘
𝑗
(𝑥 𝑖 ,𝑘∗𝑠𝑐 ). Then

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 𝑚𝑘
𝑗 (𝑥

𝑖 ,𝑘
𝑠𝑐 ) − 𝑚𝑘

𝑗 (𝑥
𝑖 ,𝑘∗
𝑠𝑐 ).

Hence,
𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ −𝑡∗ > 0.

Since 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥𝐶𝑘 ) ≥ 0, there must exist 𝑗 ∈ N such that

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥
(
1
2

) 𝑗−1
(𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥𝐶𝑘 )).

Hence, considering (6.11), it implies

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥
(
1
2

) 𝑗
𝜅̄𝜙 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
.

If 𝑥 𝑖 ,𝑘𝑠𝑐 is Pareto critical, then 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) = 0. So, the right side of this inequality is equal to
zero, and since 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 0, the inequality holds. □

Subsequently, the convergence analysis follows a similar pattern and reasoning to that
discussed in Chapter 5. To avoid unnecessary repetition and keep this chapter concise, we
only present here the general structure of the analysis for readers specifically interested
in the derivative-free case. For detailed proofs, we refer interested readers to Chapter 5.

The last three lemmas motivate us to consider the following assumption, stating that,
at each scalarization step, a sufficient reduction in the model space is ensured.

Assumption 6.3. There is a constant 𝜅𝜙 ∈ (0, 1) such that at each iteration 𝑘, where the
scalarization step is performed, for all 𝑖 ∈ {1, ..., 𝑞}, we have

𝜙𝑘𝑚(𝑥 𝑖 ,𝑘𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) ≥ 𝜅𝜙 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )min

{
𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )
𝜅ℎ

,Δ𝑖 ,𝑘𝑠𝑐

}
. (6.12)

The subsequent lemma plays a crucial role in establishing convergence and presents
an error bound for 𝜙𝑘𝑚 as an approximation of 𝜙.

Lemma 6.7. Let Assumption 6.1 hold. At every iteration 𝑘, the model 𝜙𝑘𝑚 is valid for 𝜙 at 𝑥 𝑖 ,𝑘∗𝑠𝑐 ,
for all 𝑖 ∈ {1, ..., 𝑞}, that is

|𝜙(𝑥 𝑖 ,𝑘∗𝑠𝑐 ) − 𝜙𝑘𝑚(𝑥 𝑖 ,𝑘∗𝑠𝑐 )| ≤ 𝜅 𝑓 𝑚(Δ𝑖 ,𝑘𝑠𝑐 )2 ,

where 𝜅 𝑓 𝑚 is defined in Lemma 6.1.
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In the remaining analysis, we continue by categorizing the iterations of successful
scalarization steps:

• The set of indexes of successful scalarization step iterations is denoted by

𝑆 = {(𝑘, 𝑖), 𝑘 ∈ N, 𝑖 ∈ {1, ..., 𝑞} : 𝑘 is a scalarization step iteration and 𝜌𝑖 ,𝑘𝑠𝑐 ≥ 𝜂1
𝑠𝑐}.

• The set of indexes of very successful scalarization step iterations corresponds to

𝑉 = {(𝑘, 𝑖), 𝑘 ∈ N, 𝑖 ∈ {1, ..., 𝑞} : 𝑘 is a scalarization step iteration and 𝜌𝑖 ,𝑘𝑠𝑐 ≥ 𝜂2
𝑠𝑐}.

For each linked sequence of points {𝑥𝑘}𝑘∈𝐾 generated by MOTRDFO, one of the two
different scenarios will occur, as outlined below:

1. There exists 𝑖 ∈ {1, ..., 𝑞}, such that for each 𝑘 ∈ N,

Δ
𝑖 ,𝑘
𝑒𝑝 > 0.

2. For each 𝑖 ∈ {1, ..., 𝑞}, there exists 𝑘𝑖 ∈ N, such that for all 𝑘 > 𝑘𝑖 ,

Δ
𝑖 ,𝑘
𝑒𝑝 = 0.

Remark 6.1. In the first scenario, the linked sequence, updated at the extreme point step, matches
the set of iterates generated by a single-objective derivative-free trust-region method, when applied
to the objective function component 𝑓𝑖 . Stationarity is then guaranteed for 𝑓𝑖 and the corresponding
limit point is a Pareto critical point. The proof is similar to the single-objective derivative-free
trust-region case (see [8]).

Remark 6.2. In the second scenario, define 𝑘𝑒𝑝 = max{𝑘𝑖 | 𝑖 = 1, ..., 𝑞}. For 𝑘 > 𝑘𝑒𝑝 , it holds
Δ
𝑖 ,𝑘
𝑒𝑝 = 0, ∀𝑖 = 1, ..., 𝑞. Therefore, for 𝑘 > 𝑘𝑒𝑝 , all points of the linked sequence have been generated

in the scalarization step. The remaining analysis focuses on this situation.

Two lemmas are presented below to clarify the behavior of MOTRDFO in cases where
the current point is not Pareto critical.

Lemma 6.8. Let Assumptions 6.1 and 6.3 hold. Suppose that at the scalarization step iteration 𝑘,
for 𝑖 ∈ {1, ..., 𝑞}, 𝑥 𝑖 ,𝑘𝑠𝑐 is not a Pareto critical point and

Δ
𝑖 ,𝑘
𝑠𝑐 ≤

𝜅𝜙𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 )(1 − 𝜂2
𝑠𝑐)

𝜅𝑣
, (6.13)

with 𝜅𝑣 = max{𝜅 𝑓 𝑚 , 𝜅ℎ}. Then the pair (𝑘, 𝑖) corresponds to a very successful scalarization step
iteration, and Δ

𝑖 ,𝑘∗
𝑠𝑐 > Δ

𝑖 ,𝑘
𝑠𝑐 .

The following lemma establishes that when 𝑥 𝑖 ,𝑘𝑠𝑐 is not Pareto critical, the trust-region
radius of the scalarization step cannot be arbitrarily small. Specifically, it must be bounded
from below by a strictly positive constant.
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Lemma 6.9. Let Assumptions 6.1 and 6.3 hold, and consider the constant 𝜎 > 0. If 𝜔(𝑥 𝑖 ,𝑘𝑠𝑐 ) ≥ 𝜎

holds for the pair (𝑘, 𝑖), with 𝑘 a scalarization step iteration and 𝑖 ∈ {1, ..., 𝑞}, then there is a
constant Δ > 0, depending on 𝜎, such that Δ𝑖 ,𝑘𝑠𝑐 ≥ Δ.

Taking into account Remarks 6.1 and 6.2, the subsequent lemma presents a convergence
result for linked sequences of MOTRDFO, having only a finite number of successful
iterations executed during the scalarization step.

Lemma 6.10. Suppose that Assumptions 6.1 and 6.3 hold. Let {𝑥𝑘}𝑘∈𝐾 be a linked sequence
generated by MOTRDFO at the scalarization step, with finitely many successful iterations at the
scalarization step. Then this linked sequence converges to a Pareto critical point.

The following lemma elucidates the convergence analysis when a linked sequence
encompasses an infinite number of distinct points generated during the scalarization step.

Lemma 6.11. Suppose that Assumptions 6.1 and 6.3 hold. Let {𝑥𝑘}𝑘∈𝐾 be a linked sequence of
points generated by MOTRDFO, with infinitely many successful iterations at the scalarization
step. Then

lim inf
𝑘→+∞ ; 𝑘∈𝐾

𝜔(𝑥𝑘) = 0.

We are now prepared to establish the main result for the linked sequences generated
by MOTRDFO.

Theorem 6.1. Let Assumptions 6.1 and 6.3 hold. For every linked sequence of points {𝑥𝑘}𝑘∈𝐾
generated by MOTRDFO, we have

lim
𝑘→+∞ ; 𝑘∈𝐾

𝜔(𝑥𝑘) = 0.

6.3 Numerical results

To demonstrate the efficiency and robustness of MOTRDFO, we conducted a compara-
tive analysis of its performance against other multiobjective derivative-free optimization
solvers that intrinsically attempt to generate approximations to the complete Pareto front of
problems. Our goal is to illustrate that MOTRDFO is competitive. For this purpose, three
solvers, which are based on a wide variety of techniques in multiobjective derivative-free
optimization, were selected as follows:

• MOIF which proposes an implicit filtering algorithm for multiobjective derivative-
free optimization [6];

• BoostDMS which uses polynomial models in the multiobjective framework of direc-
tional direct search [4];

• DMultiMADS which is based on mesh adaptive direct multisearch for black-box
multiobjective optimization [3].
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The codes for MOTRDFO, MOIF, and BoostDMS were implemented in MATLAB
(version R2021b was considered). The codes for DMultiMADS were implemented in Julia
(version 1.7.2 was considered).

The minimization subproblems of MOTRDFO, defined at the extreme point and
scalarization steps, were solved with the MATLAB function fmincon.m.

While MOTRDFO was initially outlined and analyzed for unconstrained multiobjective
optimization, the algorithmic description can be readily adapted to accommodate bound
constraints. This can be achieved by incorporating these constraints into the subproblems
that need to be solved.

Test problems

As a test set, we utilized 54 twice continuously differentiable bound constrained multiob-
jective optimization problems, available at

https://docentes.fct.unl.pt/algb/pages/problems-collections,

encompassing a range of variables from 1 to 30, involving 2 or 3 objective function
components. A complete list of the problems along with their respective dimensions is
presented in Table 5.1.

Numerical settings

MOTRDFO was run with the parameters𝜇1 = 0.5,𝜇2 = 2, 𝜂1
𝑒𝑝 = 𝜂1

𝑠𝑐 = 0.001, 𝜂2
𝑒𝑝 = 𝜂2

𝑠𝑐 = 0.9,
Δ𝑖𝑛𝑖𝑡𝑒𝑝 = (1, ..., 1)⊤ ∈ R𝑞 , and Δ𝑖𝑛𝑖𝑡𝑠𝑐 = 1. Regarding the update of the trust-region radius
during very successful iterations, it was only increased if the trust region’s boundary
was reached. In this case, a maximum value of Δ𝑚𝑎𝑥 = ∥𝑢 − 𝑙∥/2 was allowed, where
𝑢 and 𝑙 represent the upper and lower bounds of the problem variables, respectively.
The algorithm was initialized with a single point, specifically the centroid of the feasible
region. For each problem, the approximation of the Pareto front generated by MOTRDFO
corresponds to all the current feasible nondominated points, which are stored in the list 𝐿.

The parameters which were used to build models, as described in Section 6.1.1, were
configured with 𝑟 = 10 and 𝑐𝑜𝑛𝑑𝑡𝑜𝑙 = 1000.

All default settings were retained for MOIF, BoostDMS, and DMultiMADS solvers.
Regarding MOTRDFO, the minimum trust-region radius values Δ𝑚𝑖𝑛𝑒𝑝 = Δ𝑚𝑖𝑛𝑠𝑐 = 10−3

were set as stopping criterion, with componentwise consideration for Δ𝑒𝑝 . Three distinct
budgets were considered in terms of function evaluations, with values of 500, 5000, and
20000.

In terms of stopping criteria, we kept all the default values for the MOIF, BoostDMS,
and DMultiMADS solvers. However, we experimented with three different budgets of
function evaluations.
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6.3.1 Comparing MOTRDFO with other algorithms

In order to demonstrate the competitiveness of MOTRDFO in comparison to other solvers,
we utilized performance profiles, described in Section 4.5, by considering purity, hyper-
volume, and spread (Γ and Δ) metrics.

The results comparing MOTRDFO and MOIF can be found in Figures 6.1 and 6.2. It is
clear the advantage of MOTRDFO over MOIF in terms of purity and Γ metrics, for both
efficiency and robustness, independent of the allowed budget of function evaluations.
Regarding hypervolume, for smaller budgets of function evaluations, MOTRDFO is also
competitive both for efficiency and robustness. When this budget grows up, MOIF
performs more efficiently, considering the hypervolume metric, although both solvers are
comparably as robust as each other. MOTRDFO also outperforms MOIF, with remarkably
good results, in terms of efficiency, considering the uniformity of the distribution of points
across the approximation to the Pareto front.
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Figure 6.1: Comparing MOTRDFO and MOIF based on performance profiles of purity
and hypervolume metrics. Budgets of 500, 5000, and 20000 function evaluations were
allowed.

Figures 6.3 and 6.4 report the comparison between MOTRDFO and BoostDMS. Clearly,
MOTRDFO outperforms BoostDMS in terms of efficiency for purity and spread metrics.
The performance profiles are also very close in terms of robustness for purity and Γmetrics,
with the exception of purity for small budget of function evaluations, where MOTRDFO
again presents a better performance against BoostDMS. Considering the hypervolume
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Figure 6.2: Comparing MOTRDFO and MOIF based on performance profiles of Γ and Δ

metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

metric, BoostDMS is more efficient, where the results are close in terms of robustness.
Finally, MOTRDFO’s numerical performance was assessed against DMultiMADS,

where Figures 6.5 and 6.6 report the obtained results. It is clear the advantage of MOTRDFO
over DMultiMADS, in terms of efficiency for purity and spread metrics. Regarding
hypervolume, DMultiMADS is more efficient, where the results are close in terms of
robustness. With reference to robustness in the purity case, for the smaller budget
of function evaluations, MOTRDFO is also competitive, but when this budget grows
up DMultiMADS performs better. The results are very close in terms of robustness
corresponding to the Γ metric, the exception appears in the case of large budget of
function evaluations where MOTRDFO performs better. With respect to the Δ metric, the
advantage of MOTRDFO is also clear.

Table 6.1 provides the number of feasible nondominated points obtained by MOTRDFO
and MOIF for a maximum budget of 5000 function evaluations. The table combines the
lists of feasible nondominated points generated by both solvers for each problem, with
dominated points being removed from the final count. Tables 6.2 and 6.3 present the
equivalent results for MOTRDFO compared to BoostDMS and DMultiMADS, respectively,
using the same budget of function evaluations.

Figures 6.7 and 6.8 depict the final approximations of the Pareto fronts achieved by
MOTRDFO and MOIF for two biobjective and two triobjective problems, respectively. A
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Figure 6.3: Comparing MOTRDFO and BoostDMS based on performance profiles of purity
and hypervolume metrics. Budgets of 500, 5000, and 20000 function evaluations were
allowed.

maximum budget of 5000 function evaluations was taken into account. Similarly, Fig-
ures 6.9 and 6.10 present the corresponding results obtained by MOTRDFO and BoostDMS.
Additionally, we provide the results for the Pareto fronts obtained by MOTRDFO and
DMultiMADS through Figures 6.11 and 6.12.

87



CHAPTER 6. A CLASS OF TRUST-REGION METHODS FOR MULTIOBJECTIVE
DERIVATIVE-FREE OPTIMIZATION

5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  performance profile 

MOTRDFO

BoostDMS

(a) 500

5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  performance profile 

MOTRDFO

BoostDMS

(b) 5000

5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  performance profile 

MOTRDFO

BoostDMS

(c) 20000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  performance profile 

MOTRDFO

BoostDMS

(d) 500

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  performance profile 

MOTRDFO

BoostDMS

(e) 5000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  performance profile 

MOTRDFO

BoostDMS

(f) 20000

Figure 6.4: Comparing MOTRDFO and BoostDMS based on performance profiles of Γ
and Δ metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

88



6.3. NUMERICAL RESULTS

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTRDFO

DMultiMADS

(a) 500

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTRDFO

DMultiMADS

(b) 5000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTRDFO

DMultiMADS

(c) 20000

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTRDFO

DMultiMADS

(d) 500

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTRDFO

DMultiMADS

(e) 5000

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTRDFO

DMultiMADS

(f) 20000

Figure 6.5: Comparing MOTRDFO and DMultiMADS based on performance profiles of
purity and hypervolume metrics. Budgets of 500, 5000, and 20000 function evaluations
were allowed.
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Figure 6.6: Comparing MOTRDFO and DMultiMADS based on performance profiles of Γ
and Δ metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.
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Figure 6.7: Approximations to the Pareto fronts of problems L2ZDT2 and lovison4,
obtained by solvers MOTRDFO and MOIF, for a budget of 5000 function evaluations.
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Table 6.1: Number of feasible nondominated points in the final approximation of the
Pareto front, generated for each problem by MOTRDFO and MOIF, considering a budget
of 5000 function evaluations.

Problem MOTRDFO MOIF Problem MOTRDFO MOIF

BK1 3478 159 CL1 1649 151
Deb41 2830 415 Deb513 1245 427
Deb521b 4674 355 DG01 2455 915
DPAM1 1 76 DTLZ1 2136 249
DTLZ1n2 2909 16 DTLZ2 1445 150
DTLZ2n2 4126 307 DTLZ3 2155 146
DTLZ3n2 2294 33 DTLZ4 0 18
DTLZ4n2 1155 248 DTLZ6 1505 79
DTLZ6n2 2183 129 ex005 4749 740
Far1 991 262 Fonseca 3515 13
IKK1 4607 615 IM1 4699 747
Jin1 3078 203 Jin3 4921 491
L2ZDT2 1620 0 L3ZDT2 0 1
lovison1 3354 227 lovison2 2321 510
lovison3 2093 281 lovison4 3553 146
lovison5 302 100 lovison6 395 46
LRS1 4003 108 MHHM1 3698 94
MHHM2 4358 860 MLF1 4239 389
MLF2 4025 470 MOP1 4137 16
MOP2 1063 63 MOP3 968 575
MOP5 2535 531 MOP6 1245 427
MOP7 2579 762 SK1 4988 1252
SK2 931 40 SP1 3652 98
SSFYY1 3533 132 SSFYY2 2389 630
TKLY1 318 228 VFM1 3339 1442
VU1 3008 164 VU2 4945 835
ZDT2 903 24 ZLT1 608 113
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Table 6.2: Number of feasible nondominated points in the final approximation of the
Pareto front, generated for each problem by MOTRDFO and BoostDMS, considering a
budget of 5000 function evaluations.

Problem MOTRDFO BoostDMS Problem MOTRDFO BoostDMS

BK1 3476 1947 CL1 524 1163
Deb41 2820 1559 Deb513 1283 171
Deb521b 4914 680 DG01 2483 471
DPAM1 1 364 DTLZ1 2135 254
DTLZ1n2 3200 185 DTLZ2 1456 578
DTLZ2n2 4181 1368 DTLZ3 2170 42
DTLZ3n2 2536 236 DTLZ4 0 56
DTLZ4n2 1164 26 DTLZ6 1212 193
DTLZ6n2 2183 341 ex005 4747 997
Far1 940 1622 Fonseca 2781 2054
IKK1 4625 2972 IM1 4751 1853
Jin1 3125 2160 Jin3 4931 690
L2ZDT2 1510 1 L3ZDT2 0 1
lovison1 3352 2041 lovison2 2321 697
lovison3 2092 1549 lovison4 3550 913
lovison5 175 1150 lovison6 262 723
LRS1 3781 212 MHHM1 3761 16
MHHM2 4299 3608 MLF1 4959 1054
MLF2 4013 961 MOP1 4958 1277
MOP2 464 733 MOP3 1220 733
MOP5 2539 603 MOP6 1283 171
MOP7 2555 1652 SK1 3750 4787
SK2 957 532 SP1 3649 882
SSFYY1 3527 1493 SSFYY2 2484 1030
TKLY1 360 813 VFM1 3418 4253
VU1 2987 1615 VU2 4945 1516
ZDT2 863 137 ZLT1 610 850
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Table 6.3: Number of feasible nondominated points in the final approximation of the
Pareto front, generated for each problem by MOTRDFO and DMultiMADS, considering a
budget of 5000 function evaluations.

Problem MOTRDFO DMultiMADS Problem MOTRDFO DMultiMADS

BK1 3481 397 CL1 702 651
Deb41 0 526 Deb513 1283 1582
Deb521b 4912 1062 DG01 2319 4742
DPAM1 2 162 DTLZ1 2152 54
DTLZ1n2 3398 830 DTLZ2 1456 111
DTLZ2n2 4331 405 DTLZ3 2173 3
DTLZ3n2 2760 760 DTLZ4 0 43
DTLZ4n2 1119 755 DTLZ6 1423 224
DTLZ6n2 2181 858 ex005 4749 1090
Far1 767 811 Fonseca 3228 576
IKK1 4625 2020 IM1 4757 936
Jin1 3137 586 Jin3 4930 988
L2ZDT2 1510 1 L3ZDT2 0 1
lovison1 3355 369 lovison2 2317 1196
lovison3 2092 1138 lovison4 3554 145
lovison5 172 813 lovison6 185 693
LRS1 4380 920 MHHM1 1326 1953
MHHM2 4338 2259 MLF1 0 4962
MLF2 4016 1038 MOP1 4906 4889
MOP2 472 712 MOP3 981 1347
MOP5 2535 1198 MOP6 1283 1582
MOP7 2600 1918 SK1 3750 4930
SK2 104 794 SP1 3652 352
SSFYY1 3531 345 SSFYY2 2481 4926
TKLY1 324 217 VFM1 3450 3232
VU1 3005 1209 VU2 4942 2071
ZDT2 909 121 ZLT1 611 70
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(a) Problem: DTLZ3 (b) Problem: IKK1

Figure 6.8: Approximations to the Pareto fronts of problems DTLZ3 and IKK1, obtained
by solvers MOTRDFO and MOIF, for a budget of 5000 function evaluations.
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Figure 6.9: Approximations to the Pareto fronts of problems L2ZDT2 and lovison4,
obtained by solvers MOTRDFO and BoostDMS, for a budget of 5000 function evaluations.
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(a) Problem: DTLZ3 (b) Problem: IKK1

Figure 6.10: Approximations to the Pareto fronts of problems DTLZ3 and IKK1, obtained
by solvers MOTRDFO and BoostDMS, for a budget of 5000 function evaluations.

0 5 10 15 20 25 30 35

f
1

-50

-40

-30

-20

-10

0

10

f
2

Problem: L2ZDT2  

MOTRDFO

DMultiMADS

(a) Problem: L2ZDT2

-5 0 5 10 15 20 25 30 35 40

f
1

0

5

10

15

20

25

30

35

40

f
2

Problem: lovison4

MOTRDFO

DMultiMADS

(b) Problem: lovison4

Figure 6.11: Approximations to the Pareto fronts of problems L2ZDT2 and lovison4, ob-
tained by solvers MOTRDFO and DMultiMADS, for a budget of 5000 function evaluations.
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(a) Problem: DTLZ3 (b) Problem: IKK1

Figure 6.12: Approximations to the Pareto fronts of problems DTLZ3 and IKK1, obtained
by solvers MOTRDFO and DMultiMADS, for a budget of 5000 function evaluations.
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7

Conclusions and open questions

This thesis introduced the MOTR algorithm, a novel approach based on trust-region meth-
ods, aimed at computing approximations of the complete Pareto front for multiobjective
optimization problems. The algorithm comprises two key steps: the extreme point step
and the scalarization step, executed alternately. In the extreme point step, the algorithm
strives to reach the extreme points of the Pareto front, while the scalarization step focuses
on reducing large gaps within the Pareto front.

To address the task of reducing the size of gaps within the Pareto front, a novel strategy
was implemented within the scalarization step. This strategy involved the computation of
middle points, which were carefully computed to effectively close the gaps and improve
the overall coverage of the Pareto front, by solving appropriate scalarization problems.

The algorithm MOTR effectively addressed the challenges associated with conflicting
objective function components by individually considering each objective function com-
ponent in each extreme point or scalarization step. This approach allowed the algorithm
to handle the conflicting nature of the objectives and make informed decisions based on
their individual contributions.

By harnessing the derivative information of the objective function, the algorithm
employed the computation and minimization of Taylor models throughout its execution.
This approach allowed for the generation of high-quality models that were closely aligned
with the true objective function components. The utilization of Taylor models enabled
the algorithm to capture and incorporate valuable information regarding the behavior
and characteristics of the objective function, enhancing the accuracy and fidelity of the
computed approximations. This utilization of derivative information played a critical role
in improving the overall quality and reliability of the algorithm’s results.

Considering the computationally expensive nature of the objective functions, special
attention was given to managing the number of function evaluations in order to optimize
the algorithm’s performance. Efforts were made to implement control mechanisms
that effectively limited the frequency of function evaluations without compromising
the accuracy or quality of the results. By carefully managing the number of function
evaluations, the algorithm could strike a balance between computational efficiency and
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achieving satisfactory approximations of the complete Pareto front. This optimization
strategy played a vital role in enhancing the overall performance of the algorithm, making it
more efficient andeffective in solving multiobjective optimization problems withexpensive
objective functions.

A comprehensive convergence analysis was conducted on linked sequences of points
generated by the MOTR algorithm. This analysis provided valuable insights into the
behavior and properties of the algorithm’s solution process. The analysis established a
significant result, demonstrating that any limit point attained by these linked sequences
of points corresponds to a Pareto critical point. In other words, as the algorithm iteratively
progresses and generates these linked sequences of points, the convergence toward Pareto
critical points is guaranteed. This finding reinforces the reliability and effectiveness of the
MOTR algorithm in identifying and approximating points on the Pareto front, contributing
to its credibility as a robust solution approach for multiobjective optimization problems.

The significance and effectiveness of each step within the MOTR algorithm were
substantiated through numerical experiments. These experiments shed light on the crucial
role played by each component of MOTR in ensuring robust numerical performance.
The findings underscored that the algorithm’s overall performance heavily relies on
the successful execution and integration of these individual steps. Consequently, the
numerical experiments reinforced the notion that the completeness and proper functioning
of each component are indispensable in guaranteeing the overall efficacy of MOTR in
approximating the complete Pareto front of multiobjective optimization problems.

Furthermore, to assess the competitiveness of the MOTR algorithm, a thorough perfor-
mance comparison was conducted against a state-of-the-art multiobjective optimization
solver. The selected benchmark solver inherently aims to generate approximations of the
complete Pareto front for a given problem. The results of this comparison showcased the
algorithm’s competitiveness, demonstrating its ability to produce comparable or superior
approximations when compared to the established benchmark solver. This validation
further validates the robustness and efficiency of the MOTR algorithm as a cutting-edge
solution approach for multiobjective optimization problems.

Subsequently, the original algorithm was modified, resulting in MOTRDFO, a com-
prehensive approach based on trust-region methods for computing approximations of
complete Pareto fronts in multiobjective derivative-free optimization problems. In this
case, the availability of derivatives within the algorithm was assumed to be nonexistent,
and estimation was not performed. Consequently, Taylor models could not be employed.
Instead, a novel strategy based on polynomial interpolation and minimum Frobenius
norm approaches was applied to build accurate and reliable models, even in the absence
of derivative information.

The convergence analysis for MOTRDFO was conducted, taking into account the chal-
lenge of lacking derivative information for the objective function, which added complexity
to the analysis. However, despite this challenge, it was successfully demonstrated that each
limit point derived from the algorithm’s linked sequences of points represents a Pareto
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critical point. This result highlights the algorithm’s ability to converge towards critical
points on the Pareto front, even in the absence of derivative information. The rigorous
convergence analysis solidifies the credibility and effectiveness of MOTRDFO as a robust
solution method for multiobjective derivative-free optimization problems, reaffirming its
capability to provide accurate approximations of the complete Pareto front.

The numerical competitiveness of MOTRDFO was evaluated through computational
experiments, comparing its performance to other well-established state-of-the-art solvers
for multiobjective derivative-free optimization. The selected solvers, like MOTRDFO,
aim to generate approximations of the complete Pareto front for a given problem. The
results of the comparative analysis provided strong evidence of MOTRDFO’s ability to
deliver competitive results and established its position as a competitive solver for mul-
tiobjective derivative-free optimization problems, capable of generating comprehensive
approximations of the complete Pareto fronts.

In terms of future research directions, there are several avenues to be explored. One
potential area of study is the extension of the proposed algorithm to handle constrained
multiobjective derivative-based or derivative-free optimization problems, encompassing
both linear and nonlinear constraints. The incorporation of constraints adds another layer
of complexity and requires effective techniques to efficiently handle the trade-off between
conflicting objectives while satisfying the imposed constraints.

The exploration of quasi-Newton approaches in model computation is also worth
being investigated. In derivative-based optimization, these approaches would avoid the
use of the Hessian matrix and could be particularly relevant in a derivative-free setting,
only requiring a linear model, computed through numerical interpolation.

Another promising avenue is the application of the developed methods to solve
practical multiobjective derivative-based or derivative-free optimization problems in di-
verse domains of science and industry. By adapting the algorithms to specific problem
domains, valuable insights can be gained, and real-world challenges can be effectively
addressed. Exploring these future directions holds great potential for advancing the field
of multiobjective optimization and broadening the practical applicability of the proposed
algorithms.
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