
A trust-region approach for computing Pareto fronts in

Multiobjective Optimization

A. Mohammadi ∗ A. L. Custódio †

July 17, 2023

Abstract

Multiobjective optimization is a challenging scientific area, where the conflicting nature of
the different objectives to be optimized changes the concept of problem solution, which is no
longer a single point but a set of points, namely the Pareto front. In a posteriori preferences
approach, when the decision maker is unable to rank objectives before the optimization, it is
important to develop algorithms that generate approximations to the complete Pareto front
of a multiobjective optimization problem, making clear the trade-offs between the different
objectives.

In this work, an algorithm based on a trust-region approach is proposed to approximate
the set of Pareto critical points of a multiobjective optimization problem. Derivatives are
assumed to be known, allowing the computation of Taylor models for the different objective
function components, which will be minimized in two main steps: the extreme point step and
the scalarization step. The goal of the extreme point step is to expand the approximation
to the Pareto front, by moving towards the extreme points of it, corresponding to the indi-
vidual minimization of each objective function component. The scalarization step attempts
to reduce the gaps on the Pareto front, by solving adequate scalarization problems. The
convergence of the method is analyzed and numerical experiments are reported, indicating
the relevance of each feature included in the algorithmic structure and its competitiveness,
by comparison against a state-of-art multiobjective optimization algorithm.

Keywords: Multiobjective optimization, trust-region methods, Taylor models, scalarization
techniques, Pareto front.

1 Introduction

Multiobjective optimization is an important field of research, strongly connected with applica-
tions. Examples of multiobjective optimization problems appear in different scientific domains
such as engineering, environment, finance, or medicine [1, 2, 25, 29]. It is common to have more
than one objective to optimize, being these objectives conflicting among each other. In this
situation, the problem solution is no longer a single point, but it is now a set of points, for which

∗NOVA School of Science and Technology, Center for Mathematics and Applications (NOVA MATH), Campus
de Caparica, 2829-516 Caparica, Portugal. E-mail: a.mohammadi@campus.fct.unl.pt.
†Department of Mathematics, Center for Mathematics and Applications (NOVA MATH), NOVA School of

Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal. E-mail: alcustodio@fct.unl.pt.

1

it is not possible to improve one objective, without deteriorating the value of another, known as
the Pareto front of the problem.

Typical approaches to this class of problems include the use of metaheuristics, like is the
case of evolutionary algorithms, when we aim at an approximation to the complete Pareto front
of the problem [12, 21], or aggregation techniques, that combine the different objectives into
a single function, which is then optimized, generating a single point in the Pareto front of the
problem [11, 20]. General theoretical properties have not yet been established for the class of
methods based on metaheuristics. Regarding aggregation techniques, when addressing general
nonconvex problems, if the goal is to compute an approximation to the complete Pareto front,
care must be taken on the selection of an adequate scalarization technique, since the Pareto
front cannot be simply retrieved with linear combinations of the corresponding objectives [7, 8].
Recently, some algorithms based on SQP techniques were successfully proposed [3, 15] for this
task.

When the goal is just to compute a single Pareto point, many approaches can be found
in the literature, that correspond to multiobjective variants of single objective algorithms [17].
These include Steepest Descent [14], Newton’s Method [13], Quasi-Newton’s approaches [23],
among many others. Often, in the numerical experiments, algorithms are run from different
initializations in an attempt of generating different points in the Pareto front. However, there is
no guarantee of success and the algorithms do not incorporate any explicit mechanism for that
purpose.

In the present work, we will follow a trust-region approach, based on quadratic Taylor mod-
els, to develop an algorithm that computes an approximation to the complete Pareto front
of a multiobjective problem, by approximating the set of Pareto critical points. Trust-region
methods have been extensively used in single objective optimization [5], leading to competitive
implementations and commercial software [22]. The general framework of a trust-region based
algorithm is relatively simple. At each iteration, a model of the objective function is computed
and minimized in a trust-region, typically a ball around the current iterate, with a given radius.
Depending on how well the model predicts the actual decrease in the objective function value,
the model minimizer is accepted or rejected and the trust-region radius is updated.

The update rule for the trust-region radius is crucial for the success of the algorithm, both for
single objective optimization or when simultaneously minimizing different models, corresponding
to different components of the objective functions. Recently [28], encouraging numerical results
have been provided regarding an updating strategy based on the hypervolume indicator [16].
Although, no theoretical results associated with the behavior of the algorithm were provided.

Trust-region algorithms with a well-established convergence analysis were already proposed
for multiobjective optimization [4, 26, 27]. The original Newton’s method [13], developed for
convex unconstrained optimization, was extended in [4] to nonconvex problems in a trust-region
framework, by considering an additional set of linear inequality constraints that enforce descent.
This set of additional constraints is also considered in [27], but now under a nonmonotone
globalization technique. In [26], the additional constraints are not considered but a strong local
convexity assumption is needed. Quasi-Newton quadratic models are considered, where the
Hessian matrix is positive definite. All algorithms presented in [4, 26, 27] are designed to obtain
a single Pareto critical point for the multiobjective problem.

In our approach, we consider unconstrained general multiobjective optimization problems.
The proposed algorithm will use quadratic Taylor models, not necessarily convex. No additional
constraints are imposed. The algorithm incorporates an explicit strategy to compute an approx-

2

imation to the complete Pareto front of the multiobjective problem, that relies on an extreme
point step and a scalarization step. The extreme point step attempts to extend the approxima-
tion to the Pareto front by moving towards its extreme points, corresponding to the individual
minimization of each function component. The scalarization step attempts to close the gaps in
the Pareto front by selecting an adequate point and performing an aggregated minimization of
the models corresponding to the different components of the objective function.

Section 2 formalizes the problem to be addressed and details the proposed algorithmic struc-
ture. Convergence is analyzed in Section 3. Section 4 provides numerical results that illustrate
the relevance of each one of the proposed algorithmic features and compares the numerical
performance of the method against the state-of-art Multiobjective Sequential Quadratic Pro-
gramming (MOSQP) algorithm, proposed in [15]. Finally, some conclusions are presented in
Section 5.

2 Algorithm description

In this work, we are interested in solving the multiobjective optimization problem defined as:

minF (x)
s.t.x ∈ Rn, (1)

where F : Rn → Rq, F (x) = (f1(x), ..., fq(x)), n, q ∈ N, and q ≥ 2. The objective functions
fi : Rn → R, i = 1, . . . , q are assumed to be twice continuously differentiable, with available
gradients and Hessians, and conflicting among each other, meaning that it is not possible to find
a single point that simultaneously minimizes all function components. The problem solution
will be the so-called Pareto front of the problem, namely a set of nondominated points. In
multiobjective optimization, we say that point x dominates point y, and represent it by x ≺F y,
if and only if F (y)− F (x) ∈ Rq+ \ {0}.

When trying to develop an algorithm that approximates the Pareto front of a multiobjective
optimization problem, two goals should be taken into consideration: the extent of the Pareto
front, meaning the capability of being able to compute the extreme points of it, corresponding
to the individual minimization of each component of the objective function, and the density
of the Pareto front, associated with the ability of the algorithm in fulfilling the gaps between
points lying in the computed approximation to the Pareto front. The proposed Multiobjective
Trust-Region (MOTR) algorithm addresses each one of these goals with two different steps,
namely the Extreme Point Step and the Scalarization Step, which are performed at alternate
iterations. The latter will make use of an additional step, the Middle Point Step, to select the
points where scalarization problems will be solved. Algorithm 1 formalizes the main procedure.

Algorithm 1. MOTR

Input
Initial list of nondominated points L0 defined by (2).

For k = 0, 1, 2, . . .
If mod(k, 2) = 0, then go to the Extreme Point Step. Else go to the Scalarization Step.
If some stopping criterion is met, then return.

End For

3

MOTR keeps a list of nondominated points and associated quantities, defined as

L = {(xj , F (xj),∆j
ep,∆

j
sc) | j ∈ J}, (2)

where J ⊂ N is the set of indexes of the points in the list, ∆j
ep is a q × 1 vector storing at each

component the trust-region radius associated with the point and the corresponding component
of the objective function, to be used at the extreme point step, and ∆j

sc ∈ R+ represents
the trust-region radius to be used at the scalarization step. Through this work, in a clear
abuse of notation but that facilitates reading, it will be often stated xj ∈ L, meaning that
(xj , F (xj),∆j

ep,∆
j
sc) ∈ L.

In any of the two steps, points are selected from this list and quadratic Taylor models are built
centered at the selected point, to replace the different components of the objective functions.
Thus, for i = 1, . . . , q, the quadratic model mi approximating fi around a given point xstep is
defined as

mi(x) = fi(xstep) +∇fi(xstep)>(x− xstep) +
1

2
(x− xstep)>∇2fi(xstep)(x− xstep), (3)

where ∇fi(xstep) and ∇2fi(xstep) represent the gradient vector and the Hessian matrix of fi
computed at xstep.

Depending on the step, models are used in different ways, to compute new nondominated
points that are added to the list. Each time that a new point is added to the list, all dominated
points are removed from it. Sections 2.1 and 2.2 detail the extreme point and the scalarization
steps, respectively.

2.1 Extreme point step

The main goal of the extreme point step, described in Algorithm 2, is to expand the approx-
imation to the Pareto front by moving towards the extreme points of it, corresponding to the
individual minimization of each of the objective function components.

At each iteration k, for each component of the objective function fi, i = 1, ..., q, the point
xi,kep , corresponding to the minimum value of fi for the points in the list, is selected. Ties
are broken by the largest extreme point trust-region radius corresponding to fi, promoting
successful iterations. Larger trust-region radii indicate points not yet selected or successful in
their exploration. Once that xi,kep is selected, the extreme point trust-region radius corresponding
to fi is set equal to zero for all the other points in the list. They are no longer options as best
candidates for the extreme point corresponding to the selected objective function component.

The quadratic Taylor model mk
i (3), centered at xi,kep , is computed and an iteration of a single

objective trust-region algorithm is performed. The model is minimized in B(xi,kep ,∆
i,k
ep (i)), the

closed ball centered at xi,kep with radius ∆i,k
ep (i).

The ratio of agreement between the decrease obtained in the model and the variation obtained
in the corresponding objective function component, ρi,kep , is computed, dictating the acceptance

or rejection of the model minimizer, xi,k∗ep , and the update strategy for the trust-region radius.
Rules identical to the single objective case are adopted.

A high value of ρi,kep indicates that the model is adequately predicting the reduction in the
function value. The model minimizer will be accepted and the trust-region radius will be in-
creased. In fact, when ρi,kep > 0, the value of the objective function fi(x

i,k∗
ep) is smaller than the

4

Algorithm 2. Extreme point step

Input
Current list of nondominated points Lk, defined by (2).
The minimum trust-region radius value ∆min

ep .

Values for the parameters 0 < η1
ep ≤ η2

ep < 1 and 0 < µ1 < 1 < µ2.

L = Lk
For i = 1, ..., q

1. Selection of an iterate point

Select (xi,kep , F (xi,kep),∆i,k
ep ,∆

i,k
sc) ∈ L such that xi,kep ∈ arg minx∈L fi(x). Break ties by

selecting the point with maximum extreme point trust-region radius corresponding to fi.

For all points xj in L, except the selected one, set ∆j
ep(i) = 0.

If ∆i,k
ep (i) < ∆min

ep , stop the procedure and continue to the next i.

2. Step calculation

Compute the model function mk
i , centered at xi,kep , and xi,k∗ep ∈ arg min

x∈B(xi,kep ,∆
i,k
ep (i))

mk
i (x).

If mk
i (x

i,k
ep)−mk

i (x
i,k∗
ep) = 0 then set ρi,kep = 0. Else, set ρi,kep =

fi(x
i,k
ep)−fi(xi,k∗ep)

mk
i (xi,kep)−mk

i (xi,k∗ep)
.

3. Trial point acceptance and trust-region update

If ρi,kep ≥ η1
ep then:

Set ∆i,k∗
ep = ∆i,k

ep and ∆i,k∗
sc = ∆i,k

sc .

If ρi,kep ≥ η2
ep then set ∆i,k∗

ep (i) = µ2 ∗∆i,k
ep (i).

Set ∆i,k
ep (i) = 0.

Add the new point to the list, by setting L := L ∪ {(xi,k∗ep , F (xi,k∗ep),∆i,k∗
ep ,∆i,k∗

sc)} and
delete the dominated points from it.

Else, set ∆i,k
ep (i) := µ1 ∗∆i,k

ep (i).
End For
Lk+1 = L

one of fi(x
i,k
ep). Thus, it is clear that xi,k∗ep is nondominated by all points in the list Lk. The

point is added to the list, and all dominated points are removed from it. If ρi,kep is low, then xi,k∗ep

will not be accepted and the trust-region radius will be decreased, in an attempt of conferring
more quality to the Taylor model as approximation to the real function component.

When mk
i (x

i,k
ep) −mk

i (x
i,k∗
ep) = 0, preventing the computation of the agreement ratio, there

was no model improvement, meaning that the current model center xi,kep is the model minimizer.

At this situation, ρi,kep is set equal to zero, forcing the decrease of the trust-region radius and the
agreement between the Taylor model and the objective function component.

The described procedure for point acception/rejection and the update of the trust-region

radius is identical to the single objective case. However, there is the possibility of xi,kep continue
to be a nondominated point and still remain in the list. In this situation, it is no longer a
candidate as extreme point of the objective function component fi. Thus, ∆i,k

ep (i) is set equal to

5

zero.

2.2 Scalarization step

In the scalarization step, there is an attempt of filling the gaps in the current approximation to
the Pareto front by selecting points associated with the largest gap for the objective function
component under analysis. An adequate scalarization problem is solved and the corresponding
minimizer is added to the list, if nondominated.

For each component of the objective function, fi, a point xi,ksc , i = 1, ..., q is selected, following
the procedure described in Algorithm 3.

Algorithm 3. Middle point step

Input
Current list of nondominated points L, defined by (2).
Current objective function component i ∈ {1, ..., q}.
The minimum trust-region radius value ∆min

sc .
The initial trust-region radius values ∆init

ep and ∆init
sc .

1. Compute and sort the gaps
Sort {fi(x) |x ∈ L} by increasing value. Compute the gaps between consecutive values
of the sorted fi and order them by decreasing value. Break ties according to the largest
scalarization step trust-region radius, corresponding to the points associated with the gaps.

For all gaps, starting from the largest one
2. Compute the middle point
If for at least one point of the pair associated with the gap, the corresponding
trust-region radius associated to the scalarization step satisfies ∆sc ≥ ∆min

sc then:
Compute xmiddle, the middle point of the pair in the variable space.

Else, continue to the next gap.

3. Test the middle point
If xmiddle ∈ L, with the corresponding trust-region radius associated to the
scalarization step satisfying ∆sc ≥ ∆min

sc then:

Set xi,ksc = xmiddle and return.
Else if xmiddle /∈ L and is nondominated then:

Set xi,ksc = xmiddle, add it to the list by setting L := L ∪ {(xi,ksc , F (xi,ksc),∆init
ep ,∆init

sc)},
delete the dominated points from it, and return.

Else, continue to the next gap.
End For

In the middle point step, there is an attempt of identifying the largest gap in the Pareto
front, according to the objective function component under analysis, and filling it by considering
the middle point of the line segment associated with the points defining the gap as the new
iterate, xi,ksc . In case of ties between gaps, priority is given to the ones associated with the
larger scalarization step trust-region radius, again promoting the progress of the algorithm. The

6

procedure is repeated until a nondominated point has been found for the function component
under analysis or all the gaps have been exhausted. In the last case, the algorithm moves to the
next objective function component. As it will be illustrated in the numerical results, reported
in Section 4, this strategy is one of the key features of the new algorithm.

Once that xi,ksc is selected, models are built for each objective function component, centered
at the new point. A joint minimization of the models is performed, by solving the following
scalarization problem, computing the new point xi,k∗sc :

min t

s.t. mk
l (x)−mk

l (x
i,k
sc) ≤ t, l = 1, ..., q,

x ∈ B(xi,ksc ,∆
i,k
sc),

t ∈ R.

(4)

A similar scalarization approach was considered in [26] and [4], in the last case enriched with
an extra set of linear inequality constraints. Positive definite Hessians are required by [26], for
the theoretical analysis of the algorithm. In both cases, the proposed algorithms generate a
single point, with no explicit attempt of computing any approximation to the complete Pareto
front of the problem.

The criterion for accepting xi,k∗sc and the update rules for the scalarization step trust-region
radius are the ones of [30, 31]. The auxiliary functions φ(x) = maxj=1,...,q fj(x) and φkm(x) =
maxj=1,...,qm

k
j (x) are defined and used to compute the ratio

ρi,ksc =
φ(xi,ksc)− φ(xi,k∗sc)

φkm(xi,ksc)− φkm(xi,k∗sc)
.

In [30] it is established that when ρi,ksc > 0, descent is guaranteed for at least one component of

the objective function. When the denominator φkm(xi,ksc) − φkm(xi,k∗sc) is equal to zero, ρi,ksc is set
equal to zero, forcing the decrease of the scalarization step trust-region radius and consequently
the agreement between the models and the objective function components.

Having defined the ratio ρi,ksc , the strategy to accept/reject the new point and to update the
trust-region radius is similar to the one of any trust-region method, with the exception that
successful steps are obligatory associated to nondominated points. If ρi,ksc is large enough but
the new point is dominated, the trust-region radius is reduced to increase the model quality.
Algorithm 4 details the procedure.

7

Algorithm 4. Scalarization step

Input
Current list of nondominated points Lk, defined by (2).
The minimum trust-region radius value ∆min

sc .
Values for the parameters 0 < η1

sc ≤ η2
sc < 1 and 0 < µ1 < 1 < µ2.

L = Lk
For i = 1, ..., q

1. Selection of an iterate point
Compute p = |{x ∈ L : ∆sc ≥ ∆min

sc }|.
If p = 0 then stop the procedure and continue to the next i.

If p = 1 then set xi,ksc equal to the point in L satisfying ∆sc ≥ ∆min
sc .

If p ≥ 2 then go to the Middle Point Step to compute xi,ksc .

2. Step calculation

Compute the model functions mk
l , l = 1, ..., q, centered at xi,ksc , and xi,k∗sc by

solving the scalarization problem (4).
Define φ(x) = maxj=1,...,q fj(x) and φkm(x) = maxj=1,...,qm

k
j (x).

If φkm(xi,ksc)− φkm(xi,k∗sc) = 0 then set ρi,ksc = 0. Else compute ρi,ksc = φ(xi,ksc)−φ(xi,k∗sc)

φkm(xi,ksc)−φkm(xi,k∗sc)
.

3. Trial point acceptance and trust-region update

If ρi,ksc ≥ η1
sc and xi,k∗sc is nondominated then:

If ρi,ksc ≥ η2
sc then set ∆i,k

sc := µ2 ∗∆i,k
sc .

Set ∆i,k∗
ep = ∆i,k

ep and ∆i,k∗
sc = ∆i,k

sc .

Add the new point to the list, by setting L := L ∪ {(xi,k∗sc , F (xi,k∗sc),∆i,k∗
ep ,∆i,k∗

sc)} and
delete the dominated points from it.

Else, set ∆i,k
sc := µ1 ∗∆i,k

sc .
End For
Lk+1 = L

3 Convergence analysis

For analyzing the theoretical behavior of the algorithm, we will consider that no stoping criteria
are defined. In particular, ∆min

ep = ∆min
sc = 0. Convergence will be established for linked

sequences of points {xk}k∈K generated by MOTR, a concept introduced in [19], in a Derivative-
free Optimization setting.

Definition 3.1 Consider {Lk}k∈N the sequence of sets of nondominated points generated by
Algorithm 1. A linked sequence is a sequence {xk}k∈K , where K ⊆ N denotes the indexes of the
points belonging to the linked sequence, such that for any k ∈ K, the element (xk, F (xk),∆k

ep,∆
k
sc) ∈

Lk is generated from the element (xk−1, F (xk−1),∆k−1
ep ,∆k−1

sc) ∈ Lk−1.

8

An initial point of a linked sequence can be:

• A point in the initial list, provided by the user;

• Middle points generated by MOTR in the middle point step, such that these points are
not currently in the list and are added to the list by the algorithm.

We are going to establish that every linked sequence generated by MOTR converges to a
Pareto critical point, a necessary condition for being a solution of Problem (1), formalized in
the following definition.

Definition 3.2 Let fi : Rn → R be continuously differentiable functions, for i ∈ {1, ..., q}. A
point x∗ ∈ Rn is said to be Pareto critical for problem (1) if

∀d ∈ Rn, ∃i ∈ {1, ..., q} : ∇fi(x∗)>d ≥ 0.

The next lemma, originally stated in [14], provides a criticality measure for multiobjective
optimization.

Lemma 3.3 Let fi : Rn → R be continuously differentiable functions, for i ∈ {1, ..., q}. Define

ω(x) = − min
‖d‖≤1

max
i=1,...,q

∇fi(x)>d. (5)

The following statements hold:

• The mapping x 7→ ω(x) is continuous;

• ω(x) ≥ 0 for all x ∈ Rn;

• A point x∗ ∈ Rn is Pareto critical if and only if ω(x∗) = 0.

Under reasonable assumptions, we are going to establish that for every linked sequence
{xk}k∈K generated by MOTR,

lim
k→+∞ ; k∈K

ω(xk) = 0.

The structure of the proof follows the arguments considered by [4, 30, 31].
For i ∈ {1, ..., q}, we assume that the objective function component fi is lower bounded

and twice continuously differentiable, with uniformly bounded Hessian. Thus, function φ(x) =
maxi=1,...,q fi(x) is also lower bounded.

Assumption 3.1 For i ∈ {1, ..., q}, the Hessian matrix of the objective function component fi
is uniformly bounded, meaning that there is a constant κh > 0 such that

‖∇2fi(x)‖ ≤ κh

for all x ∈ Rn and for all i ∈ {1, ..., q}.

9

Assumption 3.1 implies that ∇fi is Lipschitz continuous, for each i ∈ {1, ..., q}. From it, we can
deduce that function ω, defined by (5), is uniformly continuous [31].

At each iteration k, for i ∈ {1, ..., q}, model mk
i , centered at xk, is a quadratic Taylor model,

again twice continuously differentiable and satisfying:

mk
i (x

k) = fi(x
k),

∇mk
i (x

k) = ∇fi(xk),

∇2mk
i (x

k) = ∇2fi(x
k).

In this paper, Bk denotes the current iteration ball, defined as

Bk = B(xk,∆k) =
{
x ∈ Rn | ‖x− xk‖ ≤ ∆k

}
,

where xk is the current iterate and ∆k represents the current trust-region radius.
Assumption 3.1 allows us to establish the well-known error bounds for Taylor models.

Lemma 3.4 Let Assumption 3.1 hold. At every iteration k, the model mk
i is valid for fi in Bk,

for all i ∈ {1, ..., q}, that is, there exists a constant κfm > 0 such that

|fi(x)−mk
i (x)| ≤ κfm∆2

k

holds for all x ∈ Bk.

Function ω, defined by equation (5), can be generalized to models through:

ωmk(x) = − min
‖d‖≤1

max
i=1,...,q

∇mk
i (x)>d.

The use of Taylor models guarantees that ωmk(xk) = ω(xk), at each iteration k, where xk

represents the point where the model was built. This equality ensures that when the iteration
point xk is Pareto critical or close to criticality for the model, the same applies to the objective
function.

To prove convergence, model minimization should provide a sufficient decrease at each iter-
ation. Following [31], for the scalarization step, we quantify the best model reduction obtained
along a direction belonging to D(x), the set of directions associated with the solution of (5),

within the trust-region Bk. For i ∈ {1, ..., q}, let d∗k ∈ D(xi,ksc) and compute αk by solving

min
α≥0
{φkm(xi,ksc + αd∗k) : xi,ksc + αd∗k ∈ Bk}. (6)

The Pareto-Cauchy point is defined as

xCk = xi,ksc + dCk , (7)

where dCk := αkd
∗
k and Bk = B(xi,ksc ,∆

i,k
sc).

Lemma 3.5 Let Assumption 3.1 hold. For i ∈ {1, ..., q} and k ∈ N, the Pareto-Cauchy point

xCk = xi,ksc + dCk , defined by (7), satisfies

φkm(xi,ksc)− φkm(xCk) ≥ 1

2
ω(xi,ksc) min

{
ω(xi,ksc)

κh
,∆i,k

sc

}
. (8)

10

Proof. Since d∗k ∈ D(xi,ksc), we have ‖d∗k‖ ≤ 1, which implies that, for all α ∈ [0,∆i,k
sc], xi,ksc +αd∗k ∈

Bk. Problem (6) has the same solution than

max
0≤α≤∆i,k

sc

{φkm(xi,ksc)− φkm(xi,ksc + αd∗k)}.

On the other hand, for all α ≥ 0, we have

φkm(xi,ksc)− φkm(xi,ksc + αd∗k) = max
j=1,...,q

mk
j (x

i,k
sc)− max

j=1,...,q
mk
j (x

i,k
sc + αd∗k)

≥ − max
j=1,...,q

α∇mk
j
>

(xi,ksc)d∗k − max
j=1,...,q

1

2
α2d∗

>
k ∇2mk

j (x
i,k
sc)d∗k.

According to (5), Assumption 3.1, ‖d∗k‖ ≤ 1, and the Cauchy-Schwarz inequality we have

φkm(xi,ksc)− φkm(xi,ksc + αd∗k) ≥ αω(xi,ksc)− 1

2
α2κh.

Then, it is clear that

max
0≤α≤∆i,k

sc

{φkm(xi,ksc)− φkm(xi,ksc + αd∗k)} ≥ max
0≤α≤∆i,k

sc

{
αω(xi,ksc)− 1

2
α2κh

}
.

In other words,

φkm(xi,ksc)− φkm(xi,ksc + dCk) ≥ max
0≤α≤∆i,k

sc

{
αω(xi,ksc)− 1

2
α2κh

}
.

Let us consider the concave function g, defined by g(α) = αω(xi,ksc)− 1

2
α2κh, with unconstrained

maximizer α∗ =
ω(xi,ksc)

κh
≥ 0, corresponding to the optimum value g(α∗) =

1

2

ω(xi,ksc)2

κh
≥ 0. Two

cases can occur:

• If 0 ≤ α∗ ≤ ∆i,k
sc then max

0≤α≤∆i,k
sc

{
αω(xi,ksc)− 1

2
α2κh

}
=

1

2

ω(xi,ksc)2

κh
;

• If α∗ > ∆i,k
sc then max

0≤α≤∆i,k
sc

{
αω(xi,ksc)− 1

2
α2κh

}
= ∆i,k

sc ω(xi,ksc)− 1

2
(∆i,k

sc)2κh.

In this last case, since α∗ =
ω(xi,ksc)

κh
> ∆i,k

sc , we have ∆i,k
sc ω(xi,ksc) − 1

2
(∆i,k

sc)2κh ≥
1

2
∆i,k
sc ω(xi,ksc),

resulting in

φkm(xi,ksc)− φkm(xCk) ≥ min

{
1

2

ω(xi,ksc)2

κh
,
1

2
∆i,k
sc ω(xi,ksc)

}
=

1

2
ω(xi,ksc) min

{
ω(xi,ksc)

κh
,∆i,k

sc

}
.

Let (xi,k∗sc , t∗) be the solution of problem (4). The following lemma states an important
property of t∗.

11

Lemma 3.6 At each iteration k and for each i ∈ {1, ..., q}, xi,ksc is not a Pareto critical point
for minx∈Bk

(mk
1(x), ...,mk

q (x)), if and only if t∗ < 0.

Proof. Since (xi,ksc , 0) is feasible for Problem (4), t∗ ≤ 0. It is clear that xi,ksc is not a Pareto
critical point when t∗ < 0.

Now, assume that xi,ksc is not a Pareto critical point. Then, it is not a weakly efficient point,
meaning that there exists a point x

′ ∈ Bk such that for all j ∈ {1, ..., q}, mk
j (x

′
) < mk

j (x
i,k
sc). So,

mk
j (x

′
)−mk

j (x
i,k
sc) < 0, ∀j ∈ {1, ..., q}.

Considering t
′

= maxj=1,...,q(m
k
j (x

′
)−mk

j (x
i,k
sc)), we have

mk
j (x

′
)−mk

j (x
i,k
sc) ≤ t′ < 0, ∀j ∈ {1, ..., q}.

Hence, t∗ should be strictly negative because (x
′
, t
′
) is feasible for Problem (4).

Lemma 3.7 Let Assumption 3.1 hold. At each iteration k and for each i ∈ {1, ..., q}, there
exists j ∈ N such that

φkm(xi,ksc)− φkm(xi,k∗sc) ≥
(

1

2

)j
ω(xi,ksc) min

{
ω(xi,ksc)

κh
,∆i,k

sc

}
,

where (xi,k∗sc , t∗) is the solution of Problem (4).

Proof. Two different cases need to be analyzed. Assume that xi,ksc is not Pareto critical.
According to Lemma 3.6, t∗ is strictly negative. So, for each l ∈ {1, ..., q}, we have

mk
l (x

i,k
sc)−mk

l (x
i,k∗
sc) ≥ −t∗ > 0.

By considering φkm(x) = maxl=1,...,qm
k
l (x), it results

φkm(xi,ksc)−mk
l (x

i,k∗
sc) ≥ mk

l (x
i,k
sc)−mk

l (x
i,k∗
sc), for all l ∈ {1, ..., q}.

Let j be the index such that φkm(xi,k∗sc) = mk
j (x

i,k∗
sc). Then

φkm(xi,ksc)− φkm(xi,k∗sc) ≥ mk
j (x

i,k
sc)−mk

j (x
i,k∗
sc).

Hence,
φkm(xi,ksc)− φkm(xi,k∗sc) ≥ −t∗ > 0. (9)

Since φkm(xi,ksc)− φkm(xCk) ≥ 0, there must exist j ∈ N such that

φkm(xi,ksc)− φkm(xi,k∗sc) ≥
(

1

2

)j−1

(φkm(xi,ksc)− φkm(xCk)).

Hence, considering (8), it implies

φkm(xi,ksc)− φkm(xi,k∗sc) ≥
(

1

2

)j
ω(xi,ksc) min

{
ω(xi,ksc)

κh
,∆i,k

sc

}
.

If xi,ksc is Pareto critical, then ω(xi,ksc) = 0. So, the right side of this inequality is equal to zero

and, since φkm(xi,ksc)− φkm(xi,k∗sc) ≥ 0, the inequality holds.

The last three lemmas motivate us to consider the following assumption, stating that, at
each scalarization step, a sufficient reduction in the model is ensured.

12

Assumption 3.2 There is a constant κφ ∈ (0, 1) such that at each iteration k, where the
scalarization step is performed, for all i ∈ {1, ..., q}, we have

φkm(xi,ksc)− φkm(xi,k∗sc) ≥ κφ ω(xi,ksc) min

{
ω(xi,ksc)

κh
,∆i,k

sc

}
. (10)

As long as xi,ksc is not Pareto critical, the left side of (10) is strictly positive.
The following lemma provides an error bound for φkm as approximation of φ and is a keystone

to establish convergence.

Lemma 3.8 Let Assumption 3.1 hold. At every iteration k, the model φkm is valid for φ at xi,k∗sc ,
for all i ∈ {1, ..., q}, that is

|φ(xi,k∗sc)− φkm(xi,k∗sc)| ≤ κfm(∆i,k
sc)2,

where κfm is defined in Lemma 3.4.

Proof. Two situations should be analyzed. Assume that φ(xi,k∗sc) ≥ φkm(xi,k∗sc). Consider

j ∈ {1, ..., q} such that φ(xi,k∗sc) = fj(x
i,k∗
sc). Using Lemma 3.4 and the fact that φkm(xi,k∗sc) ≥

mk
j (x

i,k∗
sc), we have

|φ(xi,k∗sc)− φkm(xi,k∗sc)| = fj(x
i,k∗
sc)− φkm(xi,k∗sc) ≤ fj(xi,k∗sc)−mk

j (x
i,k∗
sc) ≤ κfm(∆i,k

sc)2.

Assume now that φ(xi,k∗sc) < φkm(xi,k∗sc). Consider j ∈ {1, ..., q} such that φkm(xi,k∗sc) =

mk
j (x

i,k∗
sc). Again, Lemma 3.4 and the fact that φ(xi,k∗sc) ≥ fj(xi,k∗sc) allow us to conclude that

|φ(xi,k∗sc)− φkm(xi,k∗sc)| = mk
j (x

i,k∗
sc)− φ(xi,k∗sc) ≤ mk

j (x
i,k∗
sc)− fj(xi,k∗sc) ≤ κfm(∆i,k

sc)2.

In the remaining of the analysis, we classify the successful scalarization step iterations. The
set of indexes of successful scalarization step iterations is denoted by

S = {(k, i), k ∈ N, i ∈ {1, ..., q} : k is a scalarization step iteration and ρi,ksc ≥ η1
sc}

and the set of indexes of very successful scalarization step iterations corresponds to

V = {(k, i), k ∈ N, i ∈ {1, ..., q} : k is a scalarization step iteration and ρi,ksc ≥ η2
sc}.

Two different scenarios may occur for each linked sequence of points {xk}k∈K generated by
MOTR:

1. There exists i ∈ {1, ..., q}, such that for each k ∈ N,

∆i,k
ep > 0.

2. For each i ∈ {1, ..., q}, there exists ki ∈ N, such that for all k > ki,

∆i,k
ep = 0.

13

Remark 3.1 In the first scenario, the linked sequence, updated at the extreme point step,
matches the set of iterates generated by a single objective trust-region method, when applied to
the objective function component fi. Stationarity is then guaranteed for fi and the corresponding
limit point is a Pareto critical point. The proof is similar to the single objective trust-region case
(see [5, 18, 24]).

Remark 3.2 In the second scenario, define kep = max{ki | i = 1, ..., q}. For k > kep, it holds

∆i,k
ep = 0, ∀i = 1, ..., q. Therefore, for k > kep, all points of the linked sequence have been

generated in the scalarization step. The remaining of the analysis focuses on this situation.

The following two lemmas clarify the behavior of MOTR when the current point is not Pareto
critical.

Lemma 3.9 Let Assumptions 3.1 and 3.2 hold. Suppose that at the scalarization step iteration
k, for i ∈ {1, ..., q}, xi,ksc is not a Pareto critical point and

∆i,k
sc ≤

κφω(xi,ksc)(1− η2
sc)

κv
, (11)

with κv = max{κfm, κh}. Then the pair (k, i) corresponds to a very successful scalarization step

iteration, and ∆i,k∗
sc > ∆i,k

sc .

Proof. According to Lemma 3.3, ω(xi,ksc) > 0, because xi,ksc is not a Pareto critical point. On
the other hand, κφ, η

2
sc ∈ (0, 1). Thus, κφ(1− η2

sc) ∈ (0, 1) and

∆i,k
sc ≤

κφω(xi,ksc)(1− η2
sc)

κv
<
ω(xi,ksc)

κv
.

From Assumption 3.2, we have

φkm(xi,ksc)− φkm(xi,k∗sc) ≥ κφω(xi,ksc) min

{
ω(xi,ksc)

κh
,∆i,k

sc

}
= κφω(xi,ksc)∆i,k

sc .

Considering this inequality, the equation ρi,ksc = φ(xi,ksc)−φ(xi,k∗sc)

φkm(xi,ksc)−φkm(xi,k∗sc)
, Lemma 3.8, and (11), we have

|ρi,ksc − 1| =

∣∣∣∣∣ φkm(xi,k∗sc)− φ(xi,k∗sc)

φkm(xi,ksc)− φkm(xi,k∗sc)

∣∣∣∣∣ ≤ κfm

κφω(xi,ksc)
∆i,k
sc ≤

κv

κφω(xi,ksc)
∆i,k
sc ≤ (1− η2

sc).

Consequently, ρi,ksc ≥ η2
sc. So, the pair (k, i) corresponds to a very successful scalarization

step iteration and ∆i,k∗
sc > ∆i,k

sc .

The following lemma states that, as long as xi,ksc is not Pareto critical, the scalarization step
trust-region radius can not be too small. In fact, it should be lower bounded by a strictly positive
constant.

Lemma 3.10 Let Assumptions 3.1 and 3.2 hold and consider the constant σ > 0. If ω(xi,ksc) ≥ σ
holds for the pair (k, i), with k a scalarization step iteration and i ∈ {1, ..., q}, then there is a

constant ∆ > 0, depending on σ, such that ∆i,k
sc ≥ ∆.

14

Proof. Assume, as mean of a contradiction, that for each ∆ > 0 there is a pair (k, i), with k a

scalarization step iteration and i ∈ {1, ..., q}, satisfying ω(xi,ksc) ≥ σ > 0, such that

∆i,k
sc < ∆.

In particular, consider

∆ =
µ1σκφ(1− η2

sc)

κv
,

with κv = max{κfm, κh}. Let (k, i) be the first pair such that ω(xi,ksc) ≥ σ > 0 and

∆i,k
∗

sc <
µ1σκφ(1− η2

sc)

κv
.

Then, it holds ∆i,k
∗

sc < ∆i,k
sc . Thus,

∆i,k
sc =

∆i,k
∗

sc

µ1
<
σκφ(1− η2

sc)

κv
≤
ω(xi,ksc)κφ(1− η2

sc)

κv
.

Since point xi,ksc is not Pareto critical, according to Lemma 3.9, the pair (k, i) corresponds to a

very successful scalarization step iteration, and ∆i,k
∗

sc > ∆i,k
sc . This contradicts ∆i,k

∗

sc < ∆i,k
sc and

the initial assumption.

Considering Remarks 3.1 and 3.2, the following lemma states the first convergence result for
linked sequences of MOTR, generated at the scalarization step.

Lemma 3.11 Suppose that Assumptions 3.1 and 3.2 hold. Let {xk}k∈K be a linked sequence
generated by MOTR at the scalarization step, with finitely many successful iterations at the
scalarization step. Then this linked sequence converges to a Pareto critical point.

Proof. Assume that xk0+l = x∗ for all l ∈ N, where k0 = max{ks, kep}, ks is the index of the last
successful scalarization step iteration and kep is defined as in Remark 3.2. So, ∆k0+l

sc converges
to zero, because in the scalarization step all iterations are unsuccessful, for sufficiently large l.

Suppose that x∗ is not a Pareto critical point. According to Lemma 3.9, there must be a
very successful scalarization step iteration, with index larger than k0, which is a contradiction
because all iterations after k0 are unsuccessful. Therefore, x∗ is a Pareto critical point.

The following lemma clarifies the behavior of MOTR, when a linked sequence has an infinite
number of distinct points generated at the scalarization step.

Lemma 3.12 Suppose that Assumptions 3.1 and 3.2 hold. Let {xk}k∈K be a linked sequence of
points generated by MOTR, with infinitely many successful iterations at the scalarization step.
Then

lim inf
k→+∞ ; k∈K

ω(xk) = 0.

Proof. Suppose that lim inf
k→+∞ ; k∈K

ω(xk) 6= 0. So, there must exist a constant ε > 0 such that for

all k ∈ K,
ω(xk) ≥ ε.

15

Lemma 3.10 guarantees the existence of ∆ > 0 such that ∆k
sc ≥ ∆, for all k ∈ K.

Consider S, the set of indexes of successful scalarization step iterations, k ∈ S ∩ K, and
k > keps, where keps is the index of the first successful scalarization step iteration after kep, and
kep is defined as in Remark 3.2. Thus, ρksc ≥ η1

sc. According to Assumption 3.2, we have

φ(xk)− φ(xk+1) ≥ η1
sc(φ

k
m(xk)− φkm(xk+1))

≥ η1
scκφω(xk) min

{
ω(xk)

κh
,∆k

sc

}
≥ η1

scκφεmin

{
ε

κh
,∆

}
.

Summing over all successful iterations at the scalarization step, from keps to k results in

φ(xkeps)− φ(xk+1) =
k∑

i=keps,i∈S∩K
φ(xi)− φ(xi+1)

≥ σk η1
sc κφ ε min

{
ε

κh
,∆

}
,

where σk represents the number of successful scalarization step iterations in the linked sequence
from keps to k. It is clear that lim

k→+∞ ; k∈K
σk = +∞, because there are infinitely many such

iterations. Thus, φ(xkep)−φ(xk+1) is unbounded. So, φ(x) can not be bounded from below and
this is a contradiction. Therefore, lim inf

k→+∞ ; k∈K
ω(xk) = 0.

We are now ready to prove the main result, for linked sequences generated by MOTR.

Theorem 3.1 Let Assumptions 3.1 and 3.2 hold. For every linked sequence of points {xk}k∈K
generated by MOTR, we have

lim
k→+∞ ; k∈K

ω(xk) = 0.

Proof. Let {xk}k∈K be a linked sequence generated by MOTR. If there exists i ∈ {1, ..., q},
such that for each k ∈ N,∆i,k

ep > 0 or if for each i ∈ {1, ..., q}, there exists ki ∈ N, such that for

all k > ki,∆
i,k
ep = 0, but there are only finitely many successful iterations at the scalarization

step, Remarks 3.1, 3.2, and Lemma 3.11, guarantee the convergence of {xk}k∈K to a Pareto
critical point, which implies lim

k→+∞ ; k∈K
ω(xk) = 0, by Lemma 3.3.

Now, assume that for all k > ki,∆
i,k
ep = 0 and there is an infinite number of successful

scalarization step iterations. Suppose that there exists a subsequence of successful scalarization
step iterations, indexed by {tj > kep} ⊂ S ∩K, such that

ω(xtj) ≥ 2ε > 0, (12)

for some ε > 0 and for all j, where kep is defined as in Remark 3.2.
From Lemma 3.12, for each tj , there exists a first successful scalarization step iteration lj > tj

such that ω(xlj) < ε. Thus, there exists another subsequence of S ∩K, indexed by {lj}, such
that

ω(xk) ≥ ε for tj ≤ k < lj and ω(xlj) < ε. (13)

16

Consider the successful iterates whose indexes are in

K = {k ∈ S ∩K | ∃j ∈ N : tj ≤ k < lj},

where tj and lj belong to the two subsequences defined above.
Assumption 3.2, the fact that K ⊂ S ∩K, and inequalities (13) guarantee that, for k ∈ K,

φ(xk)− φ(xk+1) ≥ η1
sc(φ

k
m(xk)− φkm(xk+1))

≥ η1
scκφω(xk) min

{
ω(xk)

κh
,∆k

sc

}
≥ η1

scκφεmin

{
ε

κh
,∆k

sc

}
.

(14)

The sequence {φ(xk)}k∈K is convergent, since it is monotonically decreasing and bounded

from below. Thereby, lim
k→+∞ ; k∈K

(
φ(xk)− φ(xk+1)

)
= 0. Consequently, considering the mini-

mum part in the last term of (14), for k ∈ K sufficiently large, it implies that

∆k
sc ≤

1

η1
scκφε

(φ(xk)− φ(xk+1)).

Therefore, for j sufficiently large, it holds that

‖xtj − xlj‖ ≤
lj−1∑

i=tj ,i∈K
‖xi − xi+1‖

≤
lj−1∑

i=tj ,i∈K
∆i
sc

≤ 1

η1
scκφε

(φ(xtj)− φ(xlj)).

Again, the convergence of {φ(xk)}k∈K implies

lim
j→+∞

‖xtj − xlj‖ = 0.

Assumption 3.1 and the uniform continuity of ω allow us to conclude that

lim
j→+∞

|ω(xtj)− ω(xlj)| = 0,

contradicting the fact that |ω(xtj) − ω(xlj)| ≥ ε, a consequence of the definition of sequences
{tj} and {lj}, in (12) and (13).

So, no subsequence of successful iterations satisfying (12) can exist and lim
k→+∞ ; k∈K

ω(xk) = 0.

17

4 Numerical results

The numerical experiments were conducted with two main goals. The first was to illustrate
the importance of each of the key algorithmic features of MOTR, namely the extreme point
step, the scalarization step, and the middle point strategy, corresponding to Algorithms 2, 4,
and 3, respectively. Even if not required for establishing convergence, the middle point strategy
is relevant for the numerical performance of the algorithm.

With this purpose, three different versions of MOTR were implemented, each omitting one
of the above mentioned strategies:

• MOTRep: MOTR without the extreme point step;

• MOTRsc: MOTR without the scalarization step;

• MOTRmiddle: MOTR using a different strategy than the one described in Algorithm 3
to select the point where to solve the scalarization problem.

In MOTRmiddle, points are sorted according to the value of the objective function compo-
nent under analysis and an average gap is computed for each point by considering the distances
to the two closest points to it, for the objective function component under analysis. The average
gaps of the initial and final points of the sorted set of points are equal to the distance of these
points to the next or previous one, respectively. The point with the largest average gap, holding
a scalarization step trust-region radius larger than or equal to the minimum value allowed for
it, is the one selected.

A second goal of the numerical section was to compare the performance of MOTR against
other derivative-based multiobjective optimization solvers that intrinsically attempt to generate
approximations to the complete Pareto front of a multiobjective optimization problem. With
this purpose, MOSQP [15] was selected.

All codes were implemented in MATLAB (version R2021b, was considered). The minimiza-
tion subproblems of MOTR, defined at the extreme point and scalarization steps, were solved
with the MATLAB function fmincon.m.

MOTR was described and analyzed for unconstrained optimization. However, the algo-
rithmic description can be easily adapted to incorporate bound constraints, by adding these
constraints to the subproblems to be solved. Notice that for convex feasible regions, like is the
case of bound constraints, the middle point, computed using Algorithm 3, will remain feasi-
ble. Thus, as test set, we considered 54 twice continuously differentiable bound constrained
multiobjective optimization problems, available at:

https://docentes.fct.unl.pt/algb/pages/problems-collections,

with a number of variables between 1 and 30, and involving 2 or 3 objective function components.
A complete list of the problem dimensions can be found in Table 1.

MOTR was run with the parameters µ1 = 0.5, µ2 = 2, η1
ep = η1

sc = 0.001, η2
ep = η2

sc = 0.9,

∆init
ep = (1, ..., 1)> ∈ Rq, and ∆init

sc = 1. Regarding the update of the trust-region radius at
very successful iterations, this was only increased if it limited the progress of the algorithm,
meaning that the boundary of the trust-region was reached. In this case, a maximum value
of ∆max = ‖u − l‖/2 is allowed, where u and l represent the upper and lower bounds of the
problem variables. The algorithm was always initialized with a singleton, namely the centroid of

18

Table 1: The set of problems considered in the numerical experiments. For each problem, n
represents the number of variables and q is the number of components of the objective function.

Problem n q Problem n q Problem n q

BK1 2 2 CL1 4 2 Deb41 2 2
Deb513 2 2 Deb521b 2 2 DG01 1 2
DPAM1 10 2 DTLZ1 7 3 DTLZ1n2 2 2
DTLZ2 12 3 DTLZ2n2 2 2 DTLZ3 12 3
DTLZ3n2 2 2 DTLZ4 12 3 DTLZ4n2 2 2
DTLZ6 22 3 DTLZ6n2 2 2 ex005 2 2
Far1 2 2 Fonseca 2 2 IKK1 2 3
IM1 2 2 Jin1 2 2 Jin3 2 2
L2ZDT2 30 2 L3ZDT2 30 2 lovison1 2 2
lovison2 2 2 lovison3 2 2 lovison4 2 2
lovison5 3 3 lovison6 3 3 LRS1 2 2
MHHM1 1 3 MHHM2 2 3 MLF1 1 2
MLF2 2 2 MOP1 1 2 MOP2 4 2
MOP3 2 2 MOP5 2 3 MOP6 2 2
MOP7 2 3 SK1 1 2 SK2 4 2
SP1 2 2 SSFYY1 2 2 SSFYY2 1 2
TKLY1 4 2 VFM1 2 3 VU1 2 2
VU2 2 2 ZDT2 30 2 ZLT1 10 3

the feasible region. As stopping criteria, minimum trust-region radius ∆min
ep = ∆min

sc = 10−5 were
allowed, in the case of ∆ep componentwise. Three different budgets were considered in terms of
function evaluations, namely 500, 5000, and 20000. For each problem, the approximation to the
Pareto front generated by each algorithm corresponds to all the current nondominated points,
stored in the list L.

4.1 Performance assessment and metrics

As performance tool, we considered the performance profiles proposed by Dolan and Moré [10],
which allow to simultaneously assess the numerical performance of different solvers, for different
metrics. The performance of solver s ∈ S on a given set of problems P is represented by a
cumulative function

ρs(τ) =
1

|P |
|{p ∈ P : rp,s ≤ τ}| ,

where τ ≥ 1 and the performance ratio is defined by

rp,s =
tp,s

min{tp,s : s ∈ S}
.

Here tp,s represents the value of the selected metric, obtained by solver s ∈ S when solving
problem p ∈ P . Larger values of ρs(τ) indicate a better numerical performance of solver s. In
particular, the solver with the largest value of ρs(1) is the most efficient. On the other hand,
the solver with the largest value of ρs(τ) for large values of τ is the most robust.

19

Selecting a single metric to compare the performance of multiobjective optimization solvers
is always reductive, since advantages and disadvantages can be pointed to each of these indica-
tors. Considering that a good multiobjective optimization solver should be able to generate a
large percentage of nondominated points and should also be able to capture the extent of the
Pareto front of the multiobjective optimization problem, we decided to consider four metrics
that attempt to quantify these features, namely purity, hypervolume and the spread metrics Γ
and ∆.

Purity measures the percentage of nondominated points generated by a given solver

t̄p,s = Purp,s =
|Fp,s ∩ Fp|
|Fp,s|

,

where Fp,s represents the approximation to the Pareto front of problem p computed by solver
s and Fp is a reference Pareto front for problem p, computed by considering the union of the
Pareto approximations corresponding to all solvers, ∪s∈SFp,s, and discarding from it all the
dominated points [6].

Hypervolume [32], additionally to nondominance, attempts to capture spread, by measuring
the volume of the region dominated by the current approximation to the Pareto front and a
reference point Up ∈ Rq, that is dominated by all points belonging to the different approximations
computed for the Pareto front of problem p ∈ P by all solvers tested. Mathematically, it can be
formalized as:

t̄p,s = HVp,s = V ol{y ∈ Rq | y ≤ Up ∧ ∃x ∈ Fp,s : x ≤ y} = V ol

 ⋃
x∈Fp,s

[x, Up]

 ,

where V ol(.) denotes the Lebesgue measure of a q-dimensional set of points and [x, Up] denotes
the interval box with lower corner x and upper corner Up.

For computing the performance profiles, for purity and hypervolume metrics, since larger
values indicate a better performance, the inverse value of each one of the metrics was used
(tp,s = 1/t̄p,s).

Finally, to directly assess spread across the Pareto front, two additionally metrics were
considered: the Γ metric, that measures the size of the largest gap in the approximation to
the Pareto front computed, and the ∆ metric, that assesses how uniformly the nondominated
points are distributed along the approximation generated. In a simplified way, consider that
solver s ∈ S has computed, for problem p ∈ P , an approximated Pareto front with points
y1, y2, . . . , yN , to which we add the so-called extreme points, y0 and yN+1, corresponding to the
points with the best and worst values for each objective function component. Then

Γp,s = max
j∈{1,...,q}

(
max

i∈{0,...,N}
{δj,i}

)
, (15)

where δj,i = fj(yi+1)− fj(yi), assuming that the objective function values have been sorted by
increasing order for each objective function component j. Metric ∆ [9] is computed by:

∆p,s = max
j∈{1,...,q}

(
δj,0 + δj,N +

∑N−1
i=1 |δj,i − δ̄j |

δj,0 + δj,N + (N − 1)δ̄j

)
, (16)

where δ̄j , for j = 1, . . . , q, represents the average of the distances δj,i, i = 1, . . . , N − 1.

20

4.2 Adequacy of the algorithmic structure of MOTR

Performance profiles comparing MOTR and MOTRep, a version of MOTR without performing
the extreme point step, can be found in Figures 1 and 2.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile

MOTR

MOTRep

(a) 500

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile

MOTR

MOTRep

(b) 5000

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile

MOTR

MOTRep

(c) 20000

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hypervolume performance profile

MOTR

MOTRep

(d) 500

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hypervolume performance profile

MOTR

MOTRep

(e) 5000

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hypervolume performance profile

MOTR

MOTRep

(f) 20000

Figure 1: Comparing MOTR and MOTRep based on performance profiles of purity and hyper-
volume metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

21

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRep

(a) 500

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRep

(b) 5000

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRep

(c) 20000

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRep

(d) 500

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRep

(e) 5000

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRep

(f) 20000

Figure 2: Comparing MOTR and MOTRep based on performance profiles of Γ and ∆ metrics.
Budgets of 500, 5000, and 20000 function evaluations were allowed.

Figures 3 and 4 report the comparison between MOTR and MOTRsc, the latter correspond-
ing to a version of MOTR omitting the scalarization step.

22

1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTR

MOTRsc

(a) 500

1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTR

MOTRsc

(b) 5000

1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTR

MOTRsc

(c) 20000

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTR

MOTRsc

(d) 500

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTR

MOTRsc

(e) 5000

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTR

MOTRsc

(f) 20000

Figure 3: Comparing MOTR and MOTRsc based on performance profiles of purity and hyper-
volume metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

23

5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRsc

(a) 500

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRsc

(b) 5000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRsc

(c) 20000

0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRsc

(d) 500

0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRsc

(e) 5000

0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRsc

(f) 20000

Figure 4: Comparing MOTR and MOTRsc based on performance profiles of Γ and ∆ metrics.
Budgets of 500, 5000, and 20000 function evaluations were allowed.

Finally, MOTR numerical performance is assessed against MOTRmiddle, where the use of
Algorithm 3 is replaced by the strategy described in Section 4 to compute the point where to
solve the scalarization problems. Figures 5 and 6 report the obtained results.

24

1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTR

MOTRmiddle

(a) 500

1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTR

MOTRmiddle

(b) 5000

1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTR

MOTRmiddle

(c) 20000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTR

MOTRmiddle

(d) 500

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTR

MOTRmiddle

(e) 5000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTR

MOTRmiddle

(f) 20000

Figure 5: Comparing MOTR and MOTRmiddle based on performance profiles of purity and
hypervolume metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

25

5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRmiddle

(a) 500

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRmiddle

(b) 5000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRmiddle

(c) 20000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRmiddle

(d) 500

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRmiddle

(e) 5000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOTRmiddle

(f) 20000

Figure 6: Comparing MOTR and MOTRmiddle based on performance profiles of Γ and ∆
metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

It is clear the advantage of MOTR over each one of its variants, both in terms of efficiency
and robustness, for each one of the metrics considered, independently of the budget of function
evaluations allowed. The exception appears in the results for the ∆ metric, when comparing
MOTR with MOTRsc or MOTRmiddle, where MOTR continues to present a better performance
in terms of efficiency, but the results are comparable for robustness.

Although, the clear differences for the remaining metrics and for each one of the variants
tested, allow us to conclude that indeed all the three strategies incorporated in the algorithmic
structure of MOTR are essential for the good numerical performance of the solver.

4.3 Comparing MOTR with MOSQP

MOSQP was proposed in [15], incorporating in its algorithmic structure strategies to compute
approximations to the complete Pareto front of a given multiobjective optimization problem.
The solver also keeps a list of points that is updated at each iteration by solving single-objective
constrained optimization problems derived as SQP problems. In [15], the authors compared the
solver against a classical scalarization approach for biobjective problems and also genetic algo-
rithms. The numerical results reported establish the superiority of MOSQP over the remaining
solvers tested.

A MATLAB implementation of MOSQP is distributed by the authors, providing different
algorithmic choices. We selected MOSQP (H = (I,∇2f), line), which corresponds to a line

26

initialization strategy, by computing 200 initial points evenly spaced in the line segment join-
ing the lower and upper bounds of the variables, and where the identity matrix and the true
Hessians are used in the second and third algorithmic stages, respectively [15]. This version
is reported in [15] as the one that presents the best computational performance. In regard to
stopping criteria, we kept all the default values, but tried the three different budgets of function
evaluations. Again, for each problem the approximation to the Pareto front generated by each
one of the solvers corresponds to all current nondominated points, stored in the corresponding
lists.

Figures 7, 8 report the performance profiles obtained for the two solvers for purity, hyper-
volume, and the spread metrics.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTR

MOSQP

(a) 500

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTR

MOSQP

(b) 5000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity performance profile

MOTR

MOSQP

(c) 20000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTR

MOSQP

(d) 500

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTR

MOSQP

(e) 5000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypervolume performance profile

MOTR

MOSQP

(f) 20000

Figure 7: Comparing MOTR and MOSQP based on performance profiles of purity and hyper-
volume metrics. Budgets of 500, 5000, and 20000 function evaluations were allowed.

27

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOSQP

(a) 500

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOSQP

(b) 5000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOSQP

(c) 20000

5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOSQP

(d) 500

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOSQP

(e) 5000

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 performance profile

MOTR

MOSQP

(f) 20000

Figure 8: Comparing MOTR and MOSQP based on performance profiles of Γ and ∆ metrics.
Budgets of 500, 5000, and 20000 function evaluations were allowed.

MOTR is clearly competitive, with remarkably good results in terms of efficiency for purity,
hypervolume, and Γ. Regarding the uniformity of the distribution of points across the approx-
imation to the Pareto front, MOSQP presents a better performance. These conclusions hold,
independently of the budget of function evaluations considered.

Table 2 reports the number of nondominated points obtained by each solver, for a maximum
budget of 5000 function evaluations, corroborating the results already reported for the purity
metric.

Figures 9 and 10 illustrate the final approximations to the Pareto fronts obtained by MOTR
and MOSQP on two biobjective and two triobjective problems, respectively.

28

Table 2: Number of nondominated points in the final approximation of the Pareto front, gener-
ated for each problem by MOTR and MOSQP, considering a budget of 5000 function evaluations.

Problem MOTR MOSQP Problem MOTR MOSQP Problem MOTR MOSQP

BK1 5000 66 CL1 4827 89 Deb41 2197 64
Deb513 1 2 Deb521b 4477 1 DG01 77 25
DPAM1 2496 7 DTLZ1 4999 1 DTLZ1n2 4998 0
DTLZ2 4991 16 DTLZ2n2 4989 16 DTLZ3 4989 1
DTLZ3n2 4988 2 DTLZ4 1 8 DTLZ4n2 1 6
DTLZ6 950 1 DTLZ6n2 2497 1 ex005 4976 67
Far1 1726 52 Fonseca 4996 0 IKK1 3922 36
IM1 4982 90 Jin1 4997 87 Jin3 4834 2
L2ZDT2 0 2 L3ZDT2 752 1 lovison1 4942 93
lovison2 1 8 lovison3 4871 97 lovison4 4373 81
lovison5 412 18 lovison6 269 9 LRS1 4998 1
MHHM1 3936 8 MHHM2 4994 0 MLF1 0 17
MLF2 4938 34 MOP1 5000 0 MOP2 5000 24
MOP3 1610 19 MOP5 2535 12 MOP6 1 2
MOP7 4302 1 SK1 3960 88 SK2 1632 6
SP1 4952 59 SSFYY1 5000 1 SSFYY2 2502 1
TKLY1 595 68 VFM1 4997 49 VU1 0 90
VU2 2498 24 ZDT2 4936 2 ZLT1 383 1

0 0.2 0.4 0.6 0.8 1

f
1

0

0.2

0.4

0.6

0.8

1

1.2

f 2

MOTR

MOSQP

(a) Problem: ZDT2

0 0.5 1 1.5 2 2.5 3 3.5 4

f
1

0

0.5

1

1.5

2

2.5

3

3.5

4

f 2

MOTR

MOSQP

(b) Problem: MOP1

Figure 9: Approximations to the Pareto fronts of problems ZDT2 and MOP1, obtained by
solvers MOTR and MOSQP, for a budget of 5000 function evaluations.

29

(a) Problem: ZLT1 (b) Problem: IKK1

Figure 10: Approximations to the Pareto fronts of problems ZLT1 and IKK1, obtained by solvers
MOTR and MOSQP, for a budget of 5000 function evaluations.

5 Conclusions

In this work, we proposed a new algorithm, based on a trust-region approach, to compute
approximations to the complete Pareto front of multiobjective optimization problems. The
algorithmic structure is organized in two main steps: the extreme point and the scalarization
steps, that are alternately performed. As previously mentioned, in the extreme point step, the
algorithm tries to reach the extreme points of the Pareto front. On the other hand, in the
scalarization step, the focus is on the large gaps in the Pareto front, attempting to reduce them.
With this purpose, a new strategy, based on the computation of middle points, was used to select
the points to be explored in the scalarization step, by solving adequate scalarization problems.

Convergence was analyzed for linked sequences of points generated by MOTR, establishing
that any limit point of a linked sequence is a Pareto critical point. As illustrated in the nu-
merical experiments, the existence of each one of these steps is essential for the good numerical
performance of the solver, which is quite competitive against MOSQP, a reference solver for mul-
tiobjective optimization, when the goal is to compute approximations to complete Pareto fronts.

Acknowledgments

This work was funded by national funds through FCT - Fundação para a Ciência e a Tecnolo-
gia I.P., under the scope of projects PTDC/MAT-APL/28400/2017, UIDP/00297/2020, and
UIDB/00297/2020 (Center for Mathematics and Applications). The work of the first author
was additionally supported by the scholarship 2020.08249.BD, also granted by FCT - Fundação
para a Ciência e a Tecnologia I.P..

30

Data availability statement

The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Conflict of interests statement

The authors have no competing interests to declare that are relevant to the content of this
article.

References

[1] H. Afshari, W. Hare, and S. Tesfamariam. Constrained multi-objective optimization algo-
rithms: Review and comparison with application in reinforced concrete structures. Appl.
Soft Comp., 83:105631, 2019.

[2] K. Anagnostopoulos and G. Mamanis. Multiobjective evolutionary algorithms for complex
portfolio optimization problems. Comput. Manag. Sci., 8:259–279, 2011.

[3] M.A.T. Ansary and G. Panda. A globally convergent SQCQP method for multiobjective
optimization problems. SIAM J. Optim., 31:91–113, 2021.

[4] G.A. Carrizo, P.A. Lotito, and M.C. Maciel. Trust region globalization strategy for the
nonconvex unconstrained multiobjective optimization problem. Math. Program., 159:339–
369, 2016.

[5] A.R. Conn, N. Gould, and Ph. Toint. Trust-Region Methods. MOS-SIAM Ser. Optim.
SIAM, Philadelphia, USA, 2000.

[6] A.L. Custódio, J.F.A. Madeira, A.I.F. Vaz, and L.N. Vicente. Direct multisearch for mul-
tiobjective optimization. SIAM J. Optim., 21:1109–1140, 2011.

[7] I. Das and J.E. Dennis. A closer look at drawbacks of minimizing weighted sums of objec-
tives for Pareto set generation in multicriteria optimization problems. Struct. Multidiscip.
Optim., 14:63–69, 1997.

[8] I. Das and J.E. Dennis. Normal-boundary intersection: A new method for generating the
Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim., 8:631–
657, 1998.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE T. Evolut. Comput., 6:182–197, 2002.

[10] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91:201–213, 2002.

[11] G. Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimization. Vector Op-
timization. Springer, Heidelberg, Germany, 2008.

31

[12] M.T.M. Emmerich and A.H. Deutz. A tutorial on multiobjective optimization: fundamen-
tals and evolutionary methods. Nat. Comput., 17:585–609, 2018.

[13] J. Fliege, L.M.G. Drummond, and B.F. Svaiter. Newton’s method for multiobjective opti-
mization. SIAM J. Optim., 20:602–626, 2009.

[14] J. Fliege and B.F. Svaiter. Steepest descent methods for multicriteria optimization. Math.
Methods Oper. Res., 51:479–494, 2000.

[15] J. Fliege and A.I.F. Vaz. A method for constrained multiobjective optimization based on
SQP techniques. SIAM J. Optim., 26:2091–2119, 2016.

[16] C.M. Fonseca, L. Paquete, and M.López-Ibánez. An improved dimension-sweep algorithm
for the hypervolume indicator. In Proceedings of the 2006 Congress on Evolutionary Com-
putation (CEC’06), pages 1157–1163. IEEE, 2006.

[17] E.H. Fukuda and L.M.G. Drummond. A survey on multiobjective descent methods. Pesq.
Oper., 34:585–620, 2014.

[18] I. Griva, S.G. Nash, and A. Sofer. Linear and Nonlinear Optimization, second edition.
SIAM, Philadelphia, USA, 2009.

[19] G. Liuzzi, S. Lucidi, and F. Rinaldi. A derivative-free approach to constrained multiobjec-
tive nonsmooth optimization. SIAM J. Optim., 26:2744–2774, 2016.

[20] D.T. Luc, T.Q. Phong, and M. Volle. Scalarizing functions for generating the weakly efficient
solution set in convex multiobjective problems. SIAM J. Optim., 15:987–1001, 2005.

[21] K. Miettinen. Nonlinear Multiobjective Optimization. International Series in Operations
Research & Management Science. Springer US, New York, USA, 1998.

[22] J.J. Moré. Recent developments in algorithms and software for trust region methods, pages
258–287. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[23] V. Morovati, H. Basirzadeh, and L. Pourkarimi. Quasi-Newton methods for multiobjective
optimization problems. 4OR, 16:261–294, 2018.

[24] J. Nocedal and S.J. Wright. Numerical Optimization, second edition. Springer, USA, 2006.

[25] P.S. Potrebko, J. Fiege, M. Biagioli, and J. Poleszczuk. Investigating multi-objective fluence
and beam orientation IMRT optimization. Phys. Med. Biol., 62:5228–5244, 2017.

[26] S. Qu, M. Goh, and B. Liang. Trust region methods for solving multiobjective optimisation.
Optim. Methods Softw., 28:796–811, 2013.

[27] V.A. Ramirez and G.N. Sottosanto. Nonmonotone trust region algorithm for solving the
unconstrained multiobjective optimization problems. Comput. Optim. Appl., 81:769–788,
2022.

[28] P.C. Roy, J. Blank, R. Hussein, and K. Deb. Trust-region based algorithms with low
budget for multi-objective optimization. In GECCO18: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pages 195–196, 2018.

32

[29] M.G.C. Tapia and C.A.C. Coello. Applications of multi-objective evolutionary algorithms
in economics and finance: A survey. In 2007 IEEE Congress on Evolutionary Computation,
pages 532–539, 2007.

[30] J. Thomann and G. Eichfelder. A trust-region algorithm for heterogeneous multiobjective
optimization. SIAM J. Optim., 29:1017–1047, 2019.

[31] K.D.V. Villacorta, P.R. Oliveira, and A. Soubeyran. A trust-region method for uncon-
strained multiobjective problems with applications in satisficing processes. J. Optim. The-
ory Appl., 160:865–889, 2014.

[32] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V. Grunert da Fonseca. Performance
assessment of multiobjective optimizers: An analysis and review. IEEE T. Evolut. Comput.,
7:117–132, 2003.

33

