Publications

Export 29 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
C
Al-Saadi, M., S. Valtchev, L. Romba, J. Gon?alves, and A. Cr?ciunescu, "Comparison of Spiral and Square Coil Configurations in Wireless Power Transfer System for Contactless Battery Charging", 2019 Electric Vehicles International Conference, EV 2019, 2019. Abstract
n/a
Inácio, D., J. A. Inácio, J. Pina, S. Valtchev, M. Neves, J. Martins, and A. Rodrigues, "Conventional and HTS Disc motor with pole variation control", 2nd International Conference on Power Engineering, Energy and Electrical Drives (POWERENG'2009), pp. 513–518, 2009. Abstract
In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a high temperature superconductor (HTS) disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software (FLUX2D), whereas superconductivity was simulated by the E-J power law. The electromechanical performance of both motor's computed are compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.
Inácio, D., S. Inácio, J. Pina, S. Valtchev, M. V. Neves, J. F. A. Martins, and A. L. Rodrigues, "Conventional and HTS disc motor with pole variation control", POWERENG 2009 - 2nd International Conference on Power Engineering, Energy and Electrical Drives Proceedings, pp. 513-518, 2009. Abstract
n/a
E
Romba, L., and S. Valtchev, "Efficiency Improvement in Wireless Power System", Emerging Capabilities and Applications of Wireless Power Transfer: IGI Global, pp. 23–48, 2019. Abstract

This chapter focuses on mid-range wireless power transfer (WPT) systems applied to electric vehicle (EV) battery chargers. The WPT is recently considered as an efficient electric energy transfer process between two or more points in space, without wiring. The technology associated with each specific process of WPT differs from case to case depending on the distance between those points and the power to be transferred between them. The widely adopted distance categories are named short-range, mid-range, and long-range. The short-range is normally defined as up to a few millimeters range. The mid-range is between a few millimeters and a few meters. The long-range distance is defined as a longer than that of the previous category, stretching up to a few kilometers.

Romba, {L. F. }, {S. S. } Valtchev, R. Melicio, {M. V. } Mudrov, and {A. M. } Ziuzev, "Electric vehicle battery charger controlled by magnetic core reactor to Wireless Power Transfer system", Conference Proceedings - 2017 17th IEEE International Conference on Environment and Electrical Engineering and 2017 1st IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2017, United States, Institute of Electrical and Electronics Engineers Inc., 2017. Abstract

This paper presents a control process and frequency adjustment based on the Magnetic Core Reactor prototype. For the past decades, there has been significant development in the technologies used in Wireless Power Transfer systems. In the Wireless Power Transfer systems it is essential that the operating frequency of the primary circuit be equal to the resonant frequency of the secondary circuit so there is the maximum energy transfer. The Magnetic Core Reactor allows controlling of the frequencies on both sides of the transmission and reception circuits. In addition, the assembly diagrams and test results are presented.

Romba, L., S. Valtchev, and R. Melicio, "Electric Vehicle Battery Charger: Wireless Power Transfer System Controlled by Magnetic Core Reactor", CETC2016 - Conference on Electronics, Telecommunications and Computers, Proceedings: ISEL - Instituto Superior de Engenharia de Lisboa, 2016. Abstract
n/a
Inácio, S., D. Inácio, J. M. Pina, S. Valtchev, M. V. Neves, and A. L. Rodrigues, "An electrical gearbox by means of pole variation for induction and superconducting disc motor", Journal of Physics: Conference Series, vol. 97, pp. 012221, 2008. Abstracthttps://scholar.google.com/citations?user=5-Rq1wYAAAAJ&hl=en
In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque?speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.
Inácio, S., D. Inácio, J. Pina, S. Valtchev, V. M. Neves, and A. Rodrigues, "An Electrical Gearbox by means of pole variation for induction and superconducting disc motor", 8th European Conference on Applied Superconductivity (EUCAS), 2007. Abstract
In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque?speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.
Inácio, S., D. Inácio, J. M. Pina, S. Valtchev, M. V. Neves, and A. L. Rodrigues, "An electrical gearbox by means of pole variation for induction and superconducting disc motor", Journal of Physics: Conference Series, vol. 97, no. 1, 2008. Abstract
n/a
Baikova, {E. N. }, {L. F. } Romba, S. Valtchev, R. Melício, and V. {Fernão Pires}, "Electromagnetic Emissions from Wireless Power Transfer System", CETC2016 - Conference on Electronics, Telecommunications and Computers, Proceedings: ISEL - Instituto Superior de Engenharia de Lisboa, 2016. Abstract
n/a
Baikova, {E. N. }, L. Romba, {S. S. } Valtchev, R. Melicio, V. {Fernão Pires}, A. Krusteva, and G. Gigov, "Electromagnetic field generated by a wireless energy transfer system: comparison of simulation to measurement", Journal of Electromagnetic Waves and Applications, vol. 32, no. 5: Taylor & Francis, pp. 554–571, 3, 2018. Abstract

This paper presents a wireless energy transfer system operating at the frequency values of kHz order: modeling, simulation, and comparison with prototype measurement results. Wireless energy transfer system model using finite element method was carried out to simulate the electric field and the magnetic flux density for different air gap sizes between the transmitter and the receiver coils. Results are presented and compared with the electromagnetic emission measurements radiated by the wireless energy transfer system prototype. The electric field comparison between the simulated and the prototype measurement values shows an error of roughly 8.7{%}. In the recent years, the interest in the wireless energy transfer technology, especially for electric vehicles batteries charging, is rapidly increasing. As a result of the increasing application of this technology in the industrial and consumer electronic products, more concerns are raised about the electromagnetic compatibility, since the wireless energy transfer systems produce electromagnetic emissions in the surrounding environment.

Baikova, {E. N. }, L. Romba, and S. Valtchev, "Electromagnetic Influence of WPT on Human's Health: Modelling, Simulation, and Measurement", Emerging Capabilities and Applications of Wireless Power Transfer: IGI Global, pp. 141–161, 2019. Abstract

The focus of this chapter is the electromagnetic interference (EMI) and the electromagnetic compatibility (EMC) that the wireless power transfer (WPT) systems reveal as problems. The wireless power transfer (WPT) was introduced by Nikola Tesla more than one hundred years ago, and only recently it attracted the attention of specialists, due to the improved technical means. The WPT technology now has many applications, especially for charging of various electronic devices (i.e., mobile phones, laptops, implants, and home appliances), informatics, and electronics equipment. The high-power equipment and installations (e.g., intelligent machining systems, robots, forklift trucks, and electric cars) are also getting wireless. Moreover, much attention has been focused on the electric transportation system for improving the safe and convenient charging of electric vehicle (EV) batteries.

H
Pina, J., C. Caracaleanu, A. Gonçalves, P. Pereira, S. Valtchev, M. Neves, and A. Rodrigues, "High Performance, Environment Friendly, Modular and Fault Tolerant Renewable Energy Microgrid", 12th International Energy Conference & Exhibition (ENERGEX2007), 2007.
N
Sousa, P., S. Valtchev, M. Neves, and A. Rodrigues, "A New Open-Loop Control Method for Stepping Motor Driving", 2nd International Conference on Power Engineering, Energy and Electrical Drives (POWERENG'2009), pp. 605–610, 2009.
Sousa, P., S. Valtchev, M. V. Neves, and A. L. Rodrigues, "A new open-loop control method for stepping motor driving", POWERENG 2009 - 2nd International Conference on Power Engineering, Energy and Electrical Drives Proceedings, pp. 605-610, 2009. Abstract
n/a
P
Pereira, P., S. Valtchev, J. Pina, A. Gonçalves, V. M. Neves, and A. L. Rodrigues, "Power electronics performance in cryogenic environment: evaluation for use in HTS power devices", Journal of Physics: Conference Series, vol. 97: iopscience, pp. 012219, 2008. Abstracthttps://scholar.google.com/citations?user=5-Rq1wYAAAAJ&hl=en
Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.
Pereira, P., S. Valtchev, J. Pina, A. Gonçalves, M. Neves, and A. Rodrigues, "Power Electronics Performance in Cryogenic Environment: Evaluation for Use in HTS Power Devices", 8th European Conference on Applied Superconductivity (EUCAS), September, 2007. Abstract
Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications
Pereira, P., S. Valtchev, J. Pina, A. Gon?alves, M. V. Neves, and A. L. Rodrigues, "Power electronics performance in cryogenic environment: Evaluation for use in HTS power devices", Journal of Physics: Conference Series, vol. 97, no. 1, 2008. Abstract
n/a
S
Baikova, {E. N. }, L. Romba, R. Melicio, and {S. S. } Valtchev, "Simulation and experiment on electric field emissions generated by wireless energy transfer", Technological Innovation for Resilient Systems - 9th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2018, Proceedings: Springer New York LLC, pp. 243–251, 1, 2018. Abstract

This paper presents a wireless energy transfer (WET) system operating at the frequency of tens of kHz. It treats the modeling and simulation of WET prototype and its comparison with experimental measuring results. The wireless energy transfer system model was created to simulate the electric field between the emitting and the receiving coils, applying the finite element method. The results from the simulation are compared to the measured values of the electric field emission from the wireless energy transfer equipment. In the recent years the interest in the WET technology, especially for the electric vehicles (EV) batteries charging, is rapidly growing. The WET systems pollute the environment by electromagnetic emissions. Due to the expanding use of this technology in industrial and consumer electronics products, the problems associated with the electromagnetic compatibility (EMC), and the adverse impact on the human health becomes highly important.

Romba, L., {S. S. } Valtchev, and R. Melício, "Single-phase wireless power transfer system controlled by magnetic core reactors at transmitter and receiver", Technological Innovation for Smart Systems - 8th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2017, Proceedings: Springer New York LLC, pp. 419–428, 2017. Abstract

The applications of wireless power transmission have become widely increasing over the last decade, mainly in the battery charging systems for electric vehicles. This paper focuses on the single-phase wireless power transfer prototype controlled by magnetic core reactors in either side of the system: that of the transmitter, and that of the receiver. The described wireless power transfer system prototype employs a strong magnetic coupling technology to improve the power transmission efficiency. In the same time, a magnetic core reactor is used to control the “tuning” between the transmitter and the receiver frequencies, allowing for that increase of the system efficiency. Finally, practical results of the implemented prototype are presented.

T
Pina, J., P. Pereira, S. Valtchev, A. Gonçalves, M. Neves, and A. Rodrigues, "A test rig for thrust force measurements f an all HTS linear synchronous motor", 8th European Conference on Applied Superconductivity (EUCAS), 2007. Abstract
This paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.
Pina, J., P. Pereira, S. Valtchev, A. Gonçalves, V. M. Neves, A. Alvarez, and L. Rodrigues, "A test rig for thrust force measurements of an all HTS linear synchronous motor", Journal of Physics: Conference Series, vol. 97: IOPScience, pp. 012220, 2008. Abstracthttps://scholar.google.com/citations?user=5-Rq1wYAAAAJ&hl=en
This paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.
Pina, J., P. Pereira, S. Valtchev, A. Gon?alves, M. V. Neves, A. Alvarez, and L. Rodrigues, "A test rig for thrust force measurements of an all HTS linear synchronous motor", Journal of Physics: Conference Series, vol. 97, no. 1, 2008. Abstract
n/a
Romba, L. F., S. S. Valtchev, and R. Melicio, "Three-phase magnetic field system for wireless energy transfer", 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016, pp. 73-78, 2016. Abstract
n/a
Romba, L., {S. S. } Valtchev, and R. Melício, "Three-phase magnetic field tested in wireless power transfer system", International Review of Electrical Engineering, vol. 11, no. 6: Praise Worthy Prize, pp. 586–597, 1, 2016. Abstract

This paper presents a magnetic field three dimensional mapping produced by a threephase prototype for wireless power transfer. The presented magnetic field mapping is a contribution to improve the design of electric vehicles battery chargers using the wireless power transfer. To collect the magnetic field data, a prototype was built, in order to support the tests. The prototype primary is an electrical three-phase system that allows to be connected electrically and geometrically in star or delta. The losses due to the magnetic field dispersion and the generated interferences in the surrounding equipment or in human body are discussed. The different standards organizations related to electric vehicles battery chargers are presented. Finally the magnetic field influence on the human body is addressed.

Steve, I., J. Pina, S. Valtchev, M. Neves, and A. Rodrigues, "Topology of an Electrical Gearbox with Variable Poles for Induction and Superconducting Disc Motors", X Portuguese-Spanish Congress in Electrical Engineering, 2007.
W
Romba, L., {E. N. } Baikova, C. Borges, R. Melicio, and {S. S. } Valtchev, "Wireless battery charger for EV with circular or planar coils: comparison", Technological Innovation for Resilient Systems - 9th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2018, Proceedings: Springer New York LLC, pp. 214–223, 1, 2018. Abstract

This paper presents the experimental results obtained in the wireless energy transfer (WET) system prototype based on coils: circular or planar. With these experimental results we can choose the tuning settings to improve the efficiency of power transmission of the WET systems. In WET for electric vehicle batteries charging, the coil shape and the range between the coils are the most important issues of those systems.