

EVENTO INTERNACIONAL GESTIÓN DE PROYECTOS DE EDUCACIÓN VIRTUAL

Educative games: the case study of an App to teach handwriting

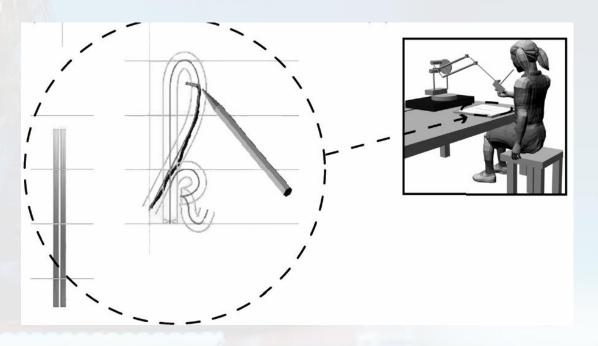
Yves Rybarczyk, PhD.

Outline

- Overview of gaming in education
- Examples of digital handwriting supports
- Proposal
- Game-based App implementation
- User testing
- Conclusions & perspectives

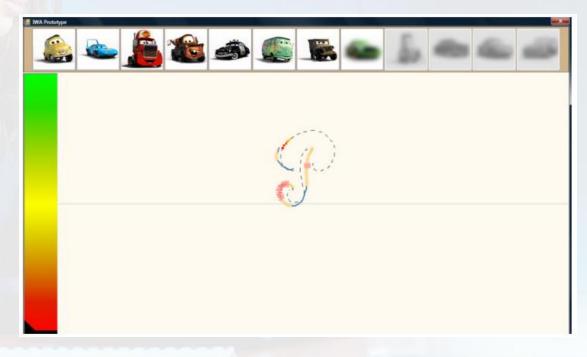
Gaming in education - challenges & trends

- "Training the workforce of tomorrow with the high schools of today is like trying to teach kids about today's computers on a 50-year-old mainframe. It's the wrong tool for the times." (Bill Gates, 2005)
- Consciousness to prepare students for *what* and *how* they will learn in the 21st century: much more technology driven
- Increasing interest of the educational establishments to use digital games as serious learning & assessment tools
- Digital games are seen to promote:
 - Skill reinforcement
 - Engagement & motivation
 - Effective & less intrusive assessment
 - Personalized learning



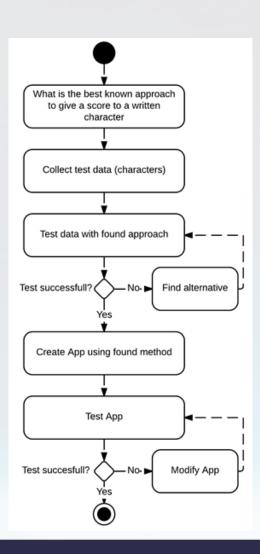
Handwriting teaching systems

• **Telemaque** (Palluel-Germain et al., 2007)



Handwriting teaching systems

• IWA (Pereira et al., 2009)



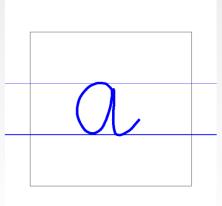
Proposal

Improve the handwriting skills of children by use of a tablet

Method 1 - pure machine learning

- Using Weka software & testing with a 10-fold cross-validation
 - Results with the MNIST handwritten number dataset:

Classifier	Successful classification		
J48 Decision Tree	82.5%		
Naïve Bayes	84.3%		
K-Nearest Neighbor (Lazy IBK)	96.9%		



Method 1 - pure machine learning

 Results with handwriting alphabetic characters:

а

Multiply

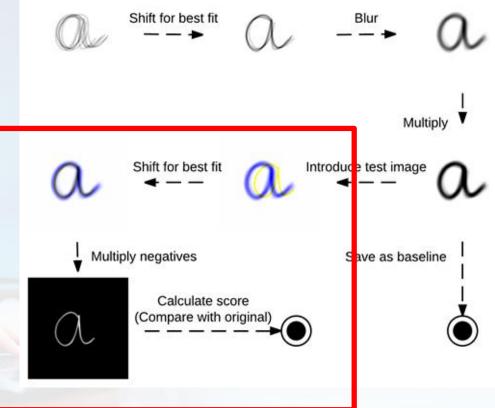
Save as baseline

Method 2 - machine learning + image processing

Image processing

For each character, an image type (or baseline) is built from a combination of images of the same character, such as images are:

- centred
- blurred
- multiplied
- saved



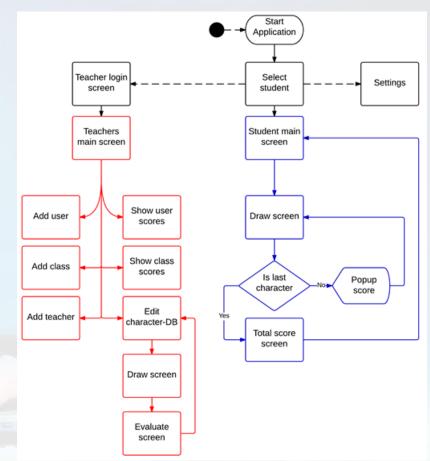
Method 2 - machine learning + image processing

- Character classification
 - The image trial is:
 - introduced
 - centred
 - Trial & baseline
 pixels are:
 - inverted (=> ideal line is white)
 - multiplied

Method 2 - machine learning + image processing

- Result
 - Example:
 - trial 'c' / baseline 'a'

- Overall:
 - more than 90% of correct classification



App development - architecture

App development - user's interface

		а		
l r				
	(λ	,	
+				

🔊 Database						
	Sa	ve this datab	ase			
	Loa	ad new datab	ase			
а			a >			
b			& >			
с			୦ >			
d			d >			
e			& >			
f			f >			
g			g >			
	Û	\bigcirc				

<u>Demo - copy</u>

Demo - draw

		SA	MSUNG		
SCGOP11					₩1120:16
		Exe	rcise type		
3.		Re	petitions		
		Cha	aracters		1
the oppose			Start		C
	1	2	3		
and the second	4	5	6	Done	
	7	8	9		
	SYM	0		*	

User testing

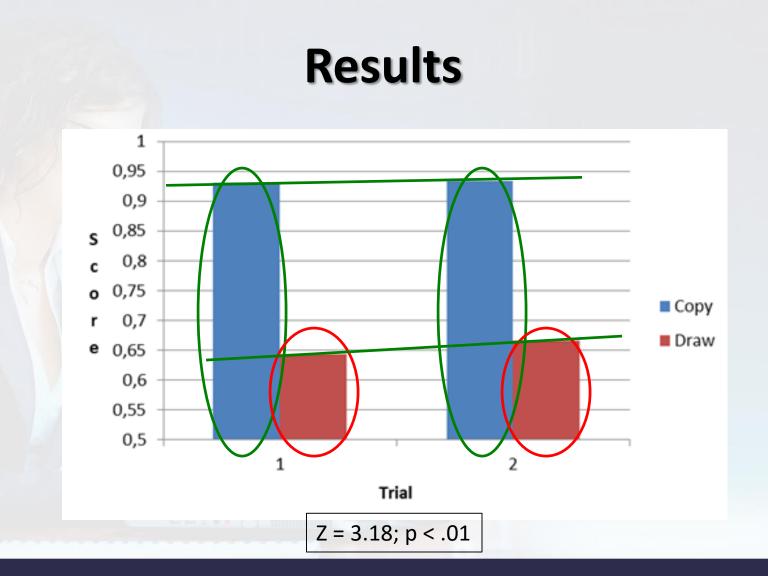
Participants

13 students (6-11 years old)

• Task

Handwrite 10 different characters twice

Experimental design


	1 st trial	2 nd trial
7 participants	сору	draw
6 participants	draw	сору

Conclusions

Strengths

- High percentage of handwriting recognition (> 90%)
- Promising approach to promote an autonomous way of learning

Weaknesses

- Tablets tend to increase jerk in children
- Naturalness of the hand's position (e.g., wrist cannot get inside the drawing area)

Perspectives

Development

- Take into account starting point and movement direction
- Transform the application into a complete serious game (i.e., find a narrative)
- Use game monitoring to adapt the level of difficulty according to child's performances

Evaluation

- Longitudinal study on a larger period of time
- Transversal study by comparison to a control group

People involved

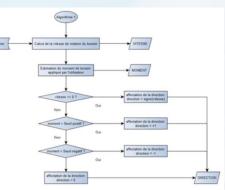
Authors

- Steven Sybenga
 University of Twente (The Netherlands)
- Yves Rybarczyk

MIST - Universidad Tecnológica Indoamérica (Ecuador)

Collaborations

- Escola Branca (Caparica Monte, Portugal)
- Colégio Campo de Flores (Charneca da Caparica, Portugal)
- Colégio A Formiguinha (Sintra, Portugal)



Dominios de investigación del MIST

- Sistemas mecánicos poliarticulados
- Electrónica embarcada y móvil
- Programación y sistemas comunicantes
- Procesos industriales
- Interacción persona-máquina

Ejes aplicativos del MIST

