Publications

Export 41 results:
Sort by: Author Title Type [ Year  (Desc)]
Submitted
Valtchev, S., B. V. Borges, and J. B. Klaassens, Series Resonant Converter Applied to Contactless Energy Transmission, , Submitted. Abstract
n/a
2019
Belousov, {A. S. }, {V. N. } Meshcheryakov, S. Valtchev, and {O. V. } Kryukov, "Development of a Control Algorithm for Three-Phase Inverter in Two-Phase Electric Drives Reducing the Number of Commutations", Proceedings - 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2019, United States, Institute of Electrical and Electronics Engineers Inc., pp. 444–449, 11, 2019. Abstract

Important requirements for the modern electric drives are the high overload capacity and a wide range of speed control. A two-phase adjustable low-power drive has these properties, but its implementation in small-scale mechanics is hindered by the need a frequency converter that provides a three-phase power grid into a two-phase network, which is important when the power of the mechanisms increases. Previous studies have already shown the possibility of using a typical frequency converter based on a three-phase full-bridge voltage inverter applying space-vector PWM method. The switching frequency of the inverter remains, unfortunately, relatively high. It is not possible to reduce this frequency without degrading the harmonic composition. The goal of this work is to develop an algorithm for controlling the two-phase electric drive system, while reducing the numberof commutations of the switching devices of the three-phase inverter, and at the same time keeping the deviations of the instantaneous values of the phase currents close enough to the reference.

Baikova, {E. N. }, L. Romba, and S. Valtchev, "Electromagnetic Influence of WPT on Human's Health: Modelling, Simulation, and Measurement", Emerging Capabilities and Applications of Wireless Power Transfer: IGI Global, pp. 141–161, 2019. Abstract

The focus of this chapter is the electromagnetic interference (EMI) and the electromagnetic compatibility (EMC) that the wireless power transfer (WPT) systems reveal as problems. The wireless power transfer (WPT) was introduced by Nikola Tesla more than one hundred years ago, and only recently it attracted the attention of specialists, due to the improved technical means. The WPT technology now has many applications, especially for charging of various electronic devices (i.e., mobile phones, laptops, implants, and home appliances), informatics, and electronics equipment. The high-power equipment and installations (e.g., intelligent machining systems, robots, forklift trucks, and electric cars) are also getting wireless. Moreover, much attention has been focused on the electric transportation system for improving the safe and convenient charging of electric vehicle (EV) batteries.

2018
Braslavsky, {I. Y. }, {V. P. } Metelkov, {A. V. } Kostylev, and S. Valtchev, "On reliability and energy efficiency increasing of the vehicles electric drives", Proceedings - 2018 17th International Ural Conference on AC Electric Drives, ACED 2018, vol. 2018-April, United States, Institute of Electrical and Electronics Engineers Inc., pp. 1–6, 4, 2018. Abstract

Problem of the reliability increasing of the vehicles electric drives is discussed in context of the reduction of the electric motor heating during variable character of movement. Opportunities of the induction motor stator winding heating reduction by means of the control of the vehicles electric drives in transient and steady state modes of movement are shown. Analytical expressions for dynamic torque, optimal on minimal of the winding temperature rise during acceleration, as well as expressions for dynamic torque and value of the motor torque limitation, optimal on energy consumption during acceleration are presented. It is shown that desire to reduce the stator winding temperature rise by means of dynamic torque optimal value selection or motor torque limitation can lead to the rise of energy consumption. Results of the modeling are presented.

Baikova, {E. N. }, L. Romba, {S. S. } Valtchev, R. Melicio, V. {Fernão Pires}, A. Krusteva, and G. Gigov, "Electromagnetic field generated by a wireless energy transfer system: comparison of simulation to measurement", Journal of Electromagnetic Waves and Applications, vol. 32, no. 5: Taylor & Francis, pp. 554–571, 3, 2018. Abstract

This paper presents a wireless energy transfer system operating at the frequency values of kHz order: modeling, simulation, and comparison with prototype measurement results. Wireless energy transfer system model using finite element method was carried out to simulate the electric field and the magnetic flux density for different air gap sizes between the transmitter and the receiver coils. Results are presented and compared with the electromagnetic emission measurements radiated by the wireless energy transfer system prototype. The electric field comparison between the simulated and the prototype measurement values shows an error of roughly 8.7{%}. In the recent years, the interest in the wireless energy transfer technology, especially for electric vehicles batteries charging, is rapidly increasing. As a result of the increasing application of this technology in the industrial and consumer electronic products, more concerns are raised about the electromagnetic compatibility, since the wireless energy transfer systems produce electromagnetic emissions in the surrounding environment.

Bensaad, D., A. Hadjadj, A. Ales, and S. Valtchev, "Identification of the Common Mode Impedance of a Microgrid DC-DC Buck Converter in Normal Service and under Insulation Fault", Proceedings - 2018 IEEE 18th International Conference on Power Electronics and Motion Control, PEMC 2018, United States, Institute of Electrical and Electronics Engineers Inc., pp. 1079–1084, 11, 2018. Abstract

In this paper, we identify the common mode impedance of a parallel converter cell and the impact of each converter on the entire system. The study is done in two cases, favorable when all the sane converters, and degraded when at least one converter in insulation fault. We also put the distinction load type to see their effect on the propagation path. The equivalent method of the Thevenin and impedance circuit is used for the prediction electromagnetic interference generated by these converters. The good knowledge of these electromagnetic interferences allows a proper optimization of the filters (volume/efficiency), and the optimum choice of exploitation of the whole of the cell. The model is tested by PSpice simulation with a wide frequency range up to 30 MHz.

Bashir, {S. B. }, {H. A. } Zidan, and S. Valtchev, "An Improved Voltage Ripple Control Algorithm for Modular Multilevel Converter Based Variable Speed Drive", Proceedings - 2018 IEEE 18th International Conference on Power Electronics and Motion Control, PEMC 2018, United States, Institute of Electrical and Electronics Engineers Inc., pp. 968–973, 11, 2018. Abstract

Modular Multilevel Converter (MMC) is one of the most promising topologies for high power-medium voltage application. However, the use of MMC in variable speed drive applications is still limited. This is due to the fact that the fluctuation of the submodules capacitor voltage is large at low speed constant torque operation. This paper proposes an improved balancing approach based on Space Vector Pulse Width Modulation (SVPWM). The proposed method uses only one SVPWM, which not only simplifies the calculation but also reduces the submodules capacitor fluctuation and the circulating current in the MMC, thereby allowing the operation of MMC-based variable speed drive over the entire operating speed range and improve the converter efficiency. The closed loop operation of the MMC-based variable speed drive is verified through extensive simulations.

Baikova, {E. N. }, L. Romba, R. Melicio, and {S. S. } Valtchev, "Simulation and experiment on electric field emissions generated by wireless energy transfer", Technological Innovation for Resilient Systems - 9th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2018, Proceedings: Springer New York LLC, pp. 243–251, 1, 2018. Abstract

This paper presents a wireless energy transfer (WET) system operating at the frequency of tens of kHz. It treats the modeling and simulation of WET prototype and its comparison with experimental measuring results. The wireless energy transfer system model was created to simulate the electric field between the emitting and the receiving coils, applying the finite element method. The results from the simulation are compared to the measured values of the electric field emission from the wireless energy transfer equipment. In the recent years the interest in the WET technology, especially for the electric vehicles (EV) batteries charging, is rapidly growing. The WET systems pollute the environment by electromagnetic emissions. Due to the expanding use of this technology in industrial and consumer electronics products, the problems associated with the electromagnetic compatibility (EMC), and the adverse impact on the human health becomes highly important.

Romba, L., {E. N. } Baikova, C. Borges, R. Melicio, and {S. S. } Valtchev, "Wireless battery charger for EV with circular or planar coils: comparison", Technological Innovation for Resilient Systems - 9th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2018, Proceedings: Springer New York LLC, pp. 214–223, 1, 2018. Abstract

This paper presents the experimental results obtained in the wireless energy transfer (WET) system prototype based on coils: circular or planar. With these experimental results we can choose the tuning settings to improve the efficiency of power transmission of the WET systems. In WET for electric vehicle batteries charging, the coil shape and the range between the coils are the most important issues of those systems.

2016
Baikova, {E. N. }, {L. F. } Romba, S. Valtchev, R. Melício, and V. {Fernão Pires}, "Electromagnetic Emissions from Wireless Power Transfer System", CETC2016 - Conference on Electronics, Telecommunications and Computers, Proceedings: ISEL - Instituto Superior de Engenharia de Lisboa, 2016. Abstract
n/a
Baikova, E. N., S. S. Valtchev, R. Mel{\'ı}cio, and V. {\'ı}torM. Pires, "Electromagnetic Interference Impact of Wireless Power Transfer System on Data Wireless Channel", Technological Innovation for Cyber-Physical Systems: Springer Science $\mathplus$ Business Media, pp. 293–301, 2016. Abstract
n/a
Braslavsky, I., I. Plotnikov, and S. Valtchev, "The mathematical modeling of alternating current electric drive with DC-DC converter and ultracapacitors", Proceedings - 2016 IEEE International Power Electronics and Motion Control Conference, PEMC 2016, pp. 511-515, 2016. Abstract
n/a
Brito, V., L. B. Palma, F. V. Coito, and S. Valtchev, "Modeling and supervisory control of a virtual X8-VB quadcopter", Proceedings - 2016 IEEE International Power Electronics and Motion Control Conference, PEMC 2016, pp. 686-693, 2016. Abstract
n/a
Braslavsky, I. Y., V. P. Metelkov, S. Valtchev, D. V. Esaulkova, A. V. Kostylev, and A. V. Kirillov, "Some aspects of the reliability increasing of the transport electric drives", Proceedings - 2016 IEEE International Power Electronics and Motion Control Conference, PEMC 2016, pp. 706-710, 2016. Abstract
n/a
Baikova, E. N., S. S. Valtchev, R. Melicio, A. Krusteva, and V. Fernão Pires, "Study of the electromagnetic interference generated by wireless power transfer systems", International Review of Electrical Engineering, vol. 11, no. 5, pp. 526-534, 2016. Abstract
n/a
Baikova, E. N., S. S. Valtchev, R. Melicio, V. F. Pires, A. Krusteva, and G. Gigov, "Study on electromagnetic emissions from wireless energy transfer", Proceedings - 2016 IEEE International Power Electronics and Motion Control Conference, PEMC 2016, pp. 492-497, 2016. Abstract
n/a
Baikova, E. N., S. S. Valtchev, R. Melicio, and V. F. Pires, "Wireless power transfer impact on data channel", 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016, pp. 582-587, 2016. Abstract
n/a
2012
Valtchev, S., E. Baikova, and L. Jorge, "Electromagnetic field as the wireless transporter of energy", Facta universitatis - series: Electronics and Energetics, vol. 25, no. 3: National Library of Serbia, pp. 171-181, 2012. Abstracthttps://scholar.google.com/citations?user=5-Rq1wYAAAAJ&hl=en
n/a
2010
Bonifácio, P., Seguidor fotovoltaico: uma variação do P&O - Simulação e Prototipagem, : FCT-UNL, July, 2010. Abstract
This dissertation tries to track the route of power production from photovoltaic sources. A worldwide look into the photovoltaic solar power production is given. The theory behind the PV cell and its application in PV power modules is presented. The DC ? DC power converters usually associated with solar PV panels are showed. The main maximum power point tracking (MPPT) algorithms are also showed. A solar PV system was dimensioned using the theoretical models and the solar PV modules (BS ? 40) available at the Departamento de Engenharia Electrotécnica (DEE). This system was used as a reference for designing a simulator implemented in MatLab?Simulink. This simulator includes all the components needed to test the different MPP tracking algorithms. Those components are: A PV solar module, which can be associated with others to form a solar panel; A Flyback DC ? DC power converter and a classic perturb and observe (P&O) tracking algorithm. A solar power meter that gives values in W?m2 was built in order to validate simulation values of the solar PV modules. Measuring the solar module characteristics (tension ? current) and knowing the solar irradiation at that given time it is possible to check if the simulated values and the measured ones agree. With the data collected in the simulation a new MPP tracking algorithm was presented. This is based in the classic P&O algorithm, but using modules that try to overcome the local maxima problem. It also tries to minimize the control oscillations in the converter?inverter, this is done in order to minimize losses and to maximize power production.
2009
Valtchev, S., B. Borges, K. Brandisky, and B. J. Klaassens, "Resonant Contactless Energy Transfer With Improved Efficiency", IEEE Transactions on Power Electronics, vol. 24, no. 3: IEEE, pp. 685–699, 2009. Abstracthttps://scholar.google.com/citations?user=5-Rq1wYAAAAJ&hl=en
This paper describes the theoretical and experimental results achieved in optimizing the application of the series loaded series resonant converter for contactless energy transfer. The main goal of this work is to define the power stage operation mode that guarantees the highest possible efficiency. The results suggest a method to select the physical parameters (operation frequency, characteristic impedance, transformer ratio, etc.) to achieve that efficiency improvement. The research clarifies also the effects of the physical separation between both halves of the ferromagnetic core on the characteristics of the transformer. It is shown that for practical values of the separation distance, the leakage inductance, being part of the resonant inductor, remains almost unchanged. Nevertheless, the current distribution between the primary and the secondary windings changes significantly due to the large variation of the magnetizing inductance. An approximation in the circuit analysis permits to obtain more rapidly the changing values of the converter parameters. The analysis results in a set of equations which solutions are presented graphically. The graphics show a shift of the best efficiency operation zone, compared to the converter with an ideally coupled transformer. Experimental results are presented confirming that expected tendency.
Valtchev, S., B. Borges, K. Brandisky, and J. B. Klaassens, "Resonant contactless energy transfer with improved efficiency", IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 685-699, 2009. Abstract
n/a
2008
Valtchev, S., Series Resonant Power Converter for Contactless Energy Transfer with Improved Efficiency, : UTL-IST (Portugal), TU Delft (the Netherlands), April, 2008. Abstract
The development of more efficient power converters is the most important and challenging task for Power Electronics specialists. In the same time, many currently existing or yet to appear future applications require full mechanical independence between the transmitter and receiver of the electrical energy. This contactless form of energy transfer is the concern of the presented work. The work is based on the study of the Series Loaded Series Resonant converter which prove to be the best suitable for the contactless energy transfer. The work investigates the idealized Series Resonant Power Converter with the objective to find the best efficiency zones of operation. Generalized expressions obtained are original and useful. Based on the magnetic parameters of the loosely coupled transformer (magnetic link), the characteristics of the contactless power converter are described in approximated form. The approximation permits easier and faster calculation of the converter variables, thus predicting a shift of the maximum efficiency zone compared to the ideal converter case. The approximated form of the equations permitted to present a new instantaneous form of regulation which combines the frequency and pulse width modes which is free from the previously known defects. The method is based on calculating the energy portions supplied to the load during each half period. Measurements performed on industrial converters and on the laboratory experimental converter, confirm the predicted theoretically behaviour of the converter.
2005
Valtchev, S., K. Brandisky, B. Borges, and B. J. Klaassens, "Efficient Resonant Inductive Coupling Energy Transfer Using New Magnetic and Design Criteria", IEEE 36th Power Electronics Specialists Conference, PESC '05, pp. 1293–1298, June, 2005. Abstract
This paper describes some theoretical and experimental results obtained in an effort to optimize the Series Resonant Converter (SRC) when used with a loosely coupled transformer for Inductive Coupling Power Transfer (ICPT). The main goal of this work is to define precisely which mode of operation of the power stage is the most efficient. The results also suggest a way to choose the design criteria for the physical parameters (operation frequency, characteristic impedance, transformer ratio, etc.) to achieve that mode of operation. The analysis involves also the investigation of the separated in two halves pot core ferrite transformer, especially the way it changes its magnetizing and leakage fluxes and hence, inductances. It is shown that for the practical values of the separation distance, the leakage inductance remains almost unchanged. Nevertheless the current distribution between the primary and the secondary windings changes drastically due to the large variation of the magnetizing inductance. The analysis has lead to a set of equations with solutions that show graphically the way to an optimized operation of the converter, i.e. higher primary currents and higher transformer ratios to fit in the desired mode.
Valtchev, S., B. V. Borges, K. Brandisky, and J. B. Klaassens, "Efficient resonant inductive coupling energy transfer using new magnetic and design criteria", PESC Record - IEEE Annual Power Electronics Specialists Conference, vol. 2005, pp. 1293-1298, 2005. Abstract
n/a
Valtchev, S., K. Brandisky, B. Borges, and B. J. Klaassens, "Magnetic and Design Criteria for Inductive Coupling Energy Transfer", 5th Conference on Telecommunications CONFTELE, 2005.
2002
Valtchev, S., B. Borges, and B. J. Klaassens, "Contactless Energy Transmission with Optimal Efficiency", IEEE 28th Annual Conference of the Industrial Electronics Society IECON 02, pp. 1330–1335, November, 2002.
Valtchev, S., B. V. Borges, and J. B. Klaassens, "Contactless energy transmission with optimal efficiency", IECON Proceedings (Industrial Electronics Conference), vol. 2, pp. 1330-1335, 2002. Abstract
n/a
2001
Valtchev, S., B. Borges, and B. J. Klaassens, "Series Resonant Converter Applied to Contactless Energy Transmission", 3rd Conference on Telecommunications CONFTELE, pp. 474–478, April, 2001.
1997
1995
Valtchev, S., B. V. Borges, and V. Anunciada, "LkW?250 kHz full bridge zero voltage switched phase shift DC-DC converter with improved efficiency", 17th International Telecommunications Energy Conference, INTELEC '95, pp. 803–807, October, 1995.
Valtchev, S., and B. Borges, "Improved Full?Bridge Zero?Voltage?Switched Phase?Shift DC?DC Converter Using a Secondary?Clamped Inductor", Proceedings of the 1995 IEEE Industrial Electronics, Control, and Instrumentation IECON 21st International Conference, pp. 258–264, November, 1995.
Valtchev, S., B. V. Borges, and V. Anunciada, "1 kW/250 kHz full bridge zero voltage switched phase shift DC-DC converter with improved efficiency", INTELEC, International Telecommunications Energy Conference (Proceedings), pp. 803-807, 1995. Abstract
n/a
Valtchev, S., B. V. Borges, and V. Anunciada, "1 kW/250 kHz full bridge zero voltage switched phase shift DC-DC converter with improved efficiency", INTELEC, International Telecommunications Energy Conference (Proceedings), pp. 803-807, 1995. Abstract
n/a
Valtchev, S., and B. V. Borges, "Improved full bridge zero voltage switched phase shift DC/DC converter using a secondary clamped inductor", IECON Proceedings (Industrial Electronics Conference), vol. 1, pp. 258-264, 1995. Abstract
n/a
Valtchev, S., and B. V. Borges, "Improved full bridge zero voltage switched phase shift DC/DC converter using a secondary clamped inductor", IECON Proceedings (Industrial Electronics Conference), vol. 1, pp. 258-264, 1995. Abstract
n/a
Valtchev, S., {B. V. } Borges, and V. Anunciada, "LkW/250 kHz full bridge zero voltage switched phase shift DC-DC converter with improved efficiency", INTELEC 95 - SEVENTEENTH INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE: IEEE, pp. 803–807, 1995. Abstract
n/a
1989
Tatzov, A., D. Dimitrov, T. Borisov, R. Botchev, P. Pashov, P. Petrov, D. Petrov, and S. Valtchev, "Equipment for Measuring the Road?Tyre Cohesion", 6th National Congress of Mechanics, September, 1989.
1986
Vasilev, V., V. Batchev, M. Milev, S. Valtchev, and A. Tatzov, "An Electronic System for Rowers' Propulsion Motion Activities Studies", Problems of the Physical Culture and Sport (now: "Sport and Science Magazine"), no. 2, pp. 13–17, February, 1986. https://scholar.google.com/citations?user=5-Rq1wYAAAAJ&hl=en