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Abstract: An increasing trend in Human-Machine Interaction is the development of a tighter connection between
the human user and the device. This paper analyses the possibility of creating a low-cost system that enables a
person to use a group of muscles to control a different part of his body using Electromyography (EMG). This
system features an EMG reader, two processing boards and a robotic hand, and was tested in both ideal and
practical conditions. Despite being possible to see satisfactory results in some subjects’ first uses, it was concluded
that the practicing time was a key factor on the precision of the artificial limb control.

Key–Words: Assistive Technologies, HMI, Electromyography, Sensorimotor Plasticity, Robotic Hand.

1 Introduction
An increasing trend in Human-Machine Interaction is
the development of a tighter connection between the
human user and the device. This approach is sup-
ported by numerous projects in human enhancement
technologies to overcome a handicap [1] or to increase
performance [2]. The idea is to enable a direct link-
age between a physiological signal and the machine
control system.

Two approaches are mainly used. The first one
is based on the capture of the nervous system activity
through the record of EEG [3, 4]. The main advantage
of this method is the fact that even people who suf-
fered a heavy handicap are able to control an artifact
by mental imagery. On the other hand, it requires a
long training and a possibly invasive recording, which
may have important consequences in terms of system
usability and collateral infections.

An alternative is using the activity of superfi-
cial muscles through the recording of EMG. This ap-
proach has the advantage of promoting a more intu-
itive and quicker control of the artifact by the user
and to be less invasive than the acquisition of a ner-
vous signal [5].Taking into account these considera-
tions, several works have been developed involving a
prosthetic hand controlled through EMG recordings
[6, 7].

However these approaches are based on costly
materials or on the use of the other arm [8, 9]. This is
a limitation because the use of a healthy arm to control
the artificial hand impedes its natural use. In particu-
lar, many of day-to-day activities need the use of both
hands and an independent control of each one. There-
fore, this paper proposes a solution that involves the
usage of EMG recordings in a body area that is not
related to the arm, such as, the abdomen muscles (rec-
tus abdominis) to control a robotic hand. Moreover,
the cost of the whole system is much lower than in the
previous studies, since all the mechanical parts of the
robotic hand were made through a 3D printer and all
electronics were made as cost effective as possible.

Aside from the technological challenge, it tackles
fundamental questions on the human capabilities to
use a group and type of muscles that does not belong
to the muscles used to control the limb in normal con-
ditions. For instance, the human body can adapt itself
to be able to associate the activity of muscle group
with the control of a different body part. Historical
studies on the brain’s plasticity [10] for interpreting
visual information in another sensorial modality (i.e.,
tactile) support this theory.

In the next sections of the article, it will described
the hand’s design (Section 2), the developed architec-
ture (Section 3), the protocol used (Section 4) and the



results obtained (Section 5).

2 Hand Design
The design objective was to create a fully functional
prosthetic hand that could offer a good performance
at an affordable cost. So this robotic hand was de-
signed to be as similar as the human hand as possi-
ble, in terms of feel, functionality, size, weight and
grasping speed and power; having the cost as a major
concern.

The hand developed (see Figure 1) is capable of
moving independently each one of its 15 joints since
each joint is powered by an individual servo. This ap-
proach has the advantage of providing a greater flexi-
bility in terms of movement, giving the possibility of a
performance closer to the human hand. This increases
the complexity of the design, specially, the incorpora-
tion of all joints’ servos.

Figure 1: Hand Design View.

3 System’s Architecture
Since the system needed to be as compact and energy
efficient as possible, the adopted design consists of
three self-adhesive passive Ag-Cl electrodes, a BITal-
ino board to acquire the EMG signal, a robotic hand,
a digital filter unit, and an EMG Classification and
Servo Controller Unit (ECSCU), both implemented in
two different Arduino boards. The flowchart of the
architecture is depicted in Figure2.

The electrodes and the BITalino board (see the
specification used in Table 1) are used together to re-
trieve and amplify the EMG signal.
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Figure 2: Flowchart of EMG recognition and servo
actuation system.

Table 1: Specification used, BITalino.
Parameter Value
Bandwidth 10 - 400 Hz

Input Impedance 100 GΩ

ADC resolution 10 bit
Signal noise ratio > 110 dB

CMRR 110 dB
Range 0 - 3.3 mV
Gain 1000

This signal is then sent to the Filter Unit via Blue-
tooth, using a HC-05 Bluetooth Transceiver board.
The later is used to enable the communications be-
tween Arduino and BITalino boards. The Filter Unit
removes some noise from the input signal, outputting
the response via serial connection to the ECSCU. In
this unit, a EMG processing algorithm classifies the
muscles’ contractions and a servo control algorithm is
used to control the robotic hand.

4 Experimental protocol
Five participants took part in the long-term study and
twenty in short-term study. Three male and two fe-
male subjects were asked to perform two abdominal
contractions during 10 seconds. The test was repeated
5 times and all showed similar results. The differences



between male and female data were taken into account
during the design of the algorithms so that the ECSCU
could correctly analyze both sexes’ data. One of the
samples was selected and analyzed in this paper.

All participants were made aware of the objec-
tive of this study and gave their consent before par-
ticipating in it. The participants in this study were
male between 170-180 cm height and weighted be-
tween 70-80kg. Female subjects were between 160-
165 cm height and weighted between 51-58 kg. All
aged between 20-25 years. No subject had any history
of muscular diseases or had an estimated body fat per-
centage higher than 24% as determined by skinfold
measurements. This value was chosen due to the risk
of increased impedance during the EMG signal acqui-
sition in subjects with body fat composition above that
threshold [11].

Male and female subjects’ data were studied sep-
arately, because of the variation in the amount and dis-
tribution of subcutaneous tissue between the sexes.

4.1 Data acquisition procedure
Skin of the subjects was carefully prepared before the
beginning of these experiments. Since the EMG sig-
nals were acquired from abdominal area, dead skin
was removed, using alcoholic solution. In order to
improve the quality of the readings a gel solution was
applied on all the subjects before the placement of the
electrodes. One EMG channel was used with self-
adhesive passive Ag-Cl electrodes. The elbow was
used as reference point for the placement of electrodes
because it is electrically unrelated to the abdominal
muscles.

The EMG signal was sampled rate of 1KHz using
the BITalino’s EMG module 10 bit ADC. The data
was analyzed with Biosignal Igniter Toolkit [12] and
converted into a mat file in order to test algorithms in
Matlab. With the information acquired, it was devel-
oped the low-cost architecture described in Section 3.

4.2 Signal processing
The EMG signal acquired and amplified in the BITal-
ino board has a low Signal to Noise Ratio (SNR), par-
tially due to cardiac artifacts located in the 50-80 Hz
frequency region (see Figure 3) and electrical noise,
located in the 50 Hz frequency region. This signal
could be then processed directly (without the Filter
Unit) by the ECSCU, however the performance of this
unit wasn’t satisfying as the analysis success varied
between 50-60%.

To reduce noise from the readings and improve
the performance of the ECSCU, the implementation
of the Filter Unit featuring a high-pass filter was

Figure 3: EMG signal acquisition. Cardiac artifacts
must be taken into consideration.

tested. In particular, several high-pass Butterworth
filters with different orders were designed and tested,
to assess the minimum acceptable filter’s order that
could be implemented in the Filter Unit.

Figure 4 shows how three different orders of the
high-pass Butterworth filter affected the input signal.

Figure 4: Resulting filtered signals.

In Figure 4 it can be seen the resulting signal after
applying a 16th order, 8th and 4th order (respectively:
yellow, green and red signals ). It can be concluded
that as the order of the filter increases, the SNR de-
creases. Therefore, a fourth order Butterworth filter
was the minimum acceptable, as the ECSCU wasn’t
able to analyze resulting signals, with a good accu-
racy (above 90%), with filter’s orders below that.



It was also tested whether a low-pass Butterworth
filter could be incorporated in this unit, in order to re-
duce the high frequency noise. However, the final de-
sign didn’t incorporate this filter because the marginal
increase in the ECSCU analysis performance came
with a significantly increase in the system’s response
time.

The ECSCU has three main algorithms (process-
ing, calibration and classification). Its’ processing al-
gorithm incorporates features such as Zero Crossing
Count and Root Mean Square (see Equations 1 and 2),
in order to qualify when a contraction is developed.

Zero Crossing Count (ZOC):

ZOC =
∑N+1

n−1 [signal(xn)! = signal(xn+1)]
(1);

Root Mean Square (RMS):

RMS =
√

1
N+1−n−1

∑N+1
n−1 x2n (2);

While both features quantify muscle activity, the
ZOC relies on counting the number of times that the
amplitude of the signal crosses the zero value and the
RMS on calculations directly related with the ampli-
tude of the signal.

4.3 Calibration
The ECSCU also features a calibration algorithm (see
Figure 5) that measures the muscles’ EMG activity
while at rest (minimum value) and during a contrac-
tion (maximum value). After this step, the system is
able to linearly interpolate a muscle contraction. With
this algorithm the system is capable of adjusting itself
to different subjects.

Figure 5: ECSCU calibration stage. Top graph: input
signals. Bottom graph: output signals.

In Figure 6 it can be seen the output of the cali-
bration algorithm displayed in green and the output of
the processing algorithm displayed in red. It is also
displayed the Filter Unit output signal in blue.

The classification algorithm takes into account in-
formation from the processing and calibration phases
and classifies the muscle active area, the results are
used with the interpolation equation and output to the
servo control module which is responsible for control-
ling each finger of the robotic hand.

Figure 6: Filtered signal and processed signal. Green:
threshold output by the calibration phase. Red: signal
output by the processing phase. Blue: signal output
by the Filter Unit.

All algorithms in the ECSCU were developed in
order to require as little processing power as possible
so that the Arduino boards were able to process the
input in a reasonable time. The trade off was that some
accuracy was reduced while attaining acceptable.

5 Results
To evaluate the success of this system, each subject
was asked to perform an abdominal contraction and
maintaining it for a short period of time, so that the
robotic hand grabbed a solid object (see Figure 7 and
8). The success of this implementation was evaluated
by checking whether the long and short time partici-
pants managed or not to grab the solid object.

The results of the test aren’t very conclusive since
the population studied is quite small. However, it can
be concluded that with training and time, the partic-
ipant’s ability to control the robotic hand increased
dramatically (see Figure 9). Since every long time
participant could execute this test successfully with



Figure 7: Subject with his abdominal muscles relaxed
during the Robotic Hand Control Evaluation (RHCE).

Figure 8: Subject with his abdominal muscles con-
tracted during the RHCE.

small effort (see Table 2) while the long short par-
ticipants struggled to complete it (see Tables 3 and
4). It’s worth mentioning that some short time partici-
pants showed good results in the first contact with the
system, this was due in part to the developed calibra-
tion algorithm.

Figure 9: Short and long time participants’ RHCE.

Table 2: Long time participants’ RHCE.
Age BMI (kg/m2) 1st test 2nd test

1. 21 22 Failed Success
2. 22 24 Success Success
3. 22 20 Success Success
4. 20 21 Failed Success
5. 25 23 Success Success

Table 3: Short time participants’ RHCE (Female).
Age BMI (kg/m2) 1st test 2nd test

1. 24 21 Failed Failed
2. 21 23 Failed Success
3. 20 20 Failed Failed
4. 20 24 Success Success
5. 23 20 Failed Failed
6. 20 22 Failed Failed
7. 21 21 Failed Success
8. 21 24 Failed Failed
9. 24 22 Failed Failed
10. 22 23 Success Success

Table 4: Short time participants’ RHCE (Male).
Age BMI (kg/m2) 1st test 2nd test

1. 21 21 Failed Success
2. 20 22 Success Failed
3. 22 24 Failed Failed
4. 25 20 Failed Success
5. 21 23 Failed Success
6. 24 21 Failed Failed
7. 21 23 Failed Success
8. 20 20 Failed Failed
9. 20 23 Failed Success
10. 22 21 Success Failed

6 Conclusion
This system core goal is to provide the disabled people
the possibility of controlling a robotic hand by using
muscles that are not located on the limbs. Addition-
ally, the low costs involved represent a major asset.

It was possible to see good results in some partici-
pants’ first contact with the system. However, the best
results came from the long time participants. So it was
concluded that the practicing time is a key factor on
the precision of the artificial limb control. Therefore,
in order to use this system flawlessly,it takes some
time for the person to get adjusted to it.

Further research could be done in order to com-
bine the Filter Unit with the ECSCU and to see



whether it is possible to lower the system costs even
more.
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