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Abstract. We propose a new Derivative-free Optimization (DFO) approach for solving convex constrained minimization
problems. The feasible set is assumed to be the nonempty intersection of a finite collection of closed convex sets, such that the
projection onto each of these individual convex sets is simple and inexpensive to compute. Our iterative approach alternates
between steps that use Directional Direct Search (DDS), considering adequate poll directions, and a Spectral Projected Gradient
(SPG) method, replacing the real gradient by a simplex gradient, under a DFO approach. In the SPG steps, if the convex feasible
set is simple, then a direct projection is computed. If the feasible set is the intersection of finitely many convex simple sets,
then Dykstra’s alternating projection method is applied. Convergence properties are established under standard assumptions
usually associated to DFO methods. Some preliminary numerical experiments are reported to illustrate the performance of the
proposed algorithm, in particular by comparing it with a classical DDS method. Our results indicate that the hybrid algorithm
is a robust and effective approach for derivative-free convex constrained optimization.
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1. Introduction. In this work, we consider constrained optimization problems of the form

(1.1)
minimize f(x)
subject to x ∈ Ω,

where f : Rn → R ∪ {+∞} is a continuously differentiable function on an open set that contains Ω, and
Ω ⊂ Rn is a nonempty, closed, convex set. Throughout this work we assume that Ω is either a closed convex
simple set (i.e., it is easy to project onto it, such is the case of boxes, spheres, or half-spaces) or it can be
obtained as the nonempty intersection of a finite collection of closed and convex simple sets. Although the
objective function is smooth, we assume that the derivatives of f are not available and cannot be numerically
approximated, due to the expensive nature of function evaluation (see [11, 25]).

Derivative-free Optimization (DFO) problems appear in many applications, related to different scientific
areas. In [5], the authors addressed the optimization of molecular geometries. Thermal insulation systems
were the focus of the work reported in [1]. Many other examples could be provided in such different
areas as Aerospace Engineering [40], Nanotechnology [48], or Medicine [13] (see also the recent survey [4]).
Such practical applications have contributed to the development of research on DFO methods. For a first
introduction to the subject see [11, 25] and the references therein.

In general nonlinear optimization problems, penalty methods or augmented Lagrange multipliers tech-
niques are often considered to address constraints [30]. In DFO, these techniques were first introduced by
Lewis and Torczon [39], in the context of Directional Direct Search (DDS). Unfortunately, the adequate
choice of penalty parameters (or the associated multipliers) adds serious difficulties in a derivative-free set-
ting. However, if the constraints define a convex feasible set in which it is easy to project, then projection
schemes could be combined with DFO methods to address constraints in an effective and inexpensive way.

Optimization problems defined on easy-to-project convex sets appear frequently in different domains
(see [18] for a list of different real applications). There are several derivative-based methods for solving these
convex constrained optimization problems that only depend on the convexity of the feasible region and on
the capacity to easily project onto it [14, 15, 18]. Some are Newton-type methods and others are gradient-
type algorithms. The common denominator is that all generate sequences of feasible iterates by searching
along descent directions. In this sense, they can be regarded as constrained versions of their unconstrained
derivative-based counterparts.
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2 A HYBRID DS AND SPG METHOD FOR CONVEX MINIMIZATION

In this work, the main goal is to explore the combination of DFO methods, specifically the DDS class,
with standard inexpensive projection schemes, such as the Spectral Projected Gradient (SPG) method [15,
16], to produce effective DFO algorithms for solving convex constrained optimization problems. DFO ap-
proaches for convex constrained problems have already been proposed in the literature [22], but not for DDS
methods, neither by directly considering projection techniques. In DDS, previous works have addressed
bounds [37] and linear constraints [3, 38] by adapting the set of poll directions to the geometry of the nearby
feasible region, but again not considering projection approaches on general convex sets.

We will analyze the properties of simplex gradients [19, 33], computed by reusing previous evaluations
of the objective function, combined with a SPG scheme, to improve the performance of DDS when solving
convex constrained optimization problems. Whenever the SPG method is used, a projection on Ω is required.
If Ω is the nonempty intersection of a finite collection of convex simple sets, then Dykstra’s alternating
projection method [20] will be used to obtain the required projection.

The paper is organized as follows. In Section 2 we briefly introduce DDS (see Subsection 2.1) and the
SPG method (see Subsection 2.2). Simplex gradients and their main properties are revised in Subsection 2.3.
The proposed algorithmic structure is detailed in Section 3 and its convergence is analyzed in Section 4.
Numerical experiments are reported in Section 5, for a set of smooth problems, indicating that the use of
simplex gradients in a hybrid SPG and DDS scheme leads to significant reductions in the overall number of
function evaluations required to solve the problems. Concluding remarks are presented in Section 6.

Notation. Throughout this paper, we denote by ∥ · ∥ the Euclidean norm and by I the identity matrix. We
also denote by N, Z, and Q the sets of natural, integer, and rational numbers, respectively, and N0 = N∪{0}.
For a function f : Rn → R, ∇f(x) and ∇Sf(x) represent the gradient and the simplex gradient of function
f computed at point x, respectively.

2. Preliminaries. In this section, we revise the basic structure of a DDS algorithm [11, 25], as well
as the main lines of the SPG method [15, 16, 17], which are the two main blocks of our hybrid approach.
Simplex gradients [19, 33] and their quality as approximations to the true gradient of a smooth function will
also be introduced, since they will be used as replacement of the true gradient in the SPG approach.

2.1. Directional Direct Search methods. Directional Direct Search (DDS) was a term coined in [25]
to represent any DFO algorithm that proceeds only by sampling the objective function at points correspond-
ing to sets of directions. The first convergence analysis for an algorithm belonging to this class was provided
in [45]. After, the algorithmic structure was generalized, being each iteration organized in a search step and
a poll step [8].

The search step is optional and not required for ensuring convergence. It can encompass any finite
strategy, with some additional requirements depending on the globalization strategy considered (generating
points in an implicit mesh or requiring sufficient decrease to accept new points [35]).

If the search step fails in improving the current iterate, the poll step is obligatory performed. At this step,
a set of directions with an adequate geometry, directly related to the geometry of the nearby feasible region
and the level of smoothness of the objective function, needs to be selected. Typically, positive spanning
sets [28] are used. The type of directions considered will give rise to different instances of DDS methods.

Coordinate search characterizes by using as poll directions the columns of the matrix [I;−I], being
particularly suited for bound constrained optimization. General linear constraints require specific techniques
that adapt the set of directions to the geometry of the nearby constraints [3, 38]. In any case, a finite number
of different sets of poll directions will be considered during the optimization process.

For general feasible regions, different strategies have been proposed, some using augmented Lagrangian
approaches [39], others using extreme barrier approaches [8, 9], only evaluating feasible points, or progressive
barrier approaches, based on filter methods [10]. In the last two, the union of all the sets of normalized poll
directions considered should be asymptotically dense in the unit sphere [2, 9].

At the poll step, points associated to poll directions, scaled by a step size parameter, are evaluated,
again in an attempt of improving the function value at the current iterate. Let xk be the current iterate and
δk ∈ R+ the current value of the step size parameter. The poll step evaluates the function f at the points
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in the set
Pk = {xk + δkd : d ∈ Dk},

where Dk denotes the set of poll directions considered at iteration k. This evaluation procedure can be
performed under opportunistic or complete strategies. In the former, the polling procedure is stopped, once
that a poll point that improves the function value at the current iterate is found. In the latter, all poll points
are evaluated.

If an iteration is successful, meaning that a point was found, either at the search or the poll steps, with
a better function value than the one of the current iterate, the new point is accepted as the current iterate
and the step size is kept constant or can be increased. Unsuccessful iterations, obligatory reduce the step
size parameter. For C1 functions, unless the current iterate is a stationary point, since any positive spanning
set is guaranteed of having a descent direction [25], an improvement in the objective function value would
be obtained for a sufficiently small step size parameter.

2.2. Spectral Projected Gradient method. The Spectral Projected Gradient (SPG) method was
proposed in [15], for solving problem (1.1), when derivatives are available. For completeness, we present a
brief review of it; see [15, 16, 17, 18] for additional details.

At each iteration of the SPG method, a step is attempted along the feasible projected gradient direction
dk = P̂Ω(xk −λk∇f(xk))− xk, where λk > 0 is the well-known non-monotone Barzilai-Borwein (also known

as the spectral) choice of step length [12, 43], and P̂Ω(z) represents the Euclidean projection of z onto Ω.
A key feature of the SPG method is to accept the initial spectral step length λk as frequently as possible.

For that, rather than imposing a function value decrease in f , the new iterate xk+1 = xk + αdk is accepted
according to the non-monotone sufficient decrease condition

(2.1) f(xk+1) ≤ fmax + γα∇f(xk)
⊤dk,

where, 0 < γ ≪ 1, 0 < α ≤ 1, and fmax = max
1≤j≤min{k+1,M}

f(xk−j+1) represents the maximum function

value obtained in the last M iterations. In case of rejection of the first trial point, xk + dk, a backtracking
procedure is initialized, by testing xk + αdk, with 0 < α < 1. As a consequence, only one projection onto Ω
is required per iteration.

In many applications, either Ω is a simple set (i.e., easy to project onto it, such as boxes, spheres, or
half-spaces, among others) or it can be written as the nonempty intersection of a finite collection of closed
and convex simple sets. In this case, similarly to [17], Dykstra’s alternating projection algorithm [20] can be
used to obtain the required projection.

Consider Ω = ∩p
i=1Ωi ̸= ∅, with Ωi ⊂ Rn, i = 1, . . . , p closed and convex sets. Dykstra’s algorithm

computes the projection of y0 onto Ω by generating two sequences, {yli} and {zli}, using the recursive
formulae:

(2.2)

yl0 = yl−1
p ,

yli = P̂Ωi(y
l
i−1 − zl−1

i ), i = 1, . . . , p,

zli = yli − (yli−1 − zl−1
i ), i = 1, . . . , p,

for l ∈ N, with initial values y0p = y0 and z0i = 0 for i = 1, . . . , p. The increment vectors zli play a key role

in the convergence of the sequence {yli}l∈N. In [20] it is proved that the sequence {yli}l∈N generated by (2.2)

converges to P̂Ω(y0), that is, for any i = 1, . . . , p and any y0 ∈ Rn, ∥yli − P̂Ω(y0)∥ → 0 as l → ∞. For a full
review of Dykstra’s algorithm see [29].

2.3. Simplex Gradients. Simplex gradients were firstly proposed in [19], when defining the implicit
filtering method [34] to optimize functions subject to numerical noise. Since then, they have been used to
define new classes of simplex-based direct search methods [46], to develop convergent variants of the simplex
of Nelder-Mead [32], or as descent indicators for ordering poll directions [27], when exploring opportunistic
variants of DDS.

Simplex gradients are computed using a simplex, that is a set of n+ 1 affinely independent points such
that the corresponding convex hull has a nonempty interior. Let {y0, y1, . . . , yn} be the simplex and assume
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that the function values {f(y0), . . . , f(yn)} are known. Define

S = [y1 − y0 · · · yn − y0] and δ(f ;S) = [f(y1)− f(y0) . . . f(yn)− f(y0)]
⊤.

The simplex gradient, ∇Sf(y0), is the solution of the linear system

S⊤∇Sf(y0) = δ(f ;S).

There could be situations in which we would have more or less than n + 1 points available for the
simplex gradient computation, corresponding to overdetermined linear systems, that could be solved using
least squares approaches when S is full rank, or underdetermined linear systems, for which a common
approach is to compute a minimum Frobenious norm solution.

In general, considering a poised set {y0, y1, . . . , yk}, with k+1 points, for a simplex gradient computation,
meaning rank(S) = min{n, k}, the simplex gradient can be expressed as

(2.3) ∇Sf(y0) = V Σ−1U⊤δ(f ;S)/∆ where ∆ = max
1≤i≤k

∥yi − y0∥

and UΣV ⊤ is the reduced singular value decomposition (SVD) of S⊤/∆.
Bounds for the error between simplex gradients and the true function gradient were established in [33],

for determined simplex gradients, and extended in [24] to the nondetermined cases. The nonsmooth case
was addressed in [26] and calculus rules were provided in [44]. In Theorem 2.1, we reproduce the bounds
for simplex gradients of smooth functions, omitting the case of underdetermined simplex gradients (k < n),
since it will be irrelevant in what follows.

Theorem 2.1. Let {y0, y1, . . . , yk} be a poised sample set for computing a simplex gradient in Rn, with
k ≥ n. Consider the smallest (closed) ball, B(y0; ∆), with ∆ = max1≤i≤k ∥yi− y0∥, that contains the sample
set. Let S = [y1 − y0 · · · yk − y0] and UΣV ⊤ be the reduced SVD of S⊤/∆. Suppose that f has a Lipschitz
continuous gradient in an open domain containing B(y0; ∆), with Lipschitz constant L > 0. The simplex
gradient error of f at y0 satisfies

(2.4) ∥∇f(y0)−∇Sf(y0)∥ ≤
(√

k
L

2
∥Σ−1∥

)
∆.

In particular, the error bound depends on the constant ∥Σ−1∥, which measures the quality of the
geometry of the set of points used for computation. To control this quality, the notion of Λ-poisedness was
introduced in [23], meaning that there is a constant Λ > 0 such that ∥Σ−1∥ ≤ Λ. Once that the quality of
the geometry of the sampling set is controlled, good quality simplex gradients can be computed by reducing
the size of ∆, corresponding to the radius of the sampling set.

3. The hybrid approach. In DDS methods, a search step is often used to implement some heuristic
procedures, in an attempt of improving the algorithmic efficiency [7, 41, 47]. However, the convergence
analysis requires the evaluation of a finite number of points at this step, which should be projected on the
implicit mesh, when considering a globalization strategy based on integer lattices [25].

In this work, we analyze the combination of the SPG scheme with DDS, which should not be regarded
as a simple search step based on the SPG. In fact, simplex gradients, as accurate approximations of the
true gradient for sufficiently smooth functions, allow to establish stronger convergence properties for the
algorithm, than the ones derived for classical DDS. If after a given iteration all the new points are generated
from a successful SPG step, then all limit points of the sequence of iterates generated by the algorithm
will be stationary (see Section 4.2). Another advantage of this combination is that the projection on the
implicit mesh is not required, when the new iterate is generated at the SPG step. Additionally, since the
SPG step is systematically projected on the feasible set Ω, the need for a feasible initialization (required for
the convergence of DDS) is overcome. We emphasize that a preliminary search step could also be considered,
but we omitted it for simplicity.

In the SPG approach, the gradient will be replaced by a simplex gradient, computed by reusing points
evaluated at the poll step, including infeasible ones, avoiding function evaluations with the solely purpose
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of computing approximations to derivatives. After each unsuccessful poll step, the poll points with the
corresponding function values, allow the computation of an overdetermined simplex gradient, as described
in Section 2.3, which can be used to improve the efficiency of the algorithm by incorporating it in a SPG
step.

There may be some iterations, particularly at the beginning of the optimization process, where the step
size is large and consequently the poll points are considerably distant from the current iterate, conducting
to a poor quality simplex gradient. Thus, if the SPG step fails in improving the function value at the
current iterate, the reduction of the step size parameter, occurred after the previous unsuccessful poll step,
will contribute to increase the quality of the next computed simplex gradient. Algorithm 3 formalizes the
described procedure.

A hybrid DDS and SPG algorithm for convex minimization.

Initialization
Choose a set (possibly infinite) of positive spanning sets, D, and the initial step size δ0 > 0. Define
0 < ϵ1 < 1, the coefficient for step size contraction. Set the value of the constants related to the SPG
step: nSPG = 0, xλ1 = 0, xλ2 = 0, gλ1 = 0, gλ2 = 0,M ∈ N, 0 < γ < 1, λmax > λmin > 0, 0 < ϵ̃ ≪ 1,
0 < σ1 < σ2 < 1 and the sequence {η̃k}k∈N0 . Consider x0 = P̂Ω(x0) as initialization.

For k = 0, 1, 2, . . .

1. Poll step: Choose a positive spanning set Dk from D. Order the poll set Pk = {xk + δkd : d ∈ Dk}.
Evaluate the objective function at the poll set Pk. If a poll point is found such that f(xk+δkd) < f(xk),
then set xk+1 = xk + δkd, nSPG = 0, and declare the poll step as successful. Otherwise, the poll step
is declared as unsuccessful.

2. Step size parameter update: If the poll step was successful, then skip the SPG step. Otherwise,
reduce the step size parameter, δk+1 = ϵ1δk.

3. SPG step: Compute a simplex gradient ∇Sf(xk) using the evaluated poll set, Pk.
Let fmax = max

1≤j≤min{k+1,M}
f(xk−j+1). Compute a trial point using the SPG strategy:

(xtrial, ftrial) = SPG(xk,∇Sf(xk), δk, xλ1 , xλ2 , gλ1 , gλ2 , fmax, nSPG, η̃k, ϵ̃, γ, λmin, λmax, σ1, σ2).

If f(xtrial) < f(xk), then set xk+1 = xtrial, nSPG = nSPG + 1, xλ1 = xλ2 , xλ2 = xk, gλ1 = gλ2 ,
gλ2 = ∇Sf(xk), and declare the SPG step as successful. Otherwise, set xk+1 = xk.

EndFor

Some comments concerning Algorithm 3 are in order. The poll directions are computed as in any DDS
algorithm. If the feasible region is a box, then coordinate directions corresponding to the columns of [I;−I]
are considered. If the optimization domain is defined by linear constraints, then the procedure described in [3]
can be adopted to generate a set of directions that conform to the geometry of the nearby constraints. For
general convex feasible regions, the set of poll directions will be asymptotically dense in the unit sphere [2].
To guarantee the quality of the simplex gradients (see Section 4.2), directions will always be normalized.

In the SPG step, the algorithm starts by computing the spectral step length and, using it and the current
simplex gradient, defines a new point, that is projected on the feasible region. An important remark is the
fact that the SPG scheme is a fast low-cost method, extremely simple to code, only requiring a specialized
procedure to compute the projection onto Ω. This projection is easy to compute for simple sets (e.g. boxes,
spheres, or half-spaces) and Dykstra’s alternating projection algorithm [20] will be used for sets that are the
nonempty intersection of a finite collection of closed and convex simple sets (see Section 2.2).

At Step 3, a line search is performed, in an attempt of computing an acceptable point, that satisfies
condition (2.1), with ∇f(xk) replaced by ∇Sf(xk) and adding the term η̃k ≥ 0 on the right hand side of
the inequality. The addition of the term η̃k is inspired by the line search developed in [36] to deal with
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ascent directions. The sequence {η̃k} is chosen such that η̃k > 0 for all k and
∑∞

k=0 η̃k < ∞. For theoretical
purposes, detailed in Section 4, in our case η̃k should be equal to zero for k sufficiently large. In practice, large
values of η̃k, for small values of k, favor the early acceptance of new points in the line search, significantly
reducing the number of unnecessary function evaluations, and guaranteeing the finite termination of the
backtracking process in case of a poor quality simplex gradient. Algorithm 3 details the procedure.

(xtrial, ftrial) = SPG(xk,∇Sf(xk), δk, xλ1 , xλ2 , gλ1 , gλ2 , fmax, nSPG, η̃k, ϵ̃, γ, λmin, λmax, σ1, σ2)

Compute the spectral parameter by calling:

λ̃k = lambda spect(xk,∇Sf(xk), δk, xλ1 , xλ2 , gλ1 , gλ2 , nSPG, λmin, λmax).

Compute the search direction dtrial = P̂Ω(xk − λ̃k∇Sf(xk))−xk. If η̃k ≤ ϵ̃, then set η̃k = 0. Set α = 1 and evaluate
the trial point ftrial = f(xk + dtrial).

While ftrial > fmax + γα∇Sf(xk)
⊤dtrial + η̃k

Choose α ∈ [σ1α, σ2α] and evaluate ftrial = f(xk + αdtrial).

EndWhile

xtrial = xk + αdtrial

We note that, since the line search is performed along the feasible direction dtrial, no additional projec-
tions onto Ω will be required during the backtracking process. The computation of the spectral step length
is detailed in Algorithm 3.

λ̃k = lambda spect(xk,∇Sf(xk), δk, xλ1 , xλ2 , gλ1 , gλ2 , nSPG, λmin, λmax)

If nSPG ≥ 2

Compute s = xλ1 − xλ2 and y = gλ1 − gλ2 .

If s⊤y ≤ 0 then λ̃k = δk + λmax

Else λ̃k = min
(
δk + λmax,max

(
λmin,

s⊤s
s⊤y

))
EndIf

Else λ̃k = min
(
δk + λmax,max

(
λmin,

1

∥P̂Ω(xk−∇Sf(xk))−xk∥∞

))
EndIf

In resume, after each unsuccessful poll step, the algorithm takes advantage of the evaluated poll points
to compute a simplex gradient, used to generate a feasible direction in the SPG step (after a single projection
on the feasible region). This direction is explored in a non-monotone linesearch, based on the spectral step,
in a attempt of finding a better point than the current iterate. Independently of succeeding or not on this
task, the algorithm returns to the poll step. If the SPG step was successful, in case of failure of the poll
step, new poll points will be available that would allow to compute a simplex gradient at the new point.
If the SPG step was unsuccessful and the poll step continues to be unsuccessful, as mentioned before, the
reduction of the step size would confer more quality to the new simplex gradient that would be computed
at the same point, but using the new poll points.

4. Convergence analysis. In this section, we analyze the convergence properties of Algorithm 3,
taking into account the results obtained in [8, 9, 15, 17]. At this point, it is worth recalling that x∗ ∈ Ω is
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stationary for problem (1.1), if ∇f(x∗)
⊤d ≥ 0 for all d ∈ Rn such that x∗ + d ∈ Ω. Equivalently, a point

x∗ ∈ Ω is stationary for problem (1.1) if ∥P̂Ω(x∗ −∇f(x∗))− x∗∥ = 0 (see, e.g., [14]).
There are only two possible cases to be considered in the convergence analysis of Algorithm 3: either

the number of iterates xk obtained from a successful poll step (Step 1) is infinite or finite. In any case, we
will assume that f(x0) is finite and also that the following hypothesis holds:

Hypothesis 4.1. The level set L(x0) = {x ∈ Ω : f(x) ≤ f(x0)} is compact.

We note that, since the sequence of iterates {xk}k∈N is such that {f(xk)}k∈N is monotonically decreasing,
all iterates generated by the algorithm (either obtained from Step 1 or Step 3) belong to the compact set
L(x0). We are interested in studying the convergence of {xk}k∈N to a stationary point x∗, regardless of the
starting point.

First, we will establish that the number of times that the SPG step (Step 3) is performed in Algorithm 3
cannot be finite.

Lemma 4.2. Under the Hypothesis 4.1, the number of times that the SPG step (Step 3) is performed in
Algorithm 3 is infinite.

Proof. Let us suppose, by way of contradiction, that the number of times that the SPG step (Step 3) is
performed in Algorithm 3 is finite. This means that after k̄ ∈ N0 all iterates are generated at the poll step.
Since a SPG step is always performed after an unsuccessful poll step, this means that after k̄ only successful
poll steps occur. Poll points are only generated in the implicit mesh of size greater or equal than δk̄ > 0 (see
Subsection 4.1). Since the intersection of the mesh with a compact set is finite, there is only a finite number
of distinct options for new iterates. Thus, at some k > k̄ the iteration needs to be unsuccessful, which leads
to a contradiction.

We note that performing Step 3 an infinite number of times does not necessarily mean that there will
be an infinite number of successful iterates xk obtained from Step 3. This issue will be clarified in the next
two subsections.

4.1. The first case: Convergence from the poll step. Let us consider the following hypothesis:

Hypothesis 4.3. The number of successful poll steps (Step 1) in Algorithm 3 is infinite.

Note that Hypothesis 4.3 implies that for any k̄ ≥ 0 there exists some k > k̄ such that the iterate xk is
obtained from a successful poll step. A second possibility would be that there exists some k̄ ≥ 0 such that
the iterate xk is never updated for k ≥ k̄, i.e., xk = xk̄,∀k ≥ k̄.

Hypothesis 4.4. There exists some k̄ ≥ 0 such that for all k ≥ k̄ the iterate xk is never updated.

In both cases, based on the standard convergence analysis of DDS methods, we will show that there exists a
limit point of the sequence of iterates {xk}k∈N which is a stationary point. The last situation to be analyzed,
where there exists some k̄ ≥ 1 such that for all k ≥ k̄ the iterate xk is obtained from a successful SPG step
will be the subject of Section 4.2.

Let us start by recalling that there are two types of strategies to globalize DDS methods [35]: to require
a sufficient decrease in the objective function value for successful iterations, or to generate iterates in integer
lattices, requiring only simple decrease of the function value to accept new points. We will adopt this last
globalization strategy.

The convergence analysis is essentially divided in two parts. First, we need to show that the step size
becomes infinitely fine, ensuring that there is at least one subsequence of step size parameters {δk}k∈K

satisfying lim
k∈K

δk = 0. In our case, since the increase of the step size parameter will not be allowed at

successful poll steps, we will be able to establish that the entire sequence {δk}k∈N converges to zero. Second,
we need to analyze the behavior of the algorithm at limit points of the sequence of iterates associated with
feasible unsuccessful poll steps.

According with the updating strategy of the step size parameter, described in Algorithm 3, we consider
the following Hypothesis 4.5:

Hypothesis 4.5. Let τ ∈ Q, with τ > 1, and tmin ∈ Z, with tmin ≤ −1. At unsuccessful poll steps, the
step size parameter is updated as δk+1 = τ tkδk with tk ∈ {tmin, . . . ,−1}.
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For establishing that {δk}k∈N converges to zero, additional requirements exist on the poll directions [8, 9].

Hypothesis 4.6. The set D of positive spanning sets is finite and each d ∈ D is obtained as the product
Gzj , j = 1, . . . , |D|, of some fixed non-singular matrix G ∈ Rn×n times a vector zj ∈ Zn.

To address general nonlinear constraints, the following assumption will be considered.

Hypothesis 4.7. Let D represent a finite set of positive spanning sets satisfying Hypothesis 4.6. The set
D is such that:

1. dk is a nonnegative integer combination of the columns of D.
2. The distance between xk and the point xk + δkdk tends to zero if and only if δk does:

lim
k∈K

δk∥dk∥ = 0 ⇔ lim
k∈K

δk = 0,

for any infinite subsequence K.
3. The limits of all convergent subsequences of D̄k = {dk/∥dk∥ | dk ∈ Dk} are positive spanning sets

for Rn.

Now, we recall the definition of current mesh, according to [9]. Specifically, at iteration k, the current
mesh is given by Mk = ∪x∈Sk

{x+ δkDz | z ∈ N|D|}, where Sk represents the set of all the points evaluated
previously to iteration k. The fact that the poll step only generates iterates in the mesh and the way we
update the step size parameter are central for establishing that the sequence of step size parameters converges
to zero.

Theorem 4.8. Under the Hypotheses 4.1, one of 4.3 or 4.4, 4.5, and one of 4.6 or 4.7, Algorithm 3
generates a sequence of iterates satisfying

lim
k→+∞

δk = 0.

Proof. Let us suppose, by way of contradiction, that there exists δ̃ such that δk > δ̃ > 0 for all k ≥ k̄.
First, let us assume that for any k ≥ k̄ the iterate xk+1 is obtained from a successful poll step. Classical
arguments [8, 45] allow us to conclude that all the iterates are generated in the mesh Mk̄. Since the
intersection of Mk̄ with the compact set L(x0) is finite, there is only a finite number of distinct points for
new iterates. Thus, at some k > k̄ the iteration needs to be unsuccessful, and hence δk+1 < δk. Repeating
the argument recursively, this reduction of the step size will occur at a subsequence {ki}i∈N of unsuccessful
poll step iterations for which lim

i→+∞
δki

= 0, and this leads to a contradiction.

Let us now consider the case in which there exists a finite number of iterates obtained from the SPG
step between each two iterates obtained from the poll step (this finite number could be zero). In this case,
although the iterates obtained from the SPG step are not generally in Mk̄, since a SPG step is always
performed after decreasing the step size δk and the step size is kept constant for successful poll steps, we can
guarantee that the next iterate, obtained from a poll step, belongs to a more refined mesh. Consequently,
there will be a subsequence {ki}i∈N of poll step iterations for which lim

i→+∞
δki = 0, and once again this leads

to a contradiction.
Therefore, we obtain that lim inf

k→+∞
δk = 0. Considering that {δk}k∈N is decreasing and nonnegative, thus

convergent, it follows that lim
k→+∞

δk = 0.

The case corresponding to Hypothesis 4.4 respects to consecutive unsuccessful poll steps. Thus, it is
trivial that lim

k→+∞
δk = 0.

The following definition characterizes the subsequences of iterates that will be the subject of our analysis
(see [8, 9]).

Definition 4.9. A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll steps is said to
be a refining subsequence if {δk}k∈K converges to zero.

As discussed in [8], there exists at least one convergent refining subsequence.
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Theorem 4.10. Consider the sequence {xk}k∈N produced by Algorithm 3. Under the Hypotheses 4.1, one
of 4.3 or 4.4, 4.5, and one of 4.6 or 4.7, Algorithm 3 generates at least one convergent refining subsequence
{xk}k∈K .

We will focus on limit points of convergent refining subsequences, analyzing the behavior of the algorithm
along refining directions [9].

Definition 4.11. Given the limit point x∗ of a convergent refining subsequence {xk}k∈K , a direction d
is said to be a refining direction if there exists an infinite subset L ⊆ K with poll directions dk ∈ Dk such
that xk + δkdk ∈ Ω and lim

k∈L
dk/∥dk∥ = d/∥d∥.

Now, we will recall the definitions of Clarke tangent and hypertangent cones, which are used to establish
the stationarity results.

Definition 4.12. [9, Definition 3.5] A vector d ∈ Rn is said to be a Clarke tangent vector to the set
Ω ⊂ Rn at the point x in the closure of Ω if for every sequence {yk} of elements of Ω that converges to x,
and for every sequence of positive real numbers {tk} converging to zero, there exists a sequence of vectors
{wk} converging to d such that yk + tkwk ∈ Ω. The set TCl

Ω (x) of all tangent vectors to Ω at x is called the
Clarke tangent cone to Ω at x.

Definition 4.13. [9, Definition 3.3] A vector d ∈ Rn is said to be a hypertangent vector to the set
Ω ⊂ Rn at the point x ∈ Ω if and only if there exists a scalar ϵ > 0 such that

y + tw ∈ Ω for all y ∈ Ω ∩B(x; ϵ), w ∈ B(d; ϵ) and 0 < t < ϵ.

The set of all hypertangent vectors to Ω at x is called the hypertangent cone to Ω at x, and is denoted by
TH
Ω (x).

The interior of a Clarke tangent cone defines the hypertangent cone. Reciprocally, the Clarke tangent
cone is the closure of the corresponding hypertangent cone.

Since Algorithm 3 is applied to smooth objective functions, we will establish the non-negativity of the
directional derivatives, computed at the limit point of a convergent refining subsequence generated by the
algorithm, for the whole set of directions belonging to the tangent cone to Ω. At this point, we need to recall
that f is strictly differentiable at x∗ if and only if it is Lipschitz continuous near x∗ and

f ′(x∗; v) = lim
x→x∗,t↓0

f(x+ tv)− f(x)

t
= ∇f(x∗)

⊤v for all v ∈ Rn.

Using the previous definitions, we aim at establishing the stationarity result formalized in the following
definition.

Definition 4.14. [21] Let f be strictly differentiable at a point x∗ ∈ Ω. We say that x∗ is a Clarke-KKT
critical point of f in Ω if, for all directions d ∈ TCL

Ω (x∗), ∇f(x∗)
⊤d ≥ 0.

A similar result is first established for refining directions associated to the convergent refining subse-
quence.

Theorem 4.15. [9, Theorem 3.12] Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω
and let d ∈ TH

Ω (x∗) be a refining direction for x∗. Assume that f is strictly differentiable at x∗. Then
f ′(x∗; d) ≥ 0.

If we assume the density of the refining directions in TH
Ω (x∗), we can extend Theorem 4.15 to the whole

set of directions belonging to the Clarke tangent cone.

Theorem 4.16. [9, Corollary 3.14] Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω and
such that TH

Ω (x∗) ̸= ∅. If f is strictly differentiable at x∗ and the set of refining directions for x∗ is dense in
TH
Ω (x∗) then x∗ is a Clarke-KKT critical point.

Summing up, under Hypotheses 4.1 and one of 4.3 or 4.4, we stated that there is a limit point x∗ of
the sequence of iterates generated by Algorithm 3, such that ∇f(x∗)

⊤d ≥ 0 for every direction d ∈ TCl
Ω (x∗).

Therefore, ∇f(x∗)
⊤d ≥ 0 for all d such that x+ d ∈ Ω. Hence, x∗ is a stationary point for problem (1.1).
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4.2. The second case: Convergence from the SPG step. For this last case, we consider the
following hypothesis.

Hypothesis 4.17. There exists some k̄ ≥ 1 such that for all k ≥ k̄ the iterate xk is obtained from a
successful SPG step.

Thus, under the Hypothesis 4.17, for all k ∈ J = {k ∈ N | k ≥ k̄} our iterates have the form

xk+1 = xk + αkd̃k,

where the search direction d̃k is given by

d̃k = P̂Ω(xk − λ̃k∇Sf(xk))− xk,

λ̃k is described in Algorithm 3, and 0 < αk ≤ 1.
Let us start by establishing some auxiliary results that only depend on the convexity of Ω.

Lemma 4.18. For all x ∈ Ω and d̃ = P̂Ω(x− λ̃∇Sf(x))− x,

1. ∇Sf(x)
⊤d̃ ≤ − 1

λ̃
∥d̃∥2.

2. The vector d̃ vanishes at x∗ if and only if ∇Sf(x∗)
⊤(y − x∗) ≥ 0 for all y ∈ Ω.

Proof. For the first statement, we have that Ω is a nonempty closed convex set, and so

(x− λ̃∇Sf(x)− P̂Ω(x− λ̃∇Sf(x)))
⊤(y − P̂Ω(x− λ̃∇Sf(x))) ≤ 0

for all y ∈ Ω (see, e.g., [29, Theorem 2.8]). Thus, choosing y = x we obtain

λ̃(∇Sf(x))
⊤(P̂Ω(x− λ̃∇Sf(x))− x) ≤ −∥d̃∥2,

and the result follows.
For the last item, if d̃ vanishes at x∗, that is, P̂Ω(x∗ − λ̃∇Sf(x∗)) = x∗, we obtain that

(x∗ − λ̃∇Sf(x∗)− x∗)
⊤(y − x∗) ≤ 0,

for all y ∈ Ω. This implies that

−λ̃∇Sf(x∗)
⊤(y − x∗) ≤ 0 then ∇Sf(x∗)

⊤(y − x∗) ≥ 0 for all y ∈ Ω.

Reciprocally, if ∇Sf(x∗)
⊤(y−x∗) ≥ 0 for all y ∈ Ω, then multiplying by −λ̃ and adding and subtracting

x∗ we obtain
(x∗ − λ̃∇Sf(x∗)− x∗)

⊤(y − x∗) ≤ 0 for all y ∈ Ω.

Therefore, since Ω is nonempty closed convex set, x∗ = P̂Ω(x∗ − λ̃∇Sf(x∗)), and so d̃ vanishes at x∗.

At each poll step, Algorithm 3 stores the poll points and the corresponding objective function values. If
the poll step is unsuccessful, we use these points, including infeasible ones, in the construction of a simplex
gradient. The negative simplex gradient vector is then used in the SPG step. Thus, at iteration k, with
k ∈ J , once the poll step fails, |Dk| points were stored (the poll points xk + δkd for all d ∈ Dk).

Now, we need to establish some key results, that will guarantee the quality of the simplex gradients,
computed using these sets of points, as approximations to the true gradients. The analysis will be based
on [2, 26, 35, 45].

We start by recalling that the cosine measure of a positive spanning set, cm(Dk), which was introduced
in [35], is given by

cm(Dk) = min
0̸=v∈Rn

max
d∈Dk

v⊤d

∥v∥∥d∥
.

The following result states that if the cosine measure of a positive spanning set is greater than a strictly
positive constant then the corresponding poll set is Λ-poised.
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Lemma 4.19. [26, Proposition 1] Let Dk be a positive spanning set for Rn. Let ∥d∥ ≥ dmin > 0 for all
d ∈ Dk. Then Dk is full rank and

∥Σ−1∥ ≤ 1

dmincm(Dk)
where D⊤

k = UΣV ⊤.

As discussed in Section 3, for general nonlinear constraints, poll directions are computed according to
the procedure described in [2], meaning that poll directions have the form Dk = Hk[I;−I], with Hk an
integer orthogonal basis for Rn (see [2, Proposition 3.5]).

Lemma 4.20. Let Hk be a orthogonal matrix and Dk = Hk[I;−I]. Then,

cm(Dk) ≥
1√
n
.

Proof. From [45] we obtain that

cm(Dk) ≥
1

κ(BM)
√
n
,

for Dk = B[M ;−M ] with B ∈ Rn×n and M ∈ Zn×n, both nonsingular, and κ(BM) the condition number
of the matrix BM .

Since Hk is orthogonal, κ(Hk) = 1. Hence

cm(Dk) ≥
1

κ(Hk)
√
n
=

1√
n
.

The matrix Sk, used for the simplex gradient computation is Sk = δkDk. Thus, according to Lemma 4.19,

∥Σ−1∥ ≤
√
n

dmin
, with

S⊤
k

∆k
= UΣV ⊤ a reduced singular value decomposition, ∆k = max

d∈Dk

δk∥d∥, and dmin =

min
d∈Dk

δk
∆k

∥d∥.

Therefore, by (2.4), we obtain

∥∇f(xk)−∇Sf(xk)∥ ≤ c∆k with c =

(√
2Ln

2dmin

)
,

establishing the quality of the simplex gradients used as search directions in the SPG step. As previously
discussed, lim

k∈J
δk = 0. In addition, normalized poll directions have been considered.

Under the Hypothesis 4.1, the sequence {xk}k∈J is bounded. Therefore, there exists a subsequence
{xk}k∈K′⊆J , converging to a limit point, say x∗. Theorem 3.5 in [26] allows us to establish the existence of
a subsequence of overdetermined simplex gradients, converging to the true gradient computed at this limit
point.

Theorem 4.21. Consider the refining subsequence {xk}k∈K′⊆J converging to x∗. Let ∇Sf(xk) denote
an overdetermined simplex gradient computed using xk and the poll points. Assume that this set is Λ-poised
and let f be strictly differentiable at x∗. Then, there exists a subsequence of indices K̃ ⊆ K ′ ⊆ J such that

lim
k→+∞,k∈K̃

∇Sf(xk) = ∇f(x∗).

Notice that, assuming that f is continuously differentiable, as a by-product, we obtain the safeguard
that lim

k→+∞,k∈K̃
∇Sf(xk) = 0 only if lim

k→+∞,k∈K̃
∇f(xk) = 0.

We also note that under Hypothesis 4.17, we can obtain a stronger result.

Corollary 4.22. Under the Hypothesis 4.17, consider x∗ a limit point of {xk}k∈J . Let ∇Sf(xk) denote
an overdetermined simplex gradient computed using xk and the poll points. Assume that this set is Λ-poised
and let f be strictly differentiable at x∗. Then, there exists a subsequence of indices K̃ ⊆ J such that

lim
k→+∞,k∈K̃

∇Sf(xk) = ∇f(x∗).
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Proof. For all k ≥ k̄, the poll step in Algorithm 3 always fails and so δk+1 < δk. Thus, in our case, the
entire sequence {xk}k∈J is a refining subsequence, and hence from Theorem 4.21 the result follows.

Now, we are able to study the convergence properties of our algorithm using simplex gradients. Our
analysis follows the arguments developed in [17]. Given xk ∈ Ω, we consider the two subproblems (4.1)
and (4.2). The first is defined as:

(4.1)
minimize Qk(d)
subject to xk + d ∈ Ω,

where, in the SPG algorithmic setting, Qk(d) =
1

2λspg
k

∥d∥2+∇f⊤
k d, ∇fk = ∇f(xk), and λspg

k is the spectral

step length [17].
By the strict convexity of problem (4.1) there exists a unique global minimizer d̄k. In addition, the

optimal direction d̄k is obtained by projecting xk − λspg
k ∇fk onto Ω, with respect to the Euclidean norm.

We have that the sequence {d̄k}k∈N converges to dspg∗ = P̂Ω(x∗ −λspg
∗ ∇f∗)−x∗, and so Qk(d̄k) converges to

Q(dspg∗ ) =
1

2λspg
∗

∥dspg∗ ∥2 +∇f⊤
∗ dspg∗ , with ∇f∗ = ∇f(x∗).

Consider now the following subproblem in which simplex gradients are used

(4.2)
minimize Q̃k(d)
subject to xk + d ∈ Ω,

with Q̃k(d) =
1

2λ̃k

∥d∥2 +∇Sf
⊤
k d, ∇Sfk = ∇Sf(xk), and λ̃k given by Algorithm 3.

Lemma 4.23. The sequence {λ̃k}k∈N is uniformly bounded.

Proof. Since δk ≤ δ0 for all k ∈ N, then in Algorithm 3 we obtain that λ̃k belongs to [λmin, δ0 + λmax]
for all k ∈ N.

Since Q̃k is strictly convex and the feasible set of (4.2) is convex, then problem (4.2) also has a unique
global minimizer, d̃k. Moreover, by Lemmas 4.18 and 4.23, we obtain

(4.3) Q̃k(d̃k) =
1

2λ̃k

∥d̃k∥2 +∇Sf
⊤
k d̃k ≤

(
1

2λ̃k

− 1

λ̃k

)
∥d̃k∥2 ≤ 0.

For proving convergence of Algorithm 3 under the Hypothesis 4.17, we need some similar results to the
ones established in [17]. To be precise, we need to prove convergence of an inexact SPG approach, that is,
to prove convergence when we consider the SPG method using the simplex gradient instead of the exact real
gradient, and using inexact projections (using Dykstra’s algorithm) instead of the exact projection onto Ω.
Notice that by Theorem 4.21 we have that lim

k→+∞,k∈K̃
∇Sfk = ∇f∗. Since the projection on a convex set is

a non-expansive operator, hence it is continuous, we obtain

(4.4) lim
k→+∞,k∈K̃

d̃k = lim
k→+∞,k∈K̃

P̂Ω(xk − λ̃k∇Sfk)− xk = d̃∗ = P̂Ω(x∗ − λ̃∗∇f∗)− x∗

and

(4.5) lim
k→+∞,k∈K̃

Q̃k(d̃k) = Q̃(d̃∗) =
1

2λ̃∗
∥d̃∗∥2 +∇f⊤

∗ d̃∗,

where λ̃∗ is the limit point of the subsequence of λ̃k, for k ∈ K̃, that lies in the compact interval [λmin, δ0 +
λmax].

Moreover, as lim
k∈N

δk = 0 and the spectral step length is given by

λspg
k =

{
min(λmax,max(λmin, s

⊤
k sk/s

⊤
k wk)), if s⊤k wk > 0,

λmax, otherwise
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with sk = xk − xk−1 and wk = ∇fk −∇fk−1, then by the definition of λ̃k in Algorithm 3, it follows that

lim
k→+∞,k∈K̃

λ̃k = λ̃∗ = λspg
∗ = lim

k→+∞,k∈K̃
λspg
k

and by (4.4) and (4.5) we obtain that

lim
k→+∞,k∈K̃

d̃k = d̃∗ = dspg∗ = P̂Ω(x∗ − λspg
∗ ∇f∗)− x∗

and

(4.6) lim
k→+∞,k∈K̃

Q̃k(d̃k) = Q̃(d̃∗) = Q(dspg∗ ) = lim
k→+∞,k∈K̃

Qk(d̄k).

In [17] it was established that Dykstra’s algorithm can be used to obtain a direction dspgk such that
xk + dspgk ∈ Ω and

(4.7) Qk(d
spg
k ) ≤ η1Qk(d̄k),

where η1 ∈ (0, 1] (note that η1 = 1 corresponds to the case where (4.1) is solved exactly). Similarly, by the
convergence properties of Dykstra’s algorithm, we can also obtain a direction dk such that xk + dk ∈ Ω and

(4.8) Q̃k(dk) ≤ η2Q̃k(d̃k),

where η2 ∈ (0, 1] (note that once again η2 = 1 corresponds to the case where (4.2) is solved exactly).
The following preliminary result establishes that our Algorithm 3 is well defined, which means that in

Algorithm 3 we stop the backtracking process after a finite number of trials.

Lemma 4.24. Under the Hypothesis 4.17, Algorithm 3 is well defined.

Proof. If d̃k = 0 then Q̃k(d̃k) = 0. Since dk is feasible we obtain Q̃k(dk) ≤ 0. On the other hand, d̃k is
the unique minimizer of (4.2) so dk = d̃k = 0. Hence, clearly

(4.9) fk ≤ fmax + γα∇Sf
⊤
k dk + η̃k.

Now, if d̃k ̸= 0 then since Q̃k(0) = 0 and the solution of (4.2) is unique, it follows that Q̃k(d̃k) < 0.
By (4.8) we obtain Q̃k(dk) < 0. Therefore, by convexity of Q̃k and Q̃k(0) = 0, it follows that Q̃k(dk)−Q̃k(0) ≥
∇Q̃k(0)

⊤(dk − 0) and consequently 0 > Q̃k(dk) ≥ ∇Sf
⊤
k dk, that is, ∇Sf

⊤
k dk < 0. Since xk+1 = xk + αdk

then for α sufficiently small if dk is a descent direction (i.e., there exist ζ such that for all α ∈ (0, ζ) we have
f(xk + αdk) < f(xk)) we obtain that (4.9) holds after a finite number of trials. In addition, if dk is not a
descent direction (e.g., when k is not large enough and ∇Sfk is still not a sufficiently good approximation
of ∇fk) then the parameter η̃k > 0 guarantees that (4.9) holds after a finite number of trials.

The following lemmas play a key role in our convergence analysis. In all of them we use the fact that
the sequence of iterates {xk} generated by Algorithm 3 belongs to the compact set L(x0).

Lemma 4.25. Under the Hypothesis 4.1 and 4.17, let f be a continuously differentiable function in L(x0)
and consider the refining subsequence {xk}k∈K′⊆J converging to x∗. Then {dk}k∈K′⊆J is bounded.

Proof. For all k ∈ J , Q̃k(dk) =
1

2λ̃k

∥dk∥2 +∇Sf
⊤
k dk ≤ 0. So, by the Cauchy-Schwarz inequality

∥dk∥2 ≤ −2λ̃k∇Sf
⊤
k dk ≤ 2λ̃k∥∇Sfk∥∥dk∥ for all k ∈ K ′ ⊆ J.

Therefore, if ∥dk∥ ≠ 0,
∥dk∥ ≤ 2λ̃k∥∇Sfk∥ for all k ∈ K ′ ⊆ J.

Now, since f is Lipschitz continuous near x∗, {∇Sfk}k∈K′⊆J is bounded [26, Lemma 3.1].

Moreover, from Lemma 4.23 the sequence {λ̃k}k∈K′⊆J is also bounded, and the result follows.
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Our next result plays a key role in the convergence analysis of this subsection.

Lemma 4.26. Under the Hypotheses 4.1 and 4.17, lim
k∈J

αkQ̃k(d̃k) = 0.

Proof. For any k ∈ J , the iterate xk+1 obtained from a successful SPG step satisfies f(xk+1) < f(xk).
Consequently, since

∑∞
k=0 η̃k < ∞ and f is continuous and bounded below, from the line search condi-

tion (4.9), imposed in Algorithm 3, we obtain that

(4.10) lim
k∈J

αk∇Sf
⊤
k dk = 0.

Now, by (4.3), we have that,

0 ≥ Q̃k(dk) =
1

2λ̃k
d⊤k dk +∇Sf

⊤
k dk ≥ ∇Sf

⊤
k dk for all k ∈ J.

Using (4.8), 0 ≥ η2Q̃k(d̃k) ≥ Q̃k(dk) ≥ ∇Sf
⊤
k dk for all k ∈ J. Therefore,

0 ≥ αkη2Q̃k(d̃k) ≥ αkQ̃k(dk) ≥ αk∇Sf
⊤
k dk for all k ∈ J.

Hence, by (4.10), it follows that lim
k∈J

αkQ̃k(d̃k) = 0.

From Lemma 4.26 we note that if for a subsequence K̂ ⊂ J converging to a limit point, one of the two
subsequences {αk}k∈K̂ or {Q̃k(d̃k)}k∈K̂ is bounded away from zero, then the other one converges to zero.
This fact justifies the next two lemmas.

Lemma 4.27. Under the Hypotheses 4.1 and 4.17, assume that K1 ⊂ J is a sequence of indices such
that

lim
k∈K1

xk = x∗ ∈ Ω, and lim
k∈K1

Q̃k(d̃k) = 0.

Then, x∗ satisfies ∇Sf
⊤
∗ d ≥ 0 for all d ∈ Rn such that x∗ + d ∈ Ω.

Proof. Since λ̃k ∈ [λmin, δ0 + λmax] for all k ≥ 0, we can obtain a subsequence of indices K2 ⊂ K1 such

that lim
k∈K2

λ̃k = λ̃ and so lim
k∈K2

1

λ̃k

=
1

λ̃
.

We define Q̃(d) =
1

2λ̃
∥d∥2+∇Sf

⊤
∗ d for all d ∈ Rn. Suppose that there exists d̂ ∈ Rn such that x∗+d̂ ∈ Ω

and Q̃(d̂) < 0. Define d̂k = x∗ + d̂ − xk for all k ∈ K2. Clearly, xk + d̂k ∈ Ω for all k ∈ K2. By continuity,
since lim

k∈K2

xk = x∗, we have that

(4.11) lim
k∈K2

Q̃k(d̂k) = Q̃(d̂) < 0.

But, by the definition of d̃k, we have that Q̃k(d̃k) ≤ Q̃k(d̂k). Therefore, by (4.11),

Q̃k(d̃k) < 0,

for k ∈ K2 large enough. This contradicts the fact that lim
k∈K2

Q̃k(d̃k) = 0. The contradiction comes from the

assumption that there exists d̂ such that Q̃(d̂) < 0. Then, Q̃(d) ≥ 0 for all d ∈ Rn such that x∗ + d ∈ Ω.
Thus, ∇Sf

⊤
∗ d ≥ 0 for all d ∈ Rn such that x∗ + d ∈ Ω.

Lemma 4.28. Under the Hypotheses 4.1 and 4.17, assume that K3 ⊂ J is a sequence of indices such
that

lim
k∈K3

xk = x∗ ∈ Ω and lim
k∈K3

αk = 0.

Then,

(4.12) lim
k∈K3

Q̃k(d̃k) = 0.
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Proof. Let us suppose that (4.12) is not true. Then for some infinite set of indices K4 ⊂ K3, Q̃k(d̃k) is

bounded away from zero. According to the definition of η̃k in Algorithm 3 we have that there exists k̂ such
that η̃k = 0 for all k ≥ k̂. Since αk → 0, we have that for such k ∈ K4 sufficiently large, there exists α′

k such
that lim

k∈K4

α′
k = 0, thus we get

f(xk + α′
kdk) > max

1≤j≤min{k+1,M}
{f(xk−j+1)}+ γα′

k∇Sf
⊤
k dk.

Hence,
f(xk + α′

kdk) > f(xk) + γα′
k∇Sf

⊤
k dk for all k ∈ K4.

Therefore, for all k ∈ K4

f(xk + α′
kdk)− f(xk)

α′
k

> γ∇Sf
⊤
k dk.

By the mean value theorem, there exists ζk ∈ (0, 1) such that for k ∈ K4

(4.13) ∇f(xk + ζkα
′
kdk)

⊤dk > γ∇Sf
⊤
k dk.

From Lemma 4.25, the sequence {dk}k∈K4
is bounded, and so there exists a sequence of indices K5 ⊂ K4

such that lim
k∈K5

dk = d. We also have that lim
k∈K5

1

λ̃k

=
1

λ̃
, for some λ̃ > 0. Taking limits for k ∈ K5 in both

sides of (4.13), we obtain ∇f⊤
∗ d ≥ γ∇Sf

⊤
∗ d. Now, by Corollary 4.22, there exists a subsequence {xk}k∈K̃⊂J

such that limk∈K̃ ∇Sfk = ∇f∗, and so ∇f⊤
∗ d ≥ γ∇f⊤

∗ d. This implies that ∇f⊤
∗ d ≥ 0. Hence,

1

2λspg
∥d∥2 +∇f⊤

∗ d ≥ 0.

On the other hand, by [15, Lemma 2.1] we obtain

∇f⊤
∗ d ≤ − 1

λspg
∥d∥2, and hence

1

2λspg
∥d∥2 +∇f⊤

∗ d ≤
(

1

2λspg
− 1

λspg

)
∥d∥2 ≤ 0.

As a consequence,

lim
k∈K5

1

2λspg
k

∥dk∥2 +∇f⊤
k dk = 0.

By (4.7) this implies that lim
k∈K5

Qk(d̄k) = 0. Since d̄k is feasible for problem (4.2), we have that

∥Q̃k(d̄k)−Qk(d̄k)∥ =

∥∥∥∥ 1

2λ̃k

∥d̄k∥2 +∇Sf
⊤
k d̄k − 1

2λspg
k

∥d̄k∥2 −∇f⊤
k d̄k

∥∥∥∥ .
Using the fact that λspg

k and λ̃k are positive we obtain

∥Q̃k(d̄k)−Qk(d̄k)∥ ≤ 1

2

|λspg
k − λ̃k|
λ̃kλ

spg
k

∥d̄k∥2 +
∣∣(∇Sfk −∇fk)

⊤d̄k
∣∣ ,

and by Cauchy-Schwarz inequality we have that

∥Q̃k(d̄k)−Qk(d̄k)∥ ≤

[
1

2

|λspg
k − λ̃k|
λ̃kλ

spg
k

∥d̄k∥+ ∥(∇Sfk −∇fk)∥

]
∥d̄k∥.

Taking limits for k ∈ K5, as lim
k∈K3

∇Sfk = ∇f∗ and by (4.6) it follows that

0 = lim
k∈K5

Qk(d̄k) = lim
k∈K5

Q̃k(d̄k) = lim
k∈K5

Q̃k(d̃k).

This contradicts the assumption that Q̃k(d̃k) is bounded away from zero for k ∈ K4. Therefore, (4.12) holds.
Moreover, we note that the hypotheses of Lemma 4.27 hold, with K3 replacing K1. So, by Lemma 4.27, x∗
satisfies ∇Sf

⊤
∗ d ≥ 0 for all d ∈ Rn such that x∗ + d ∈ Ω.
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Theorem 4.29. Assume that Hypotheses 4.1 and 4.17 hold. Then every limit point of the sequence
{xk}k∈J is a stationary point for problem (1.1).

Proof. Let us assume that x∗ is a limit point of {xk}k∈J and, using Corollary 4.22, let {xk}k∈K̃ be
the convergent subsequence of {xk}k∈J whose limit point is x∗. Hence, limk→+∞,k∈K̃ ∇Sfk = ∇f∗. By
Lemma 4.26, the thesis follows applying Lemmas 4.27 and 4.28, and we conclude that x∗ is a stationary
point for problem (1.1).

5. Numerical experiments. To give further insight into the proposed hybrid scheme, and to illustrate
its performance when solving problem (1.1), we present some numerical comparisons between Algorithm 3
(DDS-SPG) and DDS variants. All runs were carried out in Matlab R2022a, on an Intel® Quad-Core
i7-1165G7 at 4.70 GHz with 16 GB of RAM memory, using Windows 10 Pro with 64 Bits.

The test functions have been previously used in numerical experiments in the literature with uncon-
strained DDS methods. In our case, there was the need of adding a constraint set to the problems, that
could be written as the intersection of a finite number of convex sets on which it is trivial to project. To
build the feasible set Ω, we combined boxes, spheres, half-spaces, and ellipses. We notice that an ellipse is
given by {x ∈ Rn | x⊤Ax ≤ r}, where A is symmetric positive definite. So, it can be reduced to a ball
(A = I) by an adequate change of variables. Hence, for the small values of n usually considered in DFO,
projections onto ellipses can also be trivially computed.

The selected test set includes only smooth objective functions: 22 from CUTEr [31] and 20 from [27].
Additionally, we tested a simple quadratic function named as Quadratic, described in Experiment 5.1, and
a strictly convex function denoted by Strictly Convex 2 (SC2), which is described in Experiment 5.5. These
two functions were used in a numerical study related to problem dimension. The 44 functions are listed in
the first column of Tables 5–10.

The variants initially considered for the methods are enumerated in Table 1. For each one of them, we
describe the type of positive basis selected and the polling strategy adopted (opportunistic or complete).

Table 1
Variants of DDS and DDS-SPG considered in the numerical experiments.

Method Positive Basis Strategy

1 DDS Maximal Opportunistic
2 Complete

3 DDS-SPG Maximal Opportunistic
4 Complete

5 DDS ABDP/Maximal Opportunistic
6 Complete
7 ABDP/Minimal Opportunistic
8 Complete

9 DDS-SPG ABDP/Maximal Opportunistic
10 Complete
11 ABDP/Minimal Opportunistic
12 Complete

13 DDS Dense Opportunistic
14 Complete

15 DDS-SPG Dense Opportunistic
16 Complete

The choice of positive basis follows what has been described in Section 2.1: for bound constrained
problems we considered coordinate search [I;−I], the technique proposed by [3] (here denoted by ABDP)
was used for general linear constraints, and asymptotically dense generation in the unit sphere, following the
ORTHOMADS approach of [2], was considered for general nonlinear constrained problems. In this first set
of experiments, to address constraints, both in DDS and in the poll step of DDS-SPG, we used the extreme
barrier approach, that is, if x /∈ Ω, then f(x) = +∞.

Concerning the selection of parameters for the algorithms, we used the typical defaults of DDS, δ0 = 1
and ϵ1 = 1/2. For the DDS-SPG method, we set σ1 = 0.1, σ2 = 0.9, γ = 10−4, λmin = 10−3, λmax = δ0,
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M = 10, and η̃k = |f(x0)|/(k1.1) for all k ∈ N such that η̃k > 10−6, whereas for η̃k ≤ 10−6 we set η̃k = 0.
In all experiments, the algorithms stopped if the number of iterations or the number of function evaluations
reached 1000 × n or if δk was less than 10−5. Considering the theoretical results derived in Section 4.2,
DDS-SPG also stops if ∥P̂Ω(xk − λ̃k∇Sf(xk))− xk∥ < 10−7.

In what follows, we describe a variety of experiments combining different objective functions and different
feasible sets Ω. For each experiment, we also provide an initialization. It is worth mentioning that DDS
methods require a feasible initial guess, which is not necessarily easy to obtain when the feasible region is
the intersection of several different sets. To guarantee a fair comparison between the different methods, the
initialization provided should be the same. In the numerical results reported, we favor the DDS schemes, by
using the initial point easily obtained by the DDS-SPG methods, via Dykstra’s algorithm.

Experiment 5.1. For our first experiment, we considered f(x) =
∑n

i=1 x
2
i and Ω = {x ∈ Rn | −1 ≤ xi ≤

4}. The initial point was x0 =
[
3
2 , . . . ,

3
2

]⊤
. Clearly, the unique global minimizer is given by x∗ = [0, . . . , 0]⊤.

Experiment 5.2. For this experiment, we used the objective function described in Experiment 5.1, and
the feasible set is the intersection of a box and a half-space: {x ∈ R2 | −1 ≤ xi ≤ 4 and x1 + x2 ≤ 5}. We
started from the feasible point x0 = [2.63, 2.37]⊤.

Experiment 5.3. We considered the objective function described in Experiment 5.1, but now Ω is the
intersection of the box −1 ≤ xi ≤ 4, the sphere (x1 − 4)2 + (x2 − 4)2 ≤ 42, and the half-space x1 + x2 ≤ 5.
We started from the feasible point x0 = [2, 2]⊤. In this case, the optimal function value is 2.7452.

Experiment 5.4. Again, we considered the objective function described in Experiment 5.1, but here the
feasible set was the ellipse 10x2

1 + x2
2 ≤ 1. We initialized from the feasible point x0 = [0.17, 0.78]⊤.

Experiment 5.5. In this case, we considered the problem of minimizing the strictly convex non-quadratic
function f(x) =

∑n
i=1(i/10)(e

xi − xi), subject to 1 ≤ x ≤ 3, and with initialization x0 = [2, . . . , 2]⊤. The
unique global solution is given at x∗ = [1, . . . , 1]⊤.

Experiment 5.6. This experiment respects to f(x) = x2
1 +2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3, known as
the Bohachevsky function [6]. The feasible set is the box −50 ≤ xi ≤ 50, for i = 1, 2, the minimum global
value is 0, and the global minimizer is [0, 0]⊤. We start from the feasible point x0 = [5, 5]⊤.

In Table 2, we report the performance of several DDS-SPG variants, when applied to the problem
described in Experiment 5.1, for a variety of feasible sets, stating the robustness of the approach in converging
to the problem solution.

Table 2
Performance of Algorithm 3 (DDS-SPG), considering different feasible sets, for the two-dimensional problem described

in Experiment 5.1.

Feasible sets and initial point Method fevals fbest f∗ ∥P̂Ω(x∗ − ∇Sf∗) − x∗∥∞
Ω and x0 as in Expt. (5.1) 3 28 0.00 0.00 2.5E-16

Only the sphere of Expt. (5.3); x0 as in Expt. (5.3) 15 19 2.75 2.75 8.9E-16
Ω and x0 as in Expt. (5.4) 15 12 0.00 0.00 2.5E-16

Only the half-space of Expt. (5.2); x0 as in Expt. (5.2) 9 35 0.00 0.00 8.3E-17
Ω and x0 as in Expt. (5.2) 9 24 0.00 0.00 1.1E-16
Ω and x0 as in Expt. (5.3) 15 14 2.75 2.75 8.9E-16

Table 3 reports the performance of several DDS-SPG and DDS variants on the problems corresponding
to Experiments 5.1 and 5.5, considering different dimensions.

All variants converged to the unique global minimizer, in case of Experiment 5.5, attained on the
boundary of the feasible set. DDS-SPG variants required lower number of function evaluations (fevals)
than the DDS approaches. It is also clear the dramatic increase in the difference of the number of function
evaluations required with the increase of the problem dimension. In fact, it is worth noticing the controlled
increase in the number of function evaluations required by the DDS-SPG variants.

The results for Experiments 5.6, 5.2, 5.3, and 5.4 are summarized in Table 4. In all cases, we clearly
observe that the DDS-SPG variants require less function evaluations than the DDS appraches. The last
column of the table reports the number of simplex gradients (∇Sfevals) that were computed during the
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Table 3
Performance of several variants of DDS-SPG and DDS methods for solving the problems reported in Experiments 5.1

and 5.5, for different dimensions. In boldface, we highlight lower numbers of function evaluations.

n = 2 n = 3 n = 4 n = 5

Experiment Method fevals fbest fevals fbest fevals fbest fevals fbest
5.1 1 93 0.00 142 0.00 198 0.00 261 0.00

2 82 0.00 139 0.00 207 0.00 286 0.00
3 28 0.00 40 0.00 50 0.00 60 0.00
4 27 0.00 43 0.00 56 0.00 69 0.00

n = 10 n = 20 n = 30 n = 40
1 681 0.00 2046 0.00 4111 0.00 6876 0.00
2 846 0.00 2791 0.00 5836 0.00 9981 0.00
3 110 0.00 210 0.00 310 0.00 410 0.00
4 134 0.00 264 0.00 394 0.00 524 0.00

n = 2 n = 3 n = 4 n = 5

5.5 1 38 0.52 61 1.03 87 1.72 116 2.58
2 39 0.52 64 1.03 93 1.72 126 2.58
3 13 0.52 18 1.03 23 1.72 28 2.58
4 14 0.52 20 1.03 26 1.72 32 2.58

n = 10 n = 20 n = 30 n = 40
1 306 9.45 911 36.08 1816 79.90 3021 140.9
2 351 9.45 1101 36.08 2251 79.90 3801 140.9
3 53 9.45 103 36.08 153 79.90 203 140.9
4 62 9.45 122 36.08 182 79.90 242 140.9

iterative process (the symbol ‘–’ represents cases where the SPG step was never performed in Algorithm 3).

Table 4
Performance of several variants of DDS and DDS-SPG methods for the Experiments 5.6, 5.2, 5.3, and 5.4. In boldface,

we highlight lower numbers of function evaluations.

Experiment Method fevals fbest ∇Sfevals
5.6 1 113 0.00 –

2 97 0.00 –
3 43 0.00 1
4 45 0.00 1

5.2 5 181 0.00 –
6 178 0.00 –
7 148 0.00 –
8 139 0.00 –
9 24 0.00 4
10 28 0.00 4
11 101 0.00 23
12 111 0.00 23

5.3 13 115 2.7657 –
14 120 2.7628 –
15 14 2.7452 2
16 14 2.7452 2

5.4 13 102 0.00 –
14 104 0.00 –
15 12 0.00 2
16 11 0.00 2

Several figures illustrate the practical behavior of the DDS-SPG method, for problems with two variables.
We present plots of the progression of the iterates in Figure 1 for Experiment 5.2 and in Figure 2 for
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Experiment 5.3.

Figure 1. Level sets of f for Experiment 5.2, and plot of the produced iterates, using DDS variant 5 (left) and DDS-SPG
variant 9 (right).

Figure 2. Level sets of f for Experiment 5.3, and plot of the produced iterates, using DDS variant 14 (left) and DDS-SPG
variant 16 (right).

We note that Figures 1 and 2, as well as Tables 3 and 4, seem to indicate that DDS-SPG presents
the best performance, by comparison with DDS. It is worthwhile to investigate if this is the result of the
SPG step, or simply results from the projection on the feasible region. For that, we considered the set
of 44 original problems (not including the Bohachevsky function) and a feasible region corresponding to a
sphere. An additional variant to DDS and DDS-SPG was considered, namely DDS-Proj, that projects the
infeasible points generated in Ω, before function evaluation. The same approach was adopted at the poll
step of DDS-SPG, whereas DDS continues to use the extreme barrier approach.

Therefore, considering sets of directions asymptotically dense in the unit sphere, Figure 3 reports the
data profiles [42], corresponding to complete and opportunistic approaches. The corresponding numerical
results can be found in Tables 5 and 6, respectively. In the tables we report the problem dimension n, which
ranges from 2 to 20; the number of function evaluations fevals required; the number of simplex gradient
evaluations ∇Sfevals used; the best known unconstrained minimum f(x∗); and fbest, which is the best
function value obtained by each method (defined as 0 if its absolute value is below 10−6). All results were
obtained starting from x0 = P̂Ω([2, . . . , 2]

⊤). For the computation of the data profiles, we considered the
convergence test f(xk) ≤ probmin(p) + gate(f(x0)− probmin(p)) with tolerance parameter gate = 10−5 and
probmin(p) the smallest objective function value computed by any method on problem p.

The differences between DDS-SPG and DDS-Proj are clear, indicating that the good numerical perfor-
mance observed is not the single result of the projection, but also benefits from the spectral step based on
the simplex gradients.

However, let us now consider a more complicated feasible region, corresponding to the convex set resulting
from the intersection of the box {x ∈ Rn | −1 ≤ x ≤ 4}, the half-space {x ∈ Rn | w⊤x ≤ 5}, where
w = [1/n, . . . , 1/n]⊤, and the sphere {x ∈ Rn | ∥x − c∥2 ≤ 81}, where c = [4, . . . , 4]⊤. Again, all results
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Figure 3. Data profiles for DDS, DDS-proj, and DDS-SPG methods, using complete (on the left) and opportunistic
(on the right) polling on asymptotically dense poll sets. The feasible region is the sphere {x ∈ Rn | ∥x − c∥2 ≤ 4}, where
c = [4, . . . , 4]⊤.

were obtained with the initialization x0 = P̂Ω([2, . . . , 2]
⊤). Figure 4 displays the data profiles obtained,

corresponding to the results reported in Tables 7 and 8, for complete and opportunistic versions, applied to
the set of 44 smooth functions.

Figure 4. Data profiles for DDS, DDS-proj, and DDS-SPG methods, using complete (on the left) and opportunistic (on
the right) polling on asymptotically dense poll sets. The feasible region is the intersection of a box, a half-space, and a sphere.

In this case, the advantages of DDS-SPG are clear by comparison with DDS, but not so evident when
comparing with DDS-Proj. The more complicated feasible region forces the frequent use of the projection,
causing more similarities between these two approaches.

Finally, at the beginning of Section 3 it was mentioned that DDS-SPG should not be regarded as a
simple search step implemented in DDS, using the SPG approach. Thus, our last numerical experiments
report the comparison between DDS-SPG and a variant of DDS, with a search step based on SPG, named as
DDS-Search. In this case, the stopping criteria disregarded the maximum number of iterations or function
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Table 5
Results for the 44 smooth functions, obtained by DDS, DDS-proj, and DDS-SPG methods, using complete polling on

asymptotically dense poll sets. The feasible region is the sphere {x ∈ Rn | ∥x− c∥2 ≤ 4}, where c = [4, . . . , 4]⊤.

Problem n f(x∗) DDS DDS-proj DDS-SPG
unconstrained fevals fbest fevals fbest fevals fbest ∇Sfevals

ARWHEAD 2 0.00 29 171.48 153 171.46 73 171.46 13
ARWHEAD 10 0.00 1343 3008.46 2681 3002.91 734 3002.91 14
ARWHEAD 20 0.00 3091 6821.93 7281 6812.77 3334 6812.77 14
BDQRTIC 5 0.00 605 1.89E+04 801 1.89E+04 254 1.89E+04 14
BDQRTIC 10 1187 2258 1.44E+05 2481 1.43E+05 454 1.43E+05 14
BDQRTIC 20 35.41 3965 4.44E+05 10001 4.43E+05 974 4.43E+05 14
BDVALUE 2 0.00 29 82.20 121 81.62 98 81.62 14
BROWNAL 2 0.00 29 54.97 353 53.86 948 53.86 12
BROWNAL 10 0.00 404 3.56E+10 2441 3.52E+10 294 3.52E+10 14
BROWNAL 20 0.00 254 1.05E+22 561 1.05E+22 574 1.05E+22 14
BROYDN3D 2 0.00 29 147.64 113 147.46 90 147.46 14
CHROSEN 2 0.00 177 1 129 1 239 1 11
FLETCHER 2 1.82E-3 29 2.94E+04 153 4.43E+03 106 2.92E+04 14
GENPOWELL3 2 0.00 119 0.68 73 0.68 67 0.68 11
GENPOWELL3 4 0.00 352 1.38 3217 1.38 524 1.38 12
INTEGREQ 2 0.00 29 81.81 105 81.61 81 81.61 13
PENALTY1 3 1.52E-5 43 577.79 85 577.79 7 577.79 1
PENALTY1 4 2.25E-5 57 1278.06 113 1278.06 9 1278.06 1
PENALTY1 10 7.09E-5 819 1.28E+04 2121 1.28E+04 21 1.28E+04 1
PENALTY1 20 1.58E-4 254 6.36E+04 561 6.36E+04 41 6.36E+04 1
PENALTY2 4 1.52E-5 233 7142.98 465 7133.50 222 7133.50 14
PENALTY2 5 3.27E-5 359 1.86E+04 801 1.86E+04 194 1.86E+04 14
PENALTY2 10 4.00E-4 1419 3.56E+05 2561 3.55E+05 354 3.55E+05 14
PENALTY2 20 8.31E-3 3977 6.58E+06 9921 6.58E+06 574 6.58E+06 14
PENALTY3 2 0.00 29 90.36 105 90.34 85 90.34 13
POWELLSG 4 0.00 406 889.03 577 887.92 278 887.92 14
POWELLSG 12 0.00 2730 4090.02 3745 4088.03 1862 4088.03 14
POWELLSG 20 0.00 7184 7658.95 10561 7655.81 2134 7655.81 14
SROSENBR 2 0.00 120 1 177 1 234 1 14
SROSENBR 4 0.00 287 1322.66 625 1307.19 342 1307.19 14
SROSENBR 10 0.00 1057 1.56E+04 2921 1.56E+04 1014 1.56E+04 14
SROSENBR 20 0.00 2727 5.37E+04 11841 5.33E+04 1854 5.33E+04 14
TRIDIA 2 0.00 82 9.03 129 9 230 9 10
TRIDIA 10 0.00 1237 569.17 3081 569.01 1254 569.01 14
TRIDIA 20 0.00 5039 2516.63 10481 2515.03 3214 2515.03 14
TRIGO 2 0.00 87 1.36 169 1.36 85 1.36 13
VARDIM 2 0.00 72 453.53 153 446.71 90 446.71 14
VARDIM 10 0.00 710 2.53E+08 2801 2.50E+08 354 2.50E+08 14
VARDIM 20 0.00 9446 7.49E+10 10961 7.47E+10 574 7.47E+10 14
WOODS 4 0.00 483 1666.26 609 1657.62 262 1657.62 14
WOODS 12 0.00 2560 2.22E+04 3889 2.22E+04 1478 2.22E+04 14
WOODS 20 0.00 6854 5.25E+04 11761 5.25E+04 2694 5.25E+04 14
QUADRATIC 2 0.00 29 13.37 57 13.37 5 13.37 1
SC2 2 0.30 134 3.09 225 3.09 53 3.09 9

evaluations, since we would like to evaluate the robustness of the two algorithms. Figure 5 reports the two
data profiles corresponding to complete and opportunistic approaches. The corresponding numerical results
are in Tables 9 and 10. Again, the better performance of DDS-SPG is clear.

6. Concluding remarks. We proposed and analyzed a novel hybrid DFO method for the minimization
of smooth functions over a feasible set that can be written as the intersection of a finite collection of convex
and closed sets, such that it is easy and inexpensive to project onto each one of them. The hybrid scheme
takes advantage of DDS methods and, when it fails in generating a new point, explores a derivative-free
version of the SPG method, which is an inexpensive gradient-type projection scheme known for its fast linear
convergence and low computational cost when real gradients are used. In our DFO proposal, instead of real
gradients, we use simplex gradients, conveniently obtained by reusing previous evaluations of the objective
function. Moreover, to avoid unnecessary function evaluations when the computed simplex gradient is not
sufficiently close to the real gradient, we include some convenient features into the algorithmic framework of
the SPG scheme. Furthermore, at those iterations where the derivative-free SPG scheme is used, the required
projections onto the feasible set are approximated at a low cost, using Dykstra’s alternating projection
method.

From a theoretical point of view, we established that if there exists an infinite number of successful poll
step iterations, then there exists at least a subsequence of the generated sequence of iterates converging to
a stationary point. On the other hand, if after some iteration all the forthcoming iterates are obtained from
a successful SPG step, then every limit point of the generated sequence of iterates is a stationary point.
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Table 6
Results for the 44 smooth functions, obtained by DDS, DDS-proj and DDS-SPG methods, using opportunistic polling on

asymptotically dense poll sets. The feasible region is the sphere {x ∈ Rn | ∥x− c∥2 ≤ 4}, where c = [4, . . . , 4]⊤.

Problem n f(x∗) DDS DDS-proj DDS-SPG
unconstrained fevals fbest fevals fbest fevals fbest ∇Sfevals

ARWHEAD 2 0.00 38 171.48 160 171.46 85 171.46 13
ARWHEAD 10 0.00 976 3005.47 2638 3002.91 625 3002.91 14
ARWHEAD 20 0.00 3317 6824.69 8474 6812.77 2665 6812.77 14
BDQRTIC 5 0.00 385 18897.29 765 18866.15 250 18866.15 14
BDQRTIC 10 1187 1740 1.43E+05 2601 1.43E+05 391 1.43E+05 14
BDQRTIC 20 35.41 3164 4.44E+05 12136 4.43E+05 894 4.43E+05 14
BDVALUE 2 0.00 38 82.20 129 81.62 103 81.62 14
BROWNAL 2 0.00 38 54.97 337 53.86 520 53.86 12
BROWNAL 10 0.00 724 3.57E+10 3046 3.52E+10 308 3.52E+10 14
BROWNAL 20 0.00 261 1.05E+22 575 1.05E+22 588 1.05E+22 14
BROYDN3D 2 0.00 38 147.64 125 147.46 99 147.46 14
CHROSEN 2 0.00 137 1.01 132 1 167 1 11
FLETCHER 2 1.82E-3 38 2.94E+04 161 4.43E+03 105 2.92E+04 14
GENPOWELL3 2 0.00 139 0.68 86 0.68 73 0.68 11
GENPOWELL3 4 0.00 325 1.38 1527 1.38 1361 1.38 13
INTEGREQ 2 0.00 38 81.81 117 81.61 90 81.61 13
PENALTY1 3 1.52E-5 48 577.79 99 577.79 8 577.79 1
PENALTY1 4 2.25E-5 61 1.28E+03 127 1.28E+03 10 1.28E+03 1
PENALTY1 10 7.09E-5 724 1.29E+04 2401 1.28E+04 22 1.28E+04 1
PENALTY1 20 1.58E-4 261 6.36E+04 575 6.36E+04 42 6.36E+04 1
PENALTY2 4 1.52E-5 218 7.14E+03 499 7.13E+03 214 7.13E+03 14
PENALTY2 5 3.27E-5 409 1.87E+04 647 1.86E+04 196 1.86E+04 14
PENALTY2 10 4.00E-4 1521 3.56E+05 2828 3.55E+05 344 3.55E+05 14
PENALTY2 20 8.31E-3 3925 6.57E+06 12095 6.57E+06 588 6.57E+06 14
PENALTY3 2 0.00 38 90.36 112 90.34 89 90.34 13
POWELLSG 4 0.00 366 889.25 589 887.92 309 887.92 14
POWELLSG 12 0.00 2222 4.09E+03 3811 4.09E+03 1504 4.09E+03 14
POWELLSG 20 0.00 9019 7.66E+03 11729 7.66E+03 1658 7.66E+03 14
SROSENBR 2 0.00 623 1.00 143 1 237 1 14
SROSENBR 4 0.00 262 1.32E+03 624 1.31E+03 254 1.31E+03 14
SROSENBR 10 0.00 1425 1.56E+04 2649 1.56E+04 775 1.56E+04 14
SROSENBR 20 0.00 2718 5.39E+04 10247 5.33E+04 1217 5.33E+04 14
TRIDIA 2 0.00 101 9.01 143 9 195 9 10
TRIDIA 10 0.00 1160 569.39 2619 569.01 967 569.01 14
TRIDIA 20 0.00 4013 2.52E+03 12209 2.52E+03 2785 2.52E+03 14
TRIGO 2 0.00 138 1.37 211 1.36 87 1.36 11
VARDIM 2 0.00 74 453.53 155 446.71 95 446.71 14
VARDIM 10 0.00 1485 2.51E+08 2362 2.50E+08 336 2.50E+08 14
VARDIM 20 0.00 6213 7.48E+10 11307 7.47E+10 588 7.47E+10 14
WOODS 4 0.00 385 1.66E+03 506 1.66E+03 233 1.66E+03 14
WOODS 12 0.00 1340 2.23E+04 3612 2.22E+04 902 2.22E+04 14
WOODS 20 0.00 4906 5.25E+04 13091 5.25E+04 1192 5.25E+04 14
QUADRATIC 2 0.00 38 13.37 71 13.37 6 13.37 1
SC2 2 0.30 118 3.09 214 3.09 57 3.09 9

From a practical point of view, the main objective of this suitable combination of derivative-free schemes
is to reduce the number of function evaluations that turns out to be the greatest difficulty when dealing with
the so-called black-box derivative-free optimization problems. In that sense, in our preliminary numerical
experiments, we observed that the expected described advantages take effect, and indeed the number of
required function evaluations is clearly reduced when compared to the use of only DDS-type methods.
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ported by project PTDC/MAT-APL/28400/2017 and E. H. M. Krulikovski by project UI/297/2020-5/2021,
of the same funding agency.
Data availability. The codes and datasets generated during and/or analyzed during the current study are
available from the authors on reasonable request.

Disclosure statement. No potential conflict of interest was reported by the authors.

REFERENCES



A HYBRID DS AND SPG METHOD FOR CONVEX MINIMIZATION 23

Table 7
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Figure 5. Data profiles for DDS-Search and DDS-SPG methods, using complete (on the left) and opportunistic (on the
right) polling on asymptotically dense poll sets, respectively. The feasible region is the intersection of a box, a half-space, and
a sphere.
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Table 9
Results for the 44 smooth functions, obtained by DDS-Search and DDS-SPG methods, using complete polling on asymp-

totically dense poll sets, not considering neither the maximum number of iterations nor or function evaluations as stopping
criteria. The feasible region is the intersection of a box, a half-space, and a sphere.

Problem n f(x∗) DDS-Search DDS-SPG

unconstrained fevals fbest fevals fbest ∇Sfevals

ARWHEAD 2 0.00 82 0.00 175 0.00 25

ARWHEAD 10 0.00 2664 6.20 1853 6.06 62

ARWHEAD 20 0.00 878 292.10 1074 293.26 22

BDQRTIC 5 0.00 244 0 751 0.00 42

BDQRTIC 10 1187 1742 1097.77 1316 1093.07 45

BDQRTIC 20 35.41 10226 2.89E+04 1625 2.89E+04 31

BDVALUE 2 0.00 134 0.00 129 0.00 20

BROWNAL 2 0.00 78 0.00 204 0.00 28

BROWNAL 10 0.00 412 34.97 965 33.38 35

BROWNAL 20 0.00 574 8.56E+11 574 8.55E+11 14

BROYDN3D 2 0.00 138 0.00 143 0.00 21

CHROSEN 2 0.00 78 0 195 0.00 27

FLETCHER 2 1.82E-3 125 2.01E-05 217 6.06E-06 30

GENPOWELL3 2 0.00 641 0.57 319 0.57 43

GENPOWELL3 4 0.00 1090 1.16 1025 1.16 71

INTEGREQ 2 0.00 126 0.00 117 0.00 18

PENALTY1 3 1.52E-5 3884 2.08E-05 212 3.42E-05 21

PENALTY1 4 2.25E-5 31950 2.42E-05 224 4.46E-05 18

PENALTY1 10 7.09E-5 481 170.75 1134 171.13 40

PENALTY1 20 1.58E-4 481 170.75 1134 171.13 40

PENALTY2 4 1.52E-5 246 1.89E-05 437 1.70E-05 31

PENALTY2 5 3.27E-5 384 3.38E-05 575 3.45E-05 33

PENALTY2 10 4.00E-4 2506 3.00E+03 1291 3.00E+03 44

PENALTY2 20 8.31E-3 2734 4.68E+05 3966 4.68E+05 69

PENALTY3 2 0.00 194 1.00E-03 186 1.00E-03 26

POWELLSG 4 0.00 207 0.00 683 5.11E-06 46

POWELLSG 12 0.00 23250 136.25 2261 128.39 64

POWELLSG 20 0.00 90854 957.58 2648 949.33 49

SROSENBR 2 0.00 78 0.00 868 0.00 102

SROSENBR 4 0.00 158 0.00 21442 1.31E-03 1268

SROSENBR 10 0.00 375683 0.12 192318 0.05 4699

SROSENBR 20 0.00 60817 5.12 89926 4.27 1284

TRIDIA 2 0.00 246 0.00 169 0.00 24

TRIDIA 10 0.00 53483 22.71 858 22.74 30

TRIDIA 20 0.00 733 629.12 1222 636.32 24

TRIGO 2 0.00 114 0.00 145 0.00 21

VARDIM 2 0.00 78 0.00 170 0.00 24

VARDIM 10 0.00 6683 1.92 3187 1.58 100

VARDIM 20 0.00 574 4.78E+08 410 4.78E+08 10

WOODS 4 0.00 158 0.00 905 1.94E-04 60

WOODS 12 0.00 3926 59.43 3106 53.00 83

WOODS 20 0.00 60542 481.65 8509 449.89 139

QUADRATIC 2 0.00 86 0.00 44 0.00 6

SC2 2 0.30 86 0.30 123 0.30 18

[48] Z. Zhao, J. C. Meza, and M. Van Hove, Using pattern search methods for surface structure determination of nanoma-
terials, J. Phys. Condens. Matter, 18 (2006), pp. 8693–8706.
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Table 10
Results for the 44 smooth functions, obtained by DDS-Search and DDS-SPG methods, using opportunistic polling on

asymptotically dense poll sets, not considering neither the maximum number of iterations nor or function evaluations as
stopping criteria. The feasible region is the intersection of a box, a half-space, and a sphere.

Problem n f(x∗) DDS-Search DDS-SPG

unconstrained fevals fbest fevals fbest ∇Sfevals

ARWHEAD 2 0.00 91 0.00 181 0.00 25

ARWHEAD 10 0.00 14462 6.32 1241 6.11 47

ARWHEAD 20 0.00 1139 292.16 1033 292.59 23

BDQRTIC 5 0.00 225 0.00 721 0.00 48

BDQRTIC 10 1187 6139 1104.35 1104 1094.55 44

BDQRTIC 20 35.41 1830 2.89E+04 2110 2.89E+04 42

BDVALUE 2 0.00 131 0.00 172 0.00 25

BROWNAL 2 0.00 171 0.00 279 0.00 37

BROWNAL 10 0.00 6220 34.67 492 35.85 21

BROWNAL 20 0.00 581 8.56E+11 581 8.55E+11 14

BROYDN3D 2 0.00 125 0.00 204 0.00 28

CHROSEN 2 0.00 893 0.00 286 1.22E-06 38

FLETCHER 2 1.82E-3 123 6.47E-06 222 6.06E-06 30

GENPOWELL3 2 0.00 346 0.57 300 0.57 41

GENPOWELL3 4 0.00 506 1.16 1090 1.16 79

INTEGREQ 2 0.00 129 0.00 197 0.00 27

PENALTY1 3 1.52E-5 5259 1.99E-05 218 2.87E-05 23

PENALTY1 4 2.25E-5 6079 2.79E-05 178 5.93E-05 15

PENALTY1 10 7.09E-5 650 171.17 598 171.04 25

PENALTY1 20 1.58E-4 650 171.17 598 171.04 25

PENALTY2 4 1.52E-5 266 1.92E-05 438 1.91E-05 35

PENALTY2 5 3.27E-5 369 3.54E-05 395 3.53E-05 27

PENALTY2 10 4.00E-4 2521 3.04E+03 1085 2.99E+03 42

PENALTY2 20 8.31E-3 3820 4.68E+05 2125 4.68E+05 41

PENALTY3 2 0.00 125 0.49 161 0.00 23

POWELLSG 4 0.00 1582 3.66E-05 1037 5.49E-06 77

POWELLSG 12 0.00 27207 150.51 1990 129.27 64

POWELLSG 20 0.00 84779 964.41 3546 947.43 73

SROSENBR 2 0.00 89 0.00 858 1.33E-06 104

SROSENBR 4 0.00 37425 8.89E-04 22240 6.69E-04 1475

SROSENBR 10 0.00 618265 0.15 167315 0.07 4916

SROSENBR 20 0.00 333288 5.00 113456 4.03 1747

TRIDIA 2 0.00 172 0.00 206 0.00 29

TRIDIA 10 0.00 4561 25.17 998 22.34 36

TRIDIA 20 0.00 662 631.12 1722 628.32 35

TRIGO 2 0.00 110 0.00 160 0.00 23

VARDIM 2 0.00 89 0.00 174 0.00 24

VARDIM 10 0.00 16244 1.79 3390 1.61 125

VARDIM 20 0.00 578 4.78E+08 414 4.78E+08 10

WOODS 4 0.00 11039 1.03E-03 6097 2.79E-04 428

WOODS 12 0.00 9410 56.44 4945 52.31 146

WOODS 20 0.00 68174 473.87 7302 464.49 135

QUADRATIC 2 0.00 94 0.00 43 0.00 6

SC2 2 0.30 94 0.30 141 0.30 20
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