Publications

Export 37 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Gray, R. D., A. Malheiro, and S. J. Pride. "On properties not inherited by monoids from their Schützenberger groups." Inf. Comput.. 209 (2011): 1120-1134. AbstractWebsite

We give an example of a monoid with finitely many left and right ideals, all of whose Schützenberger groups are presentable by finite complete rewriting systems, and so each have finite derivation type, but such that the monoid itself does not have finite derivation type, and therefore does not admit a presentation by a finite complete rewriting system. The example also serves as a counterexample to several other natural questions regarding complete rewriting systems and finite derivation type. Specifically it allows us to construct two finitely generated monoids M and N with isometric Cayley graphs, where N has finite derivation type (respectively, admits a presentation by a finite complete rewriting system) but M does not. This contrasts with the case of finitely generated groups for which finite derivation type is known to be a quasi-isometry invariant. The same example is also used to show that neither of these two properties is preserved under finite Green index extensions.

Gray, R. D., A. Malheiro, and S. J. Pride. "Homotopy bases and finite derivation type for Schützenberger groups of monoids." J. Symb. Comput.. 50 (2013): 50-78. AbstractWebsite

Given a finitely presented monoid and a homotopy base for the monoid, and given an arbitrary Schutzenberger group of the monoid, the main result of this paper gives a homotopy base, and presentation, for the Schutzenberger group. In the case that the R-class R' of the Schutzenberger group G(H) has only finitely many H-classes, and there is an element s of the multiplicative right pointwise stabilizer of H, such that under the left action of the monoid on its R-classes the intersection of the orbit of the R-class of s with the inverse orbit of R' is finite, then finiteness of the presentation and of the homotopy base is preserved.

Gray, R. D., and A. Malheiro. "Homotopy bases and finite derivation type for subgroups of monoids." J. Algebra. 410 (2014): 53-84. AbstractWebsite

Given a monoid defined by a presentation, and a homotopy base for the derivation graph associated to the presentation, and given an arbitrary subgroup of the monoid, we give a homotopy base (and presentation) for the subgroup. If the monoid has finite derivation type (FDT), and if under the action of the monoid on its subsets by right multiplication the strong orbit of the subgroup is finite, then we obtain a finite homotopy base for the subgroup, and hence the subgroup has FDT. As an application we prove that a regular monoid with finitely many left and right ideals has FDT if and only if all of its maximal subgroups have FDT. We use this to show that a finitely presented regular monoid with finitely many left and right ideals satisfies the homological finiteness condition FP3 if all of its maximal subgroups satisfy the condition FP_3.

M
Malheiro, A. "Finite derivation type for semilattices of semigroups." Semigroup Forum. 84 (2012): 515-526. AbstractWebsite

In this paper we investigate how the combinatorial property finite derivation type (FDT) is preserved in a semilattice of semigroups. We prove that if S=S[Y,S_α] is a semilattice of semigroups such that Y is finite and each S_α (α∈Y) has FDT, then S has FDT. As a consequence we can show that a strong semilattice of semigroups S[Y,S_α,λ_{α,β}] has FDT if and only if Y is finite and every semigroup S α (α∈Y) has FDT.

Malheiro, A. Finiteness conditions of semigroup presentations.. Eds. G. M. S. Gomes. University of Lisbon. Lisbon: University of Lisbon, 2006.
Malheiro, A. "Finite derivation type for Rees matrix semigroups." Theor. Comput. Sci.. 355 (2006): 274-290. AbstractWebsite

This paper introduces the topological finiteness condition finite derivation type (FDT) on the class of semigroups. This notion is naturally extended from the monoid case. With this new concept we are able to prove that if a Rees matrix semigroup M[S;I,J;P] has FDT then the semigroup S also has FDT. Given a monoid S and a finitely presented Rees matrix semigroup M[S;I,J;P] we prove that if the ideal of S generated by the entries of P has FDT, then so does M[S;I,J;P]. In particular, we show that, for a finitely presented completely simple semigroup M, the Rees matrix semigroup M=M[S;I,J;P] has FDT if and only if the group S has FDT.

Malheiro, António, and José Francisco Reis. "Identification of proofs via syzygies." Philosophical Transactions of the Royal Society A. 377.2140 (2019). AbstractWebsite

In 1900, Hilbert gave a lecture at the International Congress of Mathematicians in Paris, for which he prepared 23 problems that mathematicians should solve during the twentieth century. It was found that there was a note on a 24th Problem focusing on the problem of simplicity of proofs. One of the lines of research that was generated from this problem was the identification of proofs. In this article, we present a possible method for exploring the identification of proofs based on the membership problem original from the theory of polynomial rings. To show this, we start by giving a complete worked-out example of a membership problem, that is, the problem of checking if a given polynomial belongs to an ideal generated by finitely many polynomials. This problem can be solved by considering Gröbner bases and the corresponding reductions. Each reduction is a simplification of the polynomial and it corresponds to a rewriting step. In proving that a polynomial is a member of an ideal, a rewriting process is used, and many different such processes can be considered. To better illustrate this, we consider a graph where each rewriting step corresponds to an edge, and thus a path corresponds to a rewriting process. In this paper, we consider the identification of paths, within the context of the membership problem, to propose a criterion of identification of proofs.
This article is part of the theme issue ‘The notion of ‘simple proof’ - Hilbert’s 24th problem’.

Malheiro, A. "Finite derivation type for large ideals." Semigroup Forum. 78 (2009): 450-485. AbstractWebsite

n this paper we give a partial answer to the following question: does a large subsemigroup of a semigroup S with the finite combinatorial property finite derivation type (FDT) also have the same property? A positive answer is given for large ideals. As a consequence of this statement we prove that, given a finitely presented Rees matrix semigroup M[S;I,J;P], the semigroup S has FDT if and only if so does M[S;I,J;P].

Malheiro, A. "Complete rewriting systems for codified submonoids." Int. J. Algebra Comput.. 15 (2005): 207-216. AbstractWebsite

Given a complete rewriting system R on X and a subset X0 of X+ satisfying certain conditions, we present a complete rewriting system for the submonoid of M(X;R) generated by X0. The obtained result will be applied to the group of units of a monoid satisfying H1 = D1. On the other hand we prove that all maximal subgroups of a monoid defined by a special rewriting system are isomorphic.

Malheiro, A. "On Finite Semigroup Cross-Sections and Complete Rewriting Systems." International Conference on Theoretical and Mathematical Foundations of Computer Science, TMFCS-08, Orlando, Florida, USA, July 7-10, 2008. 2008. 59-63. Abstract

In this paper we obtain a [finite] complete rewriting system defining a semigroup/monoid S, from a given finite
right cross-section of a subsemigroup/submonoid defined by a [finite] complete presentation. In the semigroup case the subsemigroup must have a right identity element which must also be part of the cross-section. In the monoid case the submonoid and the cross-section must include the identity of the semigroup. The result on semigroups allow us to show that if G is a group defined by a [finite] complete rewriting system then the completely simple semigroup M[G; I, J; P] is also defined by a [finite] complete rewriting system.

Malheiro, A. Presentations and complete rewriting systems for semigroups. (in Portuguese). Eds. G. M. S. Gomes. Faculty of Sciences of the University of Lisbon. Lisbon: University of Lisbon, 2001.
Malheiro, A. On trivializers and subsemigroups.. Semigroups and formal languages. Proceedings of the international conference in honour of the 65th birthday of Donald B. McAlister. Lisboa, Portugal, July 12–15, 2005.: Hackensack, NJ: World Scientific, 2007. Abstract

The aim of this paper is to develop the calculus of trivializers for subsemigroups. Given a finite presentation defining a semigroup S and a trivializer of the Squier complex of , we obtain an infinite trivializer of the Squier complex of a finite presentation defining a subsemigroup of S. Also, we give a method to find finite trivializers for special subsemigroups and hence to show that those subsemigroups have finite derivation type (FDT). An application of this method is given: we prove that if is a band of monoids having FDT, then so does Sα, for any α ∈Y.