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ABSTRACT. Let PT(X) be the semigroup of all partial transformations on X (under composition) and let 7 (X)
and Z(X) be the subsemigroups of P7 (X) of all full transformations on X and of all injective partial transfor-
mations on X, respectively. Given a nonempty subset Y of X, let PT(X,Y) = {a € PT(X) | Xa C Y},
T(X,Y)=PT(X,Y)NT(X)and Z(X,Y) = PT(X,Y) N I(X).

In 2008, Sanwong and Sommanee described the largest regular subsemigroup and determined the Green’s
relations of 7(X,Y). In this paper, we present analogous results for both P7(X,Y) and Z(X,Y').

For a finite set X such that |X| > 3, the ranks of PT(X) = PT(X,X), T(X) = T(X,X) and Z(X) =
Z(X,X) are well known to be 4, 3 and 3, respectively. In this paper, we also compute the ranks of P7(X,Y),
T(X,Y)and Z(X,Y), for any proper nonempty subset ¥ of X.
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INTRODUCTION AND PRELIMINARIES

Transformation semigroups play a role in Semigroup Theory corresponding to that of the permutation
groups in Group Theory. Two main results parallel to Cayley’s theorem for groups are: first of all, the well
known result that states that every semigroup is isomorphic to a subsemigroup of a suitable full trans-
formation semigroup and, secondly, in Inverse Semigroup Theory, the Wagner-Preston Theorem stating
that every inverse semigroup is isomorphic to a subsemigroup of a suitable symmetric inverse semigroup.
Thereby, in some sense, in order to study all semigroups it suffices to consider transformation semigroups,
which yields decisive importance to this kind of semigroups. In this paper we will deal with semigroups
of transformations with restricted range. Our purpose is to study, within this context, some well known
and very important concepts in Semigroup Theory, such as Green’s relations, regularity and rank. Next, we
briefly recall this standard notions.

Let S be a semigroup. We say that an element « € S is regular if there exists y € S such that x = ayx. If
y € S verifies both x = xyx and y = yzy, then it is called an inverse of x. Notice that, if x = zyx then the
element yxy is an inverse of x. We say that S is regular if every element of S is regular. Furthermore, if each
element of S has a unique inverse then we say that .S is an inverse semigroup.
The Green’s relations of S are the natural equivalences associated to the ideals of S. More precisely, being
S the monoid obtained from S through the adjoining of an identity if S has none and exactly S otherwise,
the Green’s relations R, £ and J of S are defined by
e zRy if and only if 25! = yS?,
e 2Ly if and only if S'z = S'y and
e zJy if and only if S*zS! = S1yS?,
for z,y € S. Moreover, the Green’s relation D of S is the join RV £ (in the lattice of the equivalence relations
of §) and, since the relations R and £ commute (under composition), then D coincides with RL = LR.
Finally, the rank of a semigroup S is the smallest number of elements required to generate S. Notice that,
by the rank of a transformation we mean the size of its range (or image).

In general, we follow the notations of Howie’s book [3].
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Let X be a set and let P7 (X)) be the semigroup of all partial transformations on X (under composition).
We denote by 7(X) the subsemigroup of P7 (X) of all full transformations on X and by Z(X) the symmet-
ric inverse semigroup on X, that is, the subsemigroup of P7 (X) of all injective partial transformations on
X. For a subset Y of X, we consider the subsemigroups with restricted range P7(X,Y) = {a € PT(X) |
XaCY}of PT(X)and Z(X,Y) = PT(X,Y) NZ(X) of Z(X) (and of PT(X)). If Y is nonempty, we also
consider the subsemigroup with restricted range 7(X,Y) = PT(X,Y) N T(X) of T(X) (and of PT (X)).

Clearly, PT(X) =PT(X,X), T(X)=T(X,X),Z(X) = Z(X, X) and PT(X,0) = Z(X,0) = {0}.

In 1975, Symons [11] introduced and studied the semigroup 7 (X,Y). He described all the automor-
phisms of this semigroup and also determined when 7 (X7, Y1) is isomorphic to 7 (X3, ¥2). In [6], Nenthein
et al. characterized the regular elements of 7(X,Y) and, in [8], Sanwong and Sommanee obtained the
largest regular subsemigroup of 7(X,Y") and showed that this subsemigroup determines the Green'’s rela-
tions on 7 (X, Y'). Moreover, they also gave a class of maximal inverse subsemigroups of this semigroup. In
2007, Sanwong and Sullivan determined all maximal congruences on /(X)) in [9]. Later, in 2009, all maximal
and minimal congruences on 7 (X,Y") were described by Sanwong et al. [7]. Recently, all ideals of 7(X,Y)
were obtained by Mendes-Gongalves and Sullivan in [5]. On the other hand, in [10], Sullivan considered the
linear counterpart of 7(X,Y), that is the semigroup 7 (V, W) which consists of all linear transformations
from a vector space V into a fixed subspace W of V, and described its Green’s relations and ideals. Regard-
ing the linear counterparts of P7(X,Y) and Z(X,Y'), that is the semigroups P7 (V, W) and Z(V, W) which
consist of all partial linear transformations and of all injective partial linear transformations, respectively,
from a vector space V into a fixed subspace W of V, their Green’s relations and some partial orders were
studied by Sangkhanan and Sanwong.

Recall that Symons [11] proved that if 7(X;,Y1) = T(X2,Y>) then |Y7| = [Ya|. Moreover, if |Y1| = |Ys| =
1, then T(X1,Y1) = T(X,,Ys); if [Yi]| = |Ya| = 2, then T(X1,Y;) = T(Xo,Ys) if and only if 21X:\V1l =
21X2\Y2l; and if |V} | = |Ya| > 2, then T(X1,Y)) = T (Xo, Ys) if and only if | X; \ V1| = | X3 \ Y3|. In particular,
if X is finite and Y; and Y5 are two nonempty subsets of X, then 7(X,Y7) and 7 (X,Y>) are isomorphic
if and only if Y| = |Y2|. Here, we show that this last result has analogues for the partial and the partial
injective counterparts of 7 (X, Y’). Therefore, regarding transformations on a finite set with restricted range,
it suffices to study the semigroups PT,, = PT({1,...,n},{1,...,7}), T, = Z({1,...,n},{1,...,r}) and
Tor=THL...;n}{1,...,r}),for1 <r <nandneN.

For n > 3, the ranks of PT,, = PT nn, I, = Iy, and T, = T, , are equal to 4, 3 and 3, respectively.
These are well known results (and all of them have reasonably easy proofs). See [3] for example.

On the other hand, the rank of the semigroup of singular mappings Sing, = {« € 7, | |Im(c)| < n — 1}
is more difficult to determine. In [2], Gomes and Howie proved that both the rank and the idempotent rank
of Sing, are equal to n(n —1)/2. This result was later generalized by Howie and McFadden [4] who showed
that the rank and idempotent rank of the semigroups 7 (n,r) = {« € T,, | |Im(«)| < 7} are both equal to
S(n,r), the Stirling number of the second kind, for 2 < r < n — 1. Recall that, for 1 <r <nandn € N,
S(n,r) is the number of r-partitions on a set of n elements, which may be defined by the recurrence relation
S(n,r)=8Sn—-1,r—1)+rS(n—1,r), with S(n,1) = S(n,n) = 1.

In [1], Garba considered the semigroup PT (n,r) = {a € PT, | |Im(a)| < r} and showed that, for
2 <r < n -1, both its rank and idempotent rank are equal to S(n + 1,7 + 1).

Regarding the partial injective counterparts, Gomes and Howie [2] showed that the rank (as an inverse
semigroup) of the inverse semigroup SP,, = {a € Z,, | |Im(a)| < n —1}is n + 1. Garba [1] generalized this
result by showing that the rank of Z(n,7) = {a € Z,, | [Im(a)| < r}, for3 <r <n—1,is (7) + L.

In this paper, for 1 < r < n — 1, although the semigroups P7T ., I, and Ty , have a quite different
structure of the semigroups P7 (n,r), Z(n,r) and T (n,r) (for example, the first are not regular in general
while the latter ones are), respectively, we prove that their ranks coincide.

Now, we recall that Sanwong and Sommanee [8] proved that F' = {a € T(X,Y) | Xa = Ya} is the
largest regular subsemigroup of 7(X,Y’) and that, for o, 3 € T(X,Y"), we have:

aLpifand only if (o, 8 € Fand Xa = Xf)or (o, B € T(X,Y)\ F and a = j3);
aRp if and only if (a, 8 € F and Ker(a) = Ker(8)) or (o, f € T(X,Y) \ F and Ker(a) = Ker(3));
aDpifand only if (o, 8 € F and |X«| = |X3]) or (o, B € T(X,Y) \ F and Ker(a) = Ker(5)); and
agdB if and only if Ker(a)) = Ker(8) or | Xa| = [Ya| = |Y 5] = |XS].
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In this paper, Sections 1 and 3 are devoted to determine the largest regular subsemigroups and to describe
the Green's relations of P7(X,Y) and Z(X,Y). The following convenient notation will be used in both
these sections: given o € PT(X,Y’), we write o = (X ) and take as understood that the subscript i belongs
to some (unmentioned) index set I, the abbreviation {a;} denotes {a; | i € I}, and that Xa = {a;} and
a;a” = X;.

In Sections 2 and 4, we compute the ranks of the finite semigroups with restricted range 7, ., P7, and
Inr forn>2and1 <r<n-—1.

1. ON THE SEMIGROUP PT7 (X,Y)

We begin by remarking that, given o € P7(X,Y) and Z C X, we have Za = {za | * € Dom(a) N Z}. It
follows a simple result that will be used throughout the paper.

Lemma1.1. f AC B C X, then Ao C Ba foralla € PT(X,Y).

Consider the subset PF = {a € PT(X,Y) | Xa = Ya} of PT(X,Y). Notice that, being o € PF and
B € PT(X,Y), we have Xa = Ya and so Xaf = Yaf, by Lemma 1.1. Hence PF is a right ideal of
PT(X,Y). In particular, PF is a subsemigroup of P7 (X,Y’). Moreover, we have:

Theorem 1.2. Let o« € PT(X,Y). Then, o is reqular if and only if o € PF. Consequently, PF is the largest
reqular subsemigroup of PT (X,Y).

Proof. Let a € PF. Then for each z € Ya = Xa, choose d, € za~! NY and definey: Xa — {d, | € Xa}
by 2y = dg, for all z € Xa. Then v € PF and aya = a. Now, let § be any regular element in P7(X,Y).
Then 6 = §64, for some 6 € PT(X,Y), whence X = X065 = (X60)6 C Ydand so § € PF. Therefore, PF
consists of all regular elements of P7(X,Y). O

Next, we establish the Green’s relations of P7 (X, Y’), by beginning with the following lemma.
Lemma 1.3. Let o, 8 € PT(X,Y). If B € PF, then Xa C X3 if and only if « = vf3, for some v € PT(X,Y).

Proof. Assume that 5 € PF and o = 7f, for some v € PT(X,Y). Then, it is clear that Xao C Xp.
Conversely, assume that § € PF and Xa C X . Therefore, we can write o = (A"') and § = (B i BJ ) where

B,NY #0and B;NY # (. Lety € PT(X,Y) be defined as follow: v = ( ‘), where b; € B;NY. Thus
a = vf3, as required. ]

Theorem 1.4. Let o, 8 € PT(X,Y). Then LS if and only if (o, B € PT(X,Y)\ PF and o = §) or (o, B € PF
and Xa = X ).

Proof. Assume that a£3. Then a = A3 and 8 = ua, for some A\, € PT(X,Y)'. Suppose that o € PF. If
A=1lorp=1wegetf =« € PFand Xa = Xj. On the other hand, if A,z € PT(X,Y), then X3 =
Xpo = (XpA)p C Y, since Xpuh C Y. Thus § € PF. From a = AS and 8 = pa, we have Xa = X, by
Lemma 1.3. Now, suppose that « € PT(X,Y)\PF.If A\, p € PT(X,Y), then Xao = X\ = (X \p)a C Y,
which contradicts that & ¢ PF. Thus A =1loru=1andso 8 =« € PF.

The converse is a direct consequence of Lemma 1.3. O

Theorem 1.5. Let o, 5 € PT(X,Y). Then Dom(a) C Dom(8) and Ker(8) N (Dom(B3) x Dom(«)) C Ker(«)
if and only if & = B, for some v € PT(X,Y). Furthermore, aRj if and only if Dom(c) = Dom(f) and
Ker(a) = Ker(8).

Proof. If a = B, for some v € PT(X,Y), then it is clear that Dom(a) € Dom(8). On the other hand,
consider (a,b) € Ker(8) N (Dom(B) x Dom(«)). Then we have af = bS. Since b € Dom(a) = Dom(57), it
follows that b3~ exists, whence b3y = (b3)y = (aff)y = af~y and so we also obtain a € Dom(f7y) = Dom(«).
Moreover, ac = (a3)y = (bB)y = ba, whence (a,b) € Ker(a). Thus Ker(3) N (Dom(S) x Dom(a)) C Ker(a).

Conversely, assume that the conditions hold. Let x € (Dom(«))S. Then a8 = =, for some a € Dom(«).
Notice that, if b € Dom(/) is also such that b5 = x then (b,a) € Ker(8) N (Dom(8) x Dom(«)). Hence, by
hypothesis, we have ba = ac (and, in particular, b € Dom(«)). Thus, we may consider the transformation
v € PT(X,Y) with Dom(y) = (Dom(«))S and defined, for each = € (Dom(«a))3, by v = ac, for some
a € Dom(«) such that aff = z. Clearly, a = /3, as required. O
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Corollary 1.6. Let o, 8 € PT(X,Y) be such that aRS. Then o, 8 € PF or o, 8 € PT(X,Y) \ PF.

Proof. It suffices to show that a € PF implies § € PF. Therefore, suppose that « € PF. Then, we can
write o = (‘;‘:), where A; NY # () and a; € Y, for all i. Since aR}, it follows that Dom(a) = Dom(3) and

Ker(a) = Ker(3), by the previous theorem, and so we can write 8 = (?1), where b; € Y, for all i. Hence
XpB =Yp and thus 8 € PF, as required. a

Theorem 1.7. Let o, 8 € PT(X,Y). Then oD if and only if (o, 5 € PT(X,Y )\ PF, Dom(c) = Dom(g) and
Ker(a) = Ker(p)) or (o, f € PF and | Xa| = | X 5]).

Proof. Assume that aLyRj, for some v € PT(X,Y). If a € PF, then oLy implies that v € PF and
|Xa| = |X7|, by Theorem 1.4. Since v € PF and yRp, it follows that 8 € PF, Dom(y) = Dom(3) and
Ker(y) = Ker(f). Thus | Xa| = |Xv| = | Dom(v)/Ker(y)| = | Dom(8)/ Ker(8)| = | X 8]. On the other hand,
ifa € PT(X,Y)\ PF, theny € PT(X,Y)\ PF and a = v, by Theorem 1.4. Since yRp, it follows that
B e€PT(X,Y)\PF,Dom(v) = Dom(8) and Ker(v) = Ker(3), by Corollary 1.6 and Theorem 1.5. Therefore,
Dom(a) = Dom(y) = Dom(f) and Ker(«) = Ker(y) = Ker(f).

Conversely, assume that the conditions hold. If o, 8 € PF and | X«a| = | X |, then there exists a bijection
0: X5 — Xa. Let p = 0. Then p € PT(X,Y),Dom(p) = Dom(8), Xp = X80 = (XB)0 = Xa and
Xp=Xpo0=(YpB)0 =Yy, since B € PF. Hence i € PF and Xy = Xa and so, by Theorem 1.4, we have
alp. Now, since i = 60 and 6 is injective on X /3, we also get Ker(u) = Ker(83), whence uRS, by Theorem
1.5. Therefore, aDS. On the other hand, if o, 5 € PT(X,Y) \ PF, Dom(a) = Dom(f) and Ker(a) = Ker(5)
then, by Theorem 1.5, it follows immediately that aR 3, whence oD, as required. O

Lemma 1.8. Let o, 3 € PT(X,Y). If « = \Bu, for some A € PT(X,Y ) and p € PT(X,Y)?!, then | Xa| < |V 3|.

Proof. Since (X\)5 C Y, it follows that [(XA)3] < |Y 3| and so [Xa| = [(XAB)u| < |(XN)B] < |Y 5], as
required. O

Theorem 1.9. Let o, 8 € PT(X,Y). Then oJp if and only if (Dom(«) = Dom(8) and Ker(a) = Ker(f)) or
[Xa| =[Ya| =[YB] = |X].

Proof. Assume that aJB. Then o = A\Fu and 8 = Nay/, for some A\, N, pu, 1/ € PT(X,Y)L. fA=1= X,
then « = Bu and f = ap/, which imply that aRS. Thus Dom(a) = Dom(8) and Ker(a) = Ker(8). If
either A or X is in PT(X,Y), then we can write @« = ¢80 and 8 = ¢’ad’, for some 0,0’ € PT(X,Y) and
5,8/ € PT(X,Y)'. Thus, by Lemma 1.8, it follows that [Y 3| > |Xa| > |Ya| > |X8| > |Y 3|, whence
Xa| = |Ya| = |V 8] = |X3].

Conversely, assume that the conditions hold. If Dom(«) = Dom(8) and Ker(a) = Ker(3), then aRj and
so aJB. Now, suppose that | Xa| = [Ya| = |Y 3| = | X3|. Write a = (‘:Z) Then, since | Xa| = |Y 3|, we can
write 8 = (B" BJ), where B;NY # 0 and B; NY = (. Define A = (2,_1'), where a} € B;,NY and u = (Z;)

bi b;
Thus A\, p € PT(X,Y) and a = ASp. Similarly, we can show that 3 = N ay/, for some N, i/ € PT(X,Y), by
using the equality | X 5| = |Y a|, as required. O

Next, we aim to prove an isomorphism theorem for P7(X,Y).

Lemma 1.10. Ifa € PT(X,Y) \ {0}, then the following statements are equivalent:

(1) o= (%), for somea € Y;
(2) «is an idempotent and, for all 3 € PT(X,Y), (aB)? = D or (aB)? = c

Proof. Assume that (1) holds. Then it is clear that « is an idempotent. Let 8 € PT(X,Y). Hence a8 = 0, if

a ¢ Dom(), and a8 = (), if a € Dom(B). Thus (af)* = for (af)* = (}) = a.

Conversely, assume that (2) holds. Since « # (), there exists a € Xa C Y. Let A = aa~!. Since « is an
idempotent, we have a € A, whence (a (‘;))2 = (A)2 = (f) # (). Thus (‘2) = a, by assumption. Now, let

a

2
b € A. Then ((A) (‘Z)) = (‘2)2 = (4) # 0. Again, by assumption, we have ({) = a = (%), whence b = a

a

and so A = {a}. Therefore o = (¢), as required. O



Theorem 1.11. Let X be a finite set and Y1 and Y two nonempty subsets of X. Then PT (X, Y1) = PT(X,Y2) if
and only if |Y1| = |Ya|.

Proof. Assume that P7(X,Y7) = PT(X,Y2) and let U : PT(X,Y7) — PT(X,Y>) be an isomorphism. Let
My={(")]acYi} and M,={(})|be Yo}

Then |M;| = |Y1] and |M3| = |Ya|. For each a € M;, we have that « is an idempotent and (a3)? = () or

(aB)? = o, forall B € PT(X,Y7), by Lemma 1.10. Hence, oV is an idempotent and we have

(@) = (@0 = @o = { 00"

for all v = BV € PT(X,Yz). Thus, a¥ = (Z), for some b € Ys, and so M1¥ C M,. Since U1 is an
isomorphism from P7 (X, Y>) onto PT (X, Y1), similarly, we also get MW~ C M;. Thus |M;| = |M¥| <
|Mz| = |[Ma® 1| < |M;| and so |[M;| = |Ms|. Therefore, |Y1| = |M;| = | M| = |Ya|.

Conversely, assume that |Y;| = |Y3|. Then there exists a bijection ¢, : Y7 — Y5. Since X is finite, we get
|X\Y1| = | X\Y2| and so there exists a bijection 65 : X\Y; — X\Y5. Let § = 6, U 6s. Clearly, 6 : X — X is
also a bijection. Now, define ® : PT(X,Y;) — PT(X,Ys) by a® = 0~ 'ab, forall « € PT(X,Y1). Itisa
routine matter to show that @ is an isomorphism. Therefore, PT (X, Y1) = PT(X,Y>), as required. O

2. THE RANKS OF Ty, - AND PT,,

Letn € Nbesuchthatn >2andletl <r <n—1.

Notice that, clearly, |7, | = r". On the other hand, by considering the natural embedding of PT,, into
Tn+1, it is easy to show that [PT,, .| = (r + 1)™.

Recall that two elements in 7, , or in P7T, , are R-related if and only if they have the same kernel. Thus,
we may easily deduce that 7, , and PT, , have S(n,r) and S(n + 1,r + 1), respectively, distinct R-classes
of maximum rank r (as many as the number of possible distinct kernels of size r). As Ker(a) N (Dom(af3) x
Dom(af)) C Ker(af) and Dom(af) C Dom(a), for all «, 8 € PT,, it is easy to show that any generating
set of 7,,, must contain at least one element from each of the S(n, r) distinct R-classes of 7y, ,- of rank r and,
similarly, any generating set of P7T,, , must contain at least one element from each of the S(n + 1,7 + 1)
distinct R-classes of PT,, , of rank r. Hence rank(7,, ,) > S(n,r) and rank(P7T,, ) > S(n+ 1,7+ 1).

On the other hand, it is clear that each R-class of rank r of 7,, , or of PT,, , has r! elements (notice that
the image of all such elements is precisely {1,...,r}).

Recall that
F={aeTh,|{l,...,n}a={1,...,7}a}
is the largest regular subsemigroup of 7, , and, moreover, it is the set of all regular elements of 7, , (see [8,
Proof of Theorem 2.4]). As{1,...,r}a = {1,...,7}, for any element « € F of rank r, then any two R-related

elements of F' that coincide in {1, ..., 7} must be equal. Therefore, we have 7"~ " regular R-classes of 7, .
of rank r (as many as the number of distinct functions from {r + 1,...,n} into {1,...,7}), each one being
also an H-class and so a subgroup isomorphic to S,, the symmetric group on {1,...,7}. The remaining

S(n,r) — ™" (non-regular) R-classes of 7, , of rank r must have r! trivial H-classes.
Regarding the semigroup P7, ,, its largest regular subsemigroup is

PF={aecPT,,|{Ll,...,n}ta={1,...,r}a},

which also coincides with the set of all regular elements of P7T,, . (see Theorem 1.2). Let o be an element
of PF of rank r. Then {1,...,r} = {1,...,n}a = {1,...,r}aand so {1,...,7} C Dom(«). It follows also
that any two R-related elements of PF that coincide in {1,...,r} must be equal, whence the number of
regular R-classes of PT , , of rank r is precisely (r+1)"~" (i.e. the number of distinct partial functions from
{r+1,...,n}into {1,...,r}). Each of these regular R-classes is also a H-class and so a subgroup isomorphic
to S,. The remaining S(n+ 1,7+ 1) — (r + 1)"~ " (non-regular) R-classes of PT, , of rank r must contain 7!
trivial H-classes.

As Toa = {(3377)}, it is clear that 7;, 1 has rank equal to 1 = S(n, 1). On the other hand, the semigroup
PT n1 has precisely S(n + 1,2) non-zero elements, which must all be contained in any generating set, by
the above observation. It follows that S(n + 1,2) = rank(P7T,, 1).
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From now on, we considern > 3and2 <r <n —1.
Lemma 2.1. The semigroups T, and PT,, . are generated by their elements of rank r.

Proof. Let a € PT,, be an element of rank k, for some 1 < k < r. Let yo € {1,...,7} \ Im(c). We will
consider two cases. Suppose that « is a full transformation. Hence, we may take zy € Dom(a) = {1,...,n}
such that z¢ belongs to a non-trivial kernel class of a.. Define a1, a2 € Ty, » by

o — x ifx € Im(a)
TO = Yo — 0 and zas =< zoa ifz =1y
ra  otherwise Y otherwise
0 )

forall z € {1,...,n}. Now, assume that « is a strict partial transformation and let zy € {1,...,n} \ Dom(«).
Define ay, ag € PT,,, with Dom(a) = Dom(a) U {zo} and Dom(as) = {1,...,n}\ {vo}, by

J oy ifr=ux _J z ifzeIm(a)
rar= { za  otherwise and  zo; = { yo otherwise.
For both cases, we have & = ajas. Moreover, Im(a;) = Im(ag) = Im(a) U {yo} and so rank(a;) =
rank(as) = k + 1. This suffices to prove the lemma. O

Lemma 2.2. Let a,y € PT,, be such that Im(v) C Im(c) and o = ary. Then v = v2.

Proof. Letz € Dom(7). Then zy € Im(y) C Im(«) and so zy = aa, for some a € Dom(«). Since a € Dom(«),
it follows that a € Dom(ay), whence 2y = aa € Dom(v) and z7? = aay = aa = 27, as required.

(1 2 - 7
€= < 12 - 7
(notice that we can also consider that ¢ € PT,, ). As ¢ is an idempotent of rank r, then its R-class R, is
a subgroup of 7, (respectively, of PT,, ,) with identity . Let a € T, (respectively, « € PT, ) be any
element of rank r. Then, clearly, ae = a. Moreover, being v € R., we have 7' = ¢, for some ¢ € N (we can
take t = r!), whence o = ae = ay' = (ay)y'~! and so ayRa. On the other hand, being 71,72 € R. such
that ay; = ays, we have a = ae = ay1vy; b = ayey; *, with 4, ! the group inverse of 7, taken in R,, and so,
by Lemma 2.2 (notice that Im(y2y; ') = {1,...,7} = Im(«)), the transformation y»y; * is an idempotent of
Tn.r (and of PT,, ). Then, 727; ' = £ and so y; = 7». It follows that the mapping v + a7 from R. to R,
is injective. Furthermore, as |R.| = |R,|(= r!), we obtain R, = «R.. This fact and Lemma 2.1 allow us to
conclude that the subset A of 7, , (respectively, of PT,, ), consisting of R, together with a single arbitrary
element from each remaining R-class of rank r of 7, . (respectively, of PT, ,.), forms a generating set of T, .
(respectively, of PT, ).
Suppose that r = 2. Clearly, in this case,

1 23 -
s (311 1))

and so the group R, is generated by ¢;,. Hence, the set B = A\ {e} = (4 \ R.) U {ep} is a generating of T, o
(respectively, of PT, 2) with S(n, 2) (respectively, S(n + 1,3)) elements.

Finally, admit that » > 3. It is well known that the symmetric group S, can be generated by two elements,
in particular, by the transposition a = (12) together with the r-cycle b = (12 --- r). The corresponding
elements in R, (recall that R. is a group isomorphic to S,.) are

Now, let

1 ...
r+ n)e,ﬁ”

r e T

(1 2 3 - r|ir+1l -+ n nd (1 2 - r—=1 r|ir+1 -+ n
fe=\l213 oo o)M=l 3 0 11 1)
respectively, and so {e,, )} generates R.. Consider also
, (1 2 - r—1 7r|r+1 --- n
5b<2 3 .- ro 10 r . r>€7;”

(notice that we can also consider that £, € PT,, ). Then, ¢, hasrank r, ¢} € R. and ¢, = e¢, = 2¢}. Hence,
being ¢’ the (unique) element of A such that ¢’Re;}, the set B = (A \ (R U{e'})) U {e,, €, } is a generating of
Tn.r (respectively, of PT,, ) with S(n, ) (respectively, S(n + 1,7 + 1)) elements.
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Thus, we proved:
Theorem 2.3. Forn > 2and 1 <r <n — 1, the semigroup T, , has rank equal to S(n,r).
And, respectively:

Theorem 2.4. Forn > 2and 1 < r <n — 1, the semigroup PT , , has rank equal to S(n + 1,7 + 1).

3. ON THE SEMIGROUP Z(X,Y)

In general Z(X,Y) = PT(X,Y) NZ(X) is not an inverse semigroup. In fact, it is not even regular.
For example, let X = {1,2,3,4,5},Y = {1,2,3} and a = (}gg) € I(X,Y). Suppose that « is regular in
Z(X,Y). Then, there exists 8 € Z(X,Y') such that o = afa. Thus ba = (5a) fa = (38), which implies that
38 ="5¢Y (since « is injective) and this leads to a contradiction.

Observe that the symmetric inverse semigroup Z(Y') on the set Y may be considered as an inverse sub-
semigroup of Z(X,Y’). On the other hand, let @ be a regular element of Z(X,Y) and take 8 € Z(X,Y)
such that o = afa. Suppose that o = (z), where a; € Y, for all i. Then z;a = (7;a)Ba = (a;3)a and so
x; = a;8 € Y, since a is injective. Hence Dom(a) C Y, thatis a € Z(Y"). It follows that Z(Y) is the set of all
regular elements of Z(X,Y"), from which we immediately deduce the following result.

Theorem 3.1. The symmetric inverse semigroup Z(Y") is the largest regular subsemigroup of Z(X,Y). In particular,
Z(Y') is the largest inverse subsemigroup of Z(X,Y).

Now, we establish the Green’s relations of Z(X, Y') by beginning with the following lemma.
Lemma3.2. Let o, € Z(X,Y). If § € Z(Y), then Xao C X B if and only if o = vf5, for some v € Z(X,Y).
Proof. Assume that 3 € Z(Y). If Xa C X, then we can write o = (') and g = (¥ Z;), with a;, a;,y:,y; €
Y. Hence, being v = (;) € I(X,Y), we have a = vf3. The converse is clear. O
Theorem 3.3. Let o, € Z(X,Y). Then aLf on Z(X,Y) if and only if (o, € Z(Y) and Xao = XB) or
(o, BeZ(X, Y)\Z(Y) and o = B).

Proof. Assume that a£3. Then a = A3 and 3 = pa, for some A\, € Z(X, V). If o € Z(Y) and (A = 1 or
p=1),then § = a € Z(Y) and so Xa = X . On the other hand, suppose that « € Z(Y) and A\, p € Z(X, Y).
Let x € Dom(3). Then, 8 = (zpuA)B and so z = zpX € Y, since § is injective. Thus Dom(8) C Y, that
is 8 € Z(Y). From a = A\S and 5 = po, by Lemma 3.2, we deduce that Xa = X 3. Now, suppose that
a e X, Y)\Z(Y). If \,p € Z(X,Y), then za« = 2\ = xApa and thus z = zAp € Y, for all x € Dom(a),
since « is injective. Hence Dom(«) C Y, thatis o € Z(Y"), which is a contradiction. Therefore A = 1 or p =1
andsof=a € Z(X,Y)\Z(Y).

The converse is clear by Lemma 3.2. O

Theorem 3.4. Let o, 8 € Z(X,Y). Then Dom(er) C Dom(5) if and only if o« = B, for some v € Z(X,Y).
Moreover, aRp on Z(X,Y) if and only if Dom(a) = Dom(f3).

Proof. If o = f, for some v € Z(X,Y), then clearly Dom(a) € Dom(f5). Conversely, suppose that
Dom(a) € Dom(f). Then, we can write a = (;*) and 8 = (3’ Z;)' where {a;,b;,b;} C Y. Now, being
v = (ZZ) € I(X,Y), we have a = 3, as required. O

From the previous theorem, it follows that, if aRG on Z(X,Y") and a € Z(Y"), then Dom(3) = Dom(a) C

Y, which implies that § € Z(Y). On the other hand, if & € Z(X,Y) \ Z(Y) and aRf on Z(X,Y), then
Dom(3) = Dom(a) € Y and so 3 ¢ Z(Y'). Thus, we have the following corollary.

Corollary 3.5. Let o, f € Z(X,Y). IfaRBon Z(X,Y ), then a, B € Z(Y) or o, p € (X, Y)\ Z(Y).

Theorem 3.6. Let o, f € Z(X,Y). Then aDBon Z(X,Y) ifand only if (o, 5 € Z(Y') and | Dom ()| = | Dom(5)])
or (a, € Z(X,Y) \ Z(Y) and Dom(ar) = Dom(f3)).



Proof. Assume that aLyRg, for some v € Z(X,Y). Since aLr, if o € Z(Y), then v € Z(Y) and Xa = X,
by Theorem 3.3. Furthermore, from yRp, it follows that § € Z(Y) and Dom(y) = Dom(5), by Corollary
3.5 and Theorem 3.4. Hence |Dom(«)| = |X«a| = |X7| = |Dom(v)| = |Dom(5)|. On the other hand, if
a e I(X,Y)\Z(Y), theny € Z(X,Y) \ Z(Y) and o = ~, by Theorem 3.3. It follows that 8 € Z(X,Y) \ Z(Y)
and Dom(~y) = Dom(f), whence Dom(a)) = Dom(y) = Dom(f).

Conversely, assume that the conditions hold. If «, 8 € Z(Y) and | Dom(«)| = | Dom(f)|, then we can
write o = (21) and § = (gl), where {a;, b;,x;,y;} C Y. Hence, being v = (gl) € Z(Y), we have Xa = Xy
and Dom(y) = Dom(8), which implies that a£yRB. On the other hand, if o, 8 € Z(X,Y) \ Z(Y) and
Dom(«) = Dom(g)), then aRS and so aDf, as required. O

Theorem 3.7. Let o, f € Z(X,Y). Then adp on Z(X,Y) if and only if Dom(a) = Dom(f) or | Xa| = |[Ya| =
YB| = [XB]

Proof. Assume that aJS on Z(X,Y). Then a = A3p and 8 = Nay/, for some \, N, u, 1’ € I(X,Y)L. If
A=1= XN, thena = fpand 8 = ap’ and so aRpB. Thus Dom(«) = Dom(f). If either A or A’ belongs to
I(X,Y), then a = 036 and 3 = o’ad’, for some 0,0’ € Z(X,Y) and 6,8 € Z(X,Y)'. Hence, by Lemma 1.8,
we have |Y 3| > | Xa| > |Ya| > |XB] > |V 3], whence | Xa| = [Ya| = |V 3| = |X5].

Conversely, assume that the conditions hold. First, if Dom(a) = Dom(f), then aRS, whence aJg3. Sec-

ondly, if [Xa| = [Ya| = [Y 5| = |X}]|, then we can write « = (}') and 5 = (}’ ZJJ), where {y;} C Y and

{y;} € X\ Y, since | Xa| = |[Y3]. Now, define A\ = (}') and u = (Zi) Thus A\, € Z(X,Y) and a = ABp.
Similarly, by using the equality | X 3| = [Ya|, we can find X', 1/ € Z(X,Y) such that 5 = N ay’. Therefore,
adp, as required. O

Next, we prove an isomorphism theorem for Z(X,Y').

First, we characterize the idempotents in Z(X,Y) and its 0-minimal idempotents.

Denote by id 4 the identity map on the set A.

As the idempotents of Z(X) are all the maps of the form id 4, with A C X, it immediately follows:

Lemma 3.8. The idempotents of Z(X,Y") are precisely the elements of the set {ida | A CY'}.
Regarding the 0-minimal idempotents, we have:
Lemma 3.9. M = {(%) | a € Y} is the set of all O-minimal idempotents of Z(X,Y).

Proof. Lete = (%) € M and let a be an idempotent of Z(X,Y) such that a < ¢, that is « = ea = ae. Then
Dom(a) C Dom(e) = {a} and Im(ar) C Im(e) = {a}, whence Dom(«a) = Im(a) = {a} and so o = e.
On the other hand, let 3 be a 0-minimal idempotent of Z(X,Y"). Suppose that § = (g’;), where {y;} C Y.

Choosing yo € {y1} and considering v = (%) € M, we have () (%) = (!°) = (%) (%), which implies that

~ < B. Since 5 is 0-minimal, we get § = v € M, as required. (]
Now, we can prove the following result.

Theorem 3.10. Let X be a finite set and Y and Yo two non-empty subsets of X. Then T(X,Y1) = Z(X,Ys) if and
only if V1] = |Yal

Proof. First, assume that |Y7| = |Ya|. Let us consider the map ® given in Theorem 1.11. Notice that, we have
I(X,Y1) € PT(X,Y1) and Z(X,Y5) € PT(X,Y>). Moreover, it is clear that ®|7(x y,) is a bijection from
Z(X,Y;) onto Z(X, Y). Thus Z(X, ;) = T(X, Ya).

On the other hand, suppose that Z(X, Y7) = Z(X, Y2) and take an isomorphism ¥ : Z(X,Y7) — Z(X, Y2).
Let

My={(“)|a€Yi} and M,={(})|be Yo}
Then, since by the above lemma MM, and M, are the sets of all 0-minimal idempotents in Z(X,Y;) and
Z(X,Y>), respectively, we deduce that M; ¥ = M,. Thus, it follows that |Y1| = | M| = | M1 | = |M;| = |Y3|,
as required. O



4. THE RANK OF Z,,

Letn € Nbesuchthatn >2andletl <r <n-—1.

It is easy to show that |Z,, .| = ), (7) (1) k!

Next, we recall that two elements in Z,, ,. are R-related if and only if they have the same domain. Thus,
we may easily deduce that Z,, , has precisely (7) distinct R-classes of maximum rank r (as many as the
number of possible distinct domains of size r). As Dom(af) C Dom(a), for all o, 8 € PT,, it is easy to
show that any generating set of Z,, . contains at least one element from each of the (") distinct R-classes of
Z, , of rank r. Hence rank(Z, ) > (7)

On the other hand, it is also clear that each R-class of rank r of 7,, - has 7! elements (notice that the image
of all such elements is precisely {1,...,r}).

Since the set of all regular elements of Z,, , coincides with the symmetric inverse semigroup Z, on
{1,...,7} (see Theorem 3.1), then Z, , has a unique regular R-class of rank r, which is also a H-class and,
in fact, it is precisely the symmetric group S,.. The remaining (') — 1 (non-regular) R-classes of Z,, - of rank
r must contain r! trivial H-classes.

AsT, = {0,(;),....(})}, itis clear that Z, ; has rank equal to n.

Next, we considern > 3and 2 <r <n — 1.
As for 7, and PT,, ,, we have:

Lemma 4.1. The semigroup I, , is generated by its elements of rank r.

Proof. Let a € Z,,, be an element of rank k, for some 1 < k < r. Letyo € {1,...,r} \ Im(w) and zg €
{1,...,n}\ Dom(«). Define a1, ag € Z,, ,-, with Dom (1) = Dom(«r) U {20} and Dom(az) = Im(a) U {n}, by

{ za  if z € Dom(a)
roy = .
Yo ifx=xg

z  ifzeIm(w)
yo ifx =n.

and xzag = {

Then, we have a = ajas. Moreover, Im(a;) = Im(as) = Im(a) U {yo} and so rank(c;) = rank(ag) = k + 1.
The lemma follows by induction on k. O

Next, observe that, for each element « € Z, , of rank r, we clearly have R, = oZ,. Hence, in view of
Lemma 4.1, any subset A of Z,, ,. consisting of a generating set of Z,. together with a single arbitrary element
from each remaining R-class of rank r of Z,, . forms a generating set of Z,, ...

On the other hand, notice that, given elements o, ..., o € Z,, , such that the product o - - - , has rank
r, then all the transformations a, ..., a, have rank r and Im(«;) = Dom(a;41), for1 < i < k—1. In
particular, it follows that, if oy - - - i € Z, then oy, ..., o € Z,. Therefore, any generating set of Z,, , must

contain a generating set of Z,.

Now, if r = 2 then Z, = {(;2), (3°) } and so Z, is generated by (37). Hence, we may find a generating set
A of T,, » with (3) elements. For r > 3, as recalled in Section 2, the symmetric group S, has rank two and
so we may find a generating set A of Z,, , with and no less than (%) + 1 elements.

Thus, we have proved:

Theorem 4.2. Let n > 2. Forr € {1,2}, the semigroup I, , has rank equal to (7). For 3 < r < n — 1, the
semigroup I,, , has rank equal to (") + 1.

5. SOME RELATED PROBLEMS

In [10] Sullivan considered the semigroup 7 (V, W), the linear counterpart of 7(X,Y’), and described
its Green’s relations and ideals. In turn, the Green’s relations of the linear counterparts P7(V, W) and
Z(V,W) of PT(X,Y) and Z(X,Y), respectively, were determined by Sangkhanan and Sanwong. For a
finite dimensional vector space V, it is then natural to ask for the ranks of 7(V, W), PT (V, W) and Z(V, W),
which are open questions.

On the other hand, as the notions of order-preserving transformation and orientation-preserving trans-
formation have been widely considered for several classes of transformation semigroups, it is also natural to
consider the subsemigroups O(X,Y) and OP(X,Y) of T (X,Y) which consist of all order-preserving trans-
formations and of all orientation-preserving transformations, respectively. In particular, for a finite set X,
we may ask for their ranks. Regarding this problem, for X = {1,...,n}and Y ={1,...,7} 2<r <n-1),
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Fernandes and Quinteiro showed that OP,,,, = OP(X,Y’) has rank equal to (7). All the other cases remain
as open problems.
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