Publications

Export 7 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Gray, R. D., and A. Malheiro. "Finite complete rewriting systems for regular semigroups." Theor. Comput. Sci.. 412 (2011): 654-661. AbstractWebsite

It is proved that, given a (von Neumann) regular semigroup with finitely many left and right ideals, if every maximal subgroup is presentable by a finite complete rewriting system, then so is the semigroup. To achieve this, the following two results are proved: the property of being defined by a finite complete rewriting system is preserved when taking an ideal extension by a semigroup defined by a finite complete rewriting system; a completely 0-simple semigroup with finitely many left and right ideals admits a presentation by a finite complete rewriting system provided all of its maximal subgroups do.

Malheiro, A. "Finite derivation type for large ideals." Semigroup Forum. 78 (2009): 450-485. AbstractWebsite

n this paper we give a partial answer to the following question: does a large subsemigroup of a semigroup S with the finite combinatorial property finite derivation type (FDT) also have the same property? A positive answer is given for large ideals. As a consequence of this statement we prove that, given a finitely presented Rees matrix semigroup M[S;I,J;P], the semigroup S has FDT if and only if so does M[S;I,J;P].

Malheiro, A. "Finite derivation type for Rees matrix semigroups." Theor. Comput. Sci.. 355 (2006): 274-290. AbstractWebsite

This paper introduces the topological finiteness condition finite derivation type (FDT) on the class of semigroups. This notion is naturally extended from the monoid case. With this new concept we are able to prove that if a Rees matrix semigroup M[S;I,J;P] has FDT then the semigroup S also has FDT. Given a monoid S and a finitely presented Rees matrix semigroup M[S;I,J;P] we prove that if the ideal of S generated by the entries of P has FDT, then so does M[S;I,J;P]. In particular, we show that, for a finitely presented completely simple semigroup M, the Rees matrix semigroup M=M[S;I,J;P] has FDT if and only if the group S has FDT.

Malheiro, A. "Finite derivation type for semilattices of semigroups." Semigroup Forum. 84 (2012): 515-526. AbstractWebsite

In this paper we investigate how the combinatorial property finite derivation type (FDT) is preserved in a semilattice of semigroups. We prove that if S=S[Y,S_α] is a semilattice of semigroups such that Y is finite and each S_α (α∈Y) has FDT, then S has FDT. As a consequence we can show that a strong semilattice of semigroups S[Y,S_α,λ_{α,β}] has FDT if and only if Y is finite and every semigroup S α (α∈Y) has FDT.

Cain, A. J., R. D. Gray, and A. Malheiro. "Finite Gröbner-Shirshov bases for plactic algebras and biautomatic structures for plactic monoids." J. Algebra. 423 (2015): 37-53. AbstractWebsite

This paper shows that every Plactic algebra of finite rank admits a finite Gröbner--Shirshov basis. The result is proved by using the combinatorial properties of Young tableaux to construct a finite complete rewriting system for the corresponding Plactic monoid, which also yields the corollaries that Plactic monoids of finite rank have finite derivation type and satisfy the homological finiteness properties left and right $\mathrm{FP}_\infty$. Also, answering a question of Zelmanov, we apply this rewriting system and other techniques to show that Plactic monoids of finite rank are biautomatic.

Malheiro, A. Finiteness conditions of semigroup presentations.. Eds. G. M. S. Gomes. University of Lisbon. Lisbon: University of Lisbon, 2006.
Araújo, João, Michael Kinyon, Janusz Konieczny, and António Malheiro. "Four notions of conjugacy for abstract semigroups." Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 147 (2017): 1169-1214. AbstractWebsite

n/a