
An Embedding of Input-output Logic in Deontic Logic
Programs

Ricardo Gonçalves and José Júlio Alferes?

CENTRIA - Dep. Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de
Lisboa

Abstract. Parametrized logic programs, for which a syntax and natural declar-
ative semantics have been recently defined, are very expressive logic programs
under the stable model semantics (also usually called answer set programs) in
which complex formulas of a given parameter logic are allowed to appear in the
body and head of rules. The choice of the parameter logic depends largely on the
domain of the problem to be modeled.
In this paper we show how input-output logic can be embedded into parametrized
logic programs, by choosing deontic logic as the parameter logic. This embedding
not only shows how to recast input-out logic in this extension of answer set pro-
gramming, but also sheds light on how to extend input-output logic with some
interesting non-monotonic features.

1 Introduction

Deontic logic is well-known to be a fundamental tool for modeling normative reason-
ing. Since the seminal work of von Wright [16] many have investigated and developed
systems of deontic logic. One such system is the modal logic KD, usually known as
Standard Deontic Logic (SDL) [2]. Although accepted as a tool for modeling norma-
tive assertions, SDL has shown not to be enough for the task of representing norms [3].
First of all, it became clear that the classical implication of SDL does not provide a
faithful representation for the conditional obligations that usually populate a normative
system. Moreover, SDL is unable to deal with some paradoxes, namely the so-called
contrary-to-duty paradoxes. Contrary-to-duty paradoxes encode the problem of what
obligations should follow from a normative system in a situation where some of the
existing obligations are already being violated.

These limitations of SDL fostered the development of several approaches modeling
conditional obligations in such a way that they have a more reasonable behavior in the
face of the aforementioned paradoxes [15, 9, 11, 1, 14].

Input-output logic [11] takes its origins precisely in the study of conditional obli-
gations. Input-output logic uses a rule-based representation of conditional norms. A
conditional norm is represented as a pair 〈ϕ,ψ〉where ϕ and ψ are formulas. Its intu-
itive reading is that the body ϕ is thought of as an input, representing some condition

? The first author was supported by FCT under the postdoctoral grant SFRH/BPD/47245/2008.
The work was partially supported by project ERRO, PTDC/EIA-CCO/121823/2010. We’d like
to thank the reviewers who, by their constructive comments, really helped to improve the paper.

or situation, and the head ψ is thought of as an output, representing what is obligatory
in that situation.

As any other approach to normative reasoning, input-output logic should reasonably
deal with contrary-to-duty situations. In [10], ideas from non-monotonic reasoning were
used to extend input-output logic to cope with contrary-to-duty situations.

Parametrized logic programming [5] was introduced as an extension of answer set
programming [4] with the motivation of providing a meaning to theories combining
both logic programming connectives with other logical connectives, and allowing com-
plex formulas using these connectives to appear in the head and body of a rule. The
main idea is to fix a monotonic logic L, called the parameter logic, and build up logic
programs using formulas of L instead of just atoms. The obtained parametrized logic
programs have, therefore, the same structure of normal logic programs, being the only
difference the fact that atomic symbols are replaced by formulas of L.

When applying this framework, the choice of the parameter logic depends on the do-
main of the problem to be modeled. As examples, [5] shows how to obtain the answer-
set semantics, a paraconsistent version of it, and also the semantics of MKNF hybrid
knowledge bases [13], using an appropriate choice of the parameter logic.

Parametrized logic programming can be seen as a framework which allows to add
non-monotonic rule based reasoning on top of an existing (monotonic) language. This
view is quite interesting, in particular in those cases where we have already a monotonic
logic to model a problem, but we are still lacking some conditional or non-monotonic
reasoning. In these situations, parametrized logic programming offers a modular frame-
work for adding such conditional and non-monotonic reasoning, without having to give
up of the monotonic logic at hand. One interesting example is the case of MKNF hybrid
knowledge bases, where the existing monotonic logics are the description logics.

In this paper, after presenting some background on input-output logic (Section 2)
and parametrized logic programming (Section 3), we propose the use of standard deon-
tic logic as the parameter of this general non-monotonic parametrized logic program-
ming framework (Section 4) to obtain a very expressive language - deontic logic pro-
grams - along with a purely declarative semantics. We then show (Section 5) that this
language allows to represent and reason about norms, including dealing with contrary-
to-duty situations, and show that it is expressive enough to embed input-output logic.
With the help of an example, we shed light on how deontic logic programs in fact extend
input-output logic.

2 Input-Output Logic

The key idea in input-output logic (IO logic) [10] is to represent norms using pairs of
formulas, rather then with just formulas, as it is usual in deontic logics. The central
elements in the language of IO logic are, therefore, the pairs 〈ϕ,ψ〉, where ϕ and ψ
are classical propositional formulas. Intuitively, a pair 〈ϕ,ψ〉 represents the conditional
norm that whenever the body ϕ (the input) is true then the head ψ (the output) is oblig-
atory. As an example, the pair

〈driving ∧ redSignal, stop〉

can be seen as the representation of the norm stating that, whenever you are driving and
there is a red signal, you have the obligation to stop.

Definition 1. A generating set is a set G of pairs.

Generating sets can be seen as the formal representation of a normative code, i.e., a
set of conditional norms. The term generating set comes from the intuition that it gener-
ates the output from a given input. Given a generating setG and a setA of propositional
formulas, we consider the set

G(A) = {ψ : 〈ϕ,ψ〉 ∈ G and ϕ ∈ A}.

Intuitively, the set G(A) can be seen as the direct consequences of the normative
system G given a set of facts A. The construction of the set G(A) does not have into
account the logical interdependence between formulas. For example, if G = {〈p, q〉}
and A = {p ∧ r} then, we have that q 6∈ G(A).

The semantics of IO logic is an operational semantics which is parametrized by
the choice of the so-called out operations. These out operations represent the different
ways in which the logical interdependence between formulas can be handled.

Operation out(G,A) takes a generating set G and a (input) set of formulas A and
returns a (output) set of formulas. Four natural out operations are usually considered:
the simple-minded operator out1, the basic operator out2, reusable operator out3, and
reusable basic operator out4.

In this paper we focus on two of these operators1: out1 and out3. Given a set A of
formulas we denote by Cn(A) the set of consequence of A in classical logic. Recall
that a classical theory is a set T such that Cn(T) = T . We can now define the out
operations.

Definition 2. Given a generating set G and a set A of propositional formulas:

– out1(G,A) = Cn(G(Cn(A)))
– out3(G,A) =

⋂
{Cn(G(B)) : A ⊆ B, B = Cn(B), and G(B) ⊆ B}

Moreover, for each operator outn, we can consider out+n , the correspondent through-
put operator that allows inputs to reappear as outputs. These operators are defined as

out+n (G,A) = outn(G ∪ Id,A)

where the Id is the identity binary relation, i.e., is defined as

Id = {〈ϕ,ϕ〉 : ϕ classical formula}.

In what follows, we use out(G,A) when referring to any of the above out operations.
Although the above formulation of input-output logic already gives a reasonable

account of conditional obligations, it is not enough for reasoning with contrary-to-duty
situations. Contrary-to-duty situations encode the problem of what obligations should
follow from a normative system in a situation where some of the existing obligations

1 We do not consider all 4 operators due to lack of space, and also because the other two are less
interesting: out+2 = out+4 and they both degenerate into classical logic.

are already being violated. Contrary-to-duty situations were called paradoxical only be-
cause SDL failed to give them a reasonable account. They are, in fact, very common in
a normative scenario. The norms of a normative system should not be seen as hard con-
straints, i.e., the obligations in a normative system can be violated and, in those cases,
the normative system should also specify what sanctions follow from these violations.

In order to cope with contrary-to-duty paradoxes, IO logic was extended in [11].
There, ideas from non-monotonic reasoning were used to deal with problems related
with consistency. The issue was how to deal with excessive output, i.e., those cases in
which the output was itself inconsistent or it was inconsistent with respect to the input.
In the last case the input set is said to be inconsistent with the output. The strategy to
overcome this problem was to cut back the set of generators just below the threshold of
yielding an excessive output. The following general notions of maxfamily and outfamily
were introduced precisely to deal with excessive output.

Given a generating setG and a setA of propositional formulas,maxfamily(G,A)
is the set of maximal subsets of G for which the output operator yields a set consistent
with the input, i.e., the set

{H : H ⊆ G and H is maximal s.t. out(H,A) is consistent with A}.

The set outfamily(G,A) collects the outcomes of each element inmaxfamily(G,A):

outfamily(G,A) = {out(H,A) : H ∈ maxfamily(G,A)}.

Recall that for the operations admitting throughput, namely out+n , we have that
A ⊆ out+n (G,A). Therefore, for those output operators it is equivalent to say that
out+n (G,A) is consistent with A and that out+n (G,A) is itself consistent.

3 Parametrized Logic Programming

In this section we introduce the syntax and semantics of normal parametrized logic
programs [5]. The syntax of these rich logic program has the same structure of normal
logic programs. The key difference is that the atomic symbols of a normal parametrized
logic program are replaced by formulas of a parameter logic.

First of all we introduce the necessary concepts related with the notion of (mono-
tonic) logic.

Definition 3. A (monotonic) logic is a pair L = 〈L,`L〉 where L is a set of formulas
and `L is a Tarskian consequence relation [17] over L, i.e. satisfying the following
conditions, for every T ∪ Φ ∪ {ϕ} ⊆ L,

Reflexivity: if ϕ ∈ T then T `L ϕ;
Cut: if T `L ϕ for all ϕ ∈ Φ, and Φ `L ψ then T `L ψ;
Weakening: if T `L ϕ and T ⊆ Φ then Φ `L ϕ.

When clear from the context we write ` instead of `L. Let Th(L) be the set of
theories of L, i.e. the set of subsets of L closed under the relation `L. It is well-known
that, for every (monotonic) logic L, the tuple 〈Th(L),⊆〉 is a complete lattice with
smallest element the set Theo = ∅` of theorems of L and the greatest element the set

L of all formulas of L. Given a subset A of L we denote by A` the smallest theory that
contains A. A` is also called the theory generated by A.

In what follows we consider fixed a (monotonic) logic L = 〈L,`L〉 and call it the
parameter logic. The formulas ofL are dubbed (parametrized) atoms and a (parametrized)
literal is either a parametrized atom ϕ or its negation not ϕ, where as usual not denotes
negation as failure. We dub default literal those of the form not ϕ.

Definition 4. A normal L-parametrized logic program is a set of rules

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm

where ϕ,ψ1, . . . , ψn, δ1, . . . , δm ∈ L.
A definite L-parametrized logic program is a set of rules without negations as fail-

ure, i.e. of the form ϕ← ψ1, . . . , ψn where ϕ,ψ1, . . . , ψn ∈ L.

We now present the stable model like semantics [4] of these very expressive logic
programs. In the traditional definition of a stable model semantics, an interpretation is
taken to be just a set of atoms. Following naively this idea in the case of a parametrized
logic program, and since the atoms are now formulas of the parameter logic, we could
think of considering as interpretations any set of formulas of the parameter logic. This
idea, however, does not work. The problem is that, contrary to the case of atoms, the
parametrized atoms are not independent of each other. Consider, just as an example,
the case where the parameter logic is classical propositional logic (CPL). Then, if an
interpretation contains p ∧ q then it should also contain both p and q. This interdepen-
dence between the parametrized atoms is governed by the consequence relation of the
parameter logic. Returning to the example with CPL, it is well-known that p∧q `CPL p
and p ∧ q `CPL q. To account for this interdependence, the key idea is to use logical
theories as interpretations. Recall that a logical theory of a logic is a set of formulas
closed under the consequence of the logic. Therefore, returning to the example of CPL,
if an interpretation I contains p∧q and it also contains both p and q, since p∧q `CPL p
and p ∧ q `CPL q and I is closed under logical consequence.

Definition 5. A (parametrized) interpretation is a theory of L.

As usual, an interpretation T can be seen as a tuple 〈T, F 〉 where F is the complement,
wrt L, of T . Note that, defined as such, F is not a theory, viz. it is not closed under the
consequence of the logic. E.g. F does not, and should not, include tautologies of L.

The usual ordering defined over interpretations can easily be generalised.

Definition 6. If I and J are two interpretations then we say that I ≤ J if I ⊆ J .

Given the above ordering, the notions of minimal and least interpretations are de-
fined in the usual way.

Definition 7. An interpretation I satisfies a rule ϕ ← ψ1, . . . , ψn, not δ1, . . . , not δm
if ϕ ∈ I whenever ψi ∈ I for every i ∈ {1, . . . , n}, and δj 6∈ I for every j ∈
{1, . . . ,m}.

If an interpretation I satisfies a rule r we also say that I is closed under r.

Definition 8. An interpretation is a model of a L-parametrized logic program P if it
satisfies every rule of P . We denote by ModL(P) the set of models of P .

As usual, we start by defining the semantics of definite programs.

Definition 9. The stable model semantics of a definite L-parametrized logic program
P is its least model SLP .

In order to guarantee that the above notion is well-defined, in [5] it was proved that
every definite L-parametrized logic program P has a least model. This least model is
precisely the intersection of all models of P , i.e., SLP =

⋂
I∈ModL(P) I .

To define the stable model semantics of aL-parametrized logic programs with nega-
tion as failure a Gelfond-Lifschitz like operator is used.

Definition 10. Let P be a normal L-parametrized logic program and I an interpre-
tation. The GL-transformation of P modulo I is the program P

I obtained from P by
performing the following operations:

– remove from P all rules which contain a literal not ϕ such that I `L ϕ;
– remove from the remaining rules all default literals.

Since P
I is a definite L-parametrized program, it has an unique least model J . We

define Γ (I) = J .

A stable model is then defined as a fixed point of this operator.

Definition 11. An interpretation I of a L-parametrized logic program P is a stable
model of P iff Γ (I) = I . A formula ϕ is true under the stable model semantics iff it
belongs to all stable models of P .

4 Deontic Logic Programs

The choice of the parameter logic in the parametrized logic approach depends on the
domain of the problem to be modeled. For representing normative systems we use stan-
dard deontic logic as the parameter logic, thus obtaining the deontic logic programs.
We start by briefly recalling standard deontic logic (SDL) – see [2] for further details
– and then we introduce the deontic logic programs.

4.1 Standard deontic logic

The formal study of deontic logic was highly influenced by modal logic. In fact, SDL,
which has emerged as the standard system for deontic reasoning, is a modal logic with
two modal operators, one for obligation and another for permission.

Formally, the language of SDL, dubbed LSDL, is constructed from a set Prop of
propositional symbols using the usual classical connectives ¬,⇒, and the unary deontic
operator O (obligation). The classical connectives ∨ and ∧ can be defined, as usual, as
abbreviations. The permission operator can be defined as an abbreviation P := ¬O¬.

The semantics of SDL is a Kripke-style semantics. A Kripke model is a tuple
〈W,R,V〉, where W is a set, the possible worlds, R ⊆ W × W is the accessibility
relation, and V : W → 2Prop is a function assigning, to each world, the set of propo-
sitional symbols true at that world. We assume that R is a serial relation, i.e., for every
w ∈W there exists w′ ∈W such that wRw′. We define the satisfaction of a formula ϕ
in a modelM = 〈W,R,V〉 at a world w ∈W by induction on the structure of ϕ.

i) M, w p if p ∈ V(w), for p ∈ Prop;
ii) M, w ¬ϕ ifM, w 6 ϕ;

iii) M, w ϕ1⇒ ϕ2 ifM, w 6 ϕ1 orM, w ϕ2;
iv) M, w O(ϕ) ifM, w′ ϕ for every w′ s.t. 〈w,w′〉 ∈ R.

We say that an SDL formula ϕ is a logical consequence of a set Φ of SDL formulas,
written Φ `SDL ϕ, if for every Kripke modelM = 〈W,R,V〉 and every world w ∈W
we have thatM, w ϕ wheneverM, w δ for every δ ∈ Φ. A formula ϕ is said to
be a SDL theorem if ∅ `SDL ϕ.

Before we continue we need to make clear one important point. We are using here
the so-called local consequence relation, contrasted with the global consequence re-
lation defined as Φ `g ϕ if for every Kripke model M = 〈W,R,V〉 we have that
M, w ϕ for every world w ∈ W whenever M, w δ for every world w ∈ W
and every δ ∈ Φ. Although the local and the global consequence relations are quite
different, this difference is sometimes neglected. The reason for this confusion is the
fact that the set of theorems is the same for both consequences. If one has only inter-
est in the set of theorems, then it is irrelevant which consequence it uses. But, if we
are interested in the consequence relation, then this distinction should be made. In our
approach, since the consequence relation is a fundamental tool, we do not neglect this
difference and work with the local consequence which is more adequate for normative
reasoning. In fact, from our point of view, the global consequence does not faithfully
represent normative reasoning. For example, we have that ϕ `g O(ϕ) but this is not a
valid reasoning if O is to be read as an obligation.

We now define the notion of logical theory. It will play a fundamental role in the
definition of the semantics for deontic logic programs.

Definition 12. A set of SDL formulas Φ is said to be a SDL logical theory if Φ is closed
under SDL consequence, i.e., for every ϕ ∈ LSDL if Φ `SDL ϕ then ϕ ∈ Φ.

We denote by Th(SDL) the set of theories of SDL. We recall that 〈Th(SDL),⊆〉 is
a complete lattice with smallest element the set Theo(SDL) of theorems of SDL and
greatest element the set LSDL of all SDL formulas. Given a subset A of LSDL we
denote by A`SDL the smallest SDL theory that contains A.

Although well-known, we stress that the use of complex propositional formulas
inside the deontic operators is strictly necessary to represent several kinds of reasoning.
For example, {P(ϕ),O(ϕ ⇒ ψ)} `SDL P(ψ), but {P(ϕ),O(ϕ) ⇒ O(ψ)} 6`SDL
P(ψ). Other interesting consequences in SDL are {ϕ,O(ϕ⇒ ψ)} 6`SDL O(ψ), also
{O(ϕ), (ϕ⇒ ψ)} 6`SDL O(ψ), but {O(ϕ),O(ϕ⇒ ψ)} `SDL O(ψ).

4.2 Deontic Logic Programs

In this section we introduce deontic logic programs, which are obtained from the gen-
eral framework introduced in Section 3, taking SDL as the parameter logic.

Definition 13. A deontic logic program is a set of ground rules

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm

where ϕ,ψ1, . . . , ψn, δ1, . . . , δm ∈ LSDL.

Note that, contrarily to some works in the literature on the combination of non-
monotonic reasoning and deontic logic, for example [7, 10, 8], deontic formulas can
appear both in the head and in the body of a rule, and moreover, they can be complex
formulas and not just atomic formulas. This extra flexibility is relevant, for example, to
deal with non-compliance and application of sanctions. We can use the rule 2

O(payF ine(X))← O(pay(X)), not pay(X)

to express that if an agent has the obligation to pay some bill, and it is not known that
the agent has payed it, then the agent is obliged to pay a fine.

We should stress again that deontic logic programs allow to represent rules with
complex deontic formulas. This is fundamental to represent several different deontic
situations. Consider for example, two normative systems (modeled as deontic logic
programs): N1 = {O(p)⇒ O(q) ←} and N2 = {O(p⇒ q) ←}. These normative
systems express quite different deontic information. In fact, if we assume that p and ¬q
are the case then, in the case of N1 we do not have a violation of an obligation, whereas
in the case of N2 we do have a violation.

5 Embedding Input-Output Logic

In this section we present an embedding of IO logic in deontic logic programs. The
results presented here can be seen as a strengthening of the existing weak connection
drawn in [10] between input-output logic and Reiter’s default logic.

Recall that SP denotes the unique stable model of a definite deontic program P and
SM(P) the set of stable models of a deontic logic program P .

The following lemma shows that, given a generating set G and a set A of formulas,
we can define, for each out operation, a deontic logic program whose stable model
semantics captures the operational semantics given by the respective out operator.

Lemma 1. Let G be a generating set, A an input set consistent with the output, and let
ϕ and ψ stand for classical propositional formulas.

2 In this rule we abuse notation and use a variable. As usual in answer-set programming, this is
to be understood as a macro, standing for all possible ground instances of the rule.

1) Let P1 = {O(ψ)← ϕ : 〈ϕ,ψ〉 ∈ G} ∪
{ϕ← : ϕ ∈ A}.

Then, out1(G,A) = {ϕ : O(ϕ) ∈ SP1}.

2) Let P3 = {ψ ← ϕ : 〈ϕ,ψ〉 ∈ G} ∪
{ϕ← : ϕ ∈ A} ∪
{O(ψ)← ϕ : 〈ϕ,ψ〉 ∈ G}.

Then, out3(G,A) = {ϕ : O(ϕ) ∈ SP3}.

3) Let P+
1 = {O(ψ)← ϕ : 〈ϕ,ψ〉 ∈ G} ∪

{ϕ← : ϕ ∈ A} ∪
{O(ϕ)← : ϕ ∈ A}.

Then, out+1 (G,A) = {ϕ : O(ϕ) ∈ SP+
1
}.

4) Let P+
3 = {O(ψ)← ϕ : 〈ϕ,ψ〉 ∈ G} ∪

{O(ψ)← O(ϕ) : 〈ϕ,ψ〉 ∈ G} ∪
{O(ϕ)← : ϕ ∈ A} ∪
{ϕ← : ϕ ∈ A}.

Then, out+3 (G,A) = {ϕ : O(ϕ) ∈ SP+
3
}.

Proof. Let us prove the result for out1 and out3. The other cases can be proved simi-
larly. For each case we prove the two inclusions.

Case 1). We start by proving that out1(G,A) ⊆ {ϕ : O(ϕ) ∈ SP1}. First of all,
note that Cn(A) ⊆ SP1 because {ϕ ←: ϕ ∈ A} ⊆ P1 and SP1 is a SDL-theory.
Therefore, we can conclude that G(Cn(A)) ⊆ {ψ : O(ψ) ∈ SP1} since SP1 is closed
under the rules of P1, in particular those of the form {O(ψ) ← ϕ : 〈ϕ,ψ〉 ∈ G}. We
then have that Cn(G(Cn(A))) ⊆ Cn({ψ : O(ψ) ∈ SP1}). But it is easy to prove
that {ψ : O(ψ) ∈ SP1} is a CPL-theory, given the fact that SP1 is a SDL-theory.
Therefore, Cn(G(Cn(A))) ⊆ Cn({ψ : O(ψ) ∈ SP1}) = {ψ : O(ψ) ∈ SP1}.
We now prove that {ϕ : O(ϕ) ∈ SP1} ⊆ out1(G,A). Let Φ = ({O(ψ) : ψ ∈
out1(G,A)}∪A)`SDL be a SDL-theory. Clearly, Φ is a model ofP1. Therefore, SP1 ⊆
Φ because SP1 is the smallest model of P1. Then, clearly we have that {ψ : O(ψ) ∈
SP1} ⊆ {ψ : O(ψ) ∈ Φ}. But, it is easy to prove that {ψ : O(ψ) ∈ Φ} = out1(G,A).

Case 2). We start by proving that out3(G,A) ⊆ {ϕ : O(ϕ) ∈ SP3}. Let Φ be a
model of P3. Consider the set ΦCPL of all classical formulas of Φ, i.e., those formulas
that do not involve the obligation operator. It is easy to prove that ΦCPL is a CPL-
theory and, clearly, A ⊆ ΦCPL. Since Φ is closed under the rules of P3, in particular
those of the form {ψ ← ϕ : 〈ϕ,ψ〉 ∈ G}, we can conclude that G(ΦCPL) ⊆ ΦCPL.
Then, we have that G(ΦCPL) ⊆ {ϕ : O(ϕ) ∈ Φ} because Φ is closed under the rules
of P3, in particular those of the form {O(ψ) ← ϕ : 〈ϕ,ψ〉 ∈ G}. Then, applying Cn
to both, we can conclude that Cn(G(ΦCPL)) ⊆ Cn({ϕ : O(ϕ) ∈ Φ}). But, since

Φ is a SDL-theory, it is easy to prove that {ϕ : O(ϕ) ∈ Φ} is a CPL-theory, and,
therefore, Cn({ϕ : O(ϕ) ∈ Φ}) = {ϕ : O(ϕ) ∈ Φ}. Let us summarize what we
have prove up to now. We proved that, for every model Φ of P3 we have that, ΦCPL
is a CPL-theory such that A ⊆ ΦCPL and G(ΦCPL) ⊆ ΦCPL. Moreover, we have
that Cn(G(ΦCPL)) ⊆ {ϕ : O(ϕ) ∈ Φ}. Using these conclusions together with the
fact that SP3 =

⋂
Ψ∈Mod(P3)

Ψ , we can conclude that
⋂
Ψ∈Mod(P3)

Cn(G(ΨCPL)) ⊆⋂
Ψ∈Mod(P3)

{ϕ : O(ϕ) ∈ Ψ} = {ϕ : O(ϕ) ∈ SP3}. The result then follows from
the observation that out3(G,A) ⊆

⋂
Ψ∈Mod(P3)

Cn(G(ΨCPL)). This last observation
follows directly from the definition of out3(G,A) and the fact that {ΦSDL : Φ ∈
Mod(P3)} ⊆ {B : A ⊆ B = Cn(B) ⊇ G(B)}.

We now prove the reverse inclusion, i.e., {ϕ : O(ϕ) ∈ SP3} ⊆ out3(G,A). Let
M be the set of all CPL-theories T such that A ⊆ T and G(T) ⊆ T . Consider the
SDL-theory ΦT = ({O(ψ) : ψ ∈ Cn(G(T))} ∪ T)`SDL obtained from T ∈ M.
Using SDL reasoning, it is not hard to see that (ΦT)CPL is a CPL-theory. Also, we
can check that ΦT is a model of P3. Therefore, we have SP3 ⊆ ΦT because SP3 is the
least model of P3. Then, we have that {ϕ : O(ϕ) ∈ SP3} ⊆ {ϕ : O(ϕ) ∈ ΦT }. It is
easy to see that {ϕ : O(ϕ) ∈ ΦT } = Cn(G(T)). Therefore, we have {ϕ : O(ϕ) ∈
SP3} ⊆

⋂
T∈M{ϕ : O(ϕ) ∈ ΦT } =

⋂
T∈M Cn(G(T)) = out3(G,A). ut

Note that for the embedding in the lemma, standard normal logic programs are not
enough. Not only those do not consider obligations but, equally important, those do not
allow for complex formulas in the heads and bodies of rules. Bare in mind that the ϕ
and ψ can be any classical propositional formulas. However, in this lemma we only
needed to consider definite deontic logic programs, i.e. deontic logic programs without
default negation. This is a consequence of the monotonicity of unconstrained IO logic.
Contrarily, constrained IO logic has an intrinsic non-monotonic flavor and, as we will
see below, default negation plays a fundamental role in the embedding.

In [10] it was showed that, given a generating set G, a set A of input formulas
and assuming that we take out+3 as the out operation, there is a relation between the
elements of outfamily(G,A) and the default extensions of a Reiter’s default system
obtained from G and A. In fact, the default extensions are usually a strict subset of
outfamily(G,A), corresponding to the maximal elements. The following theorem can
be seen as a strengthening of that result, as we prove that, for out+1 and out+3 , we can
capture the entire outfamily using our stable models semantics.

Theorem 1. LetG be a generating set,A an input set of classical propositional formu-
las, and let ϕ and ψ stand for classical propositional formulas.

1) Consider the deontic logic program over an extended language that contains a con-
stant O(ψ) for every classical propositional formula ψ ∈ LCPL.

P1 = {O(ψ)← ϕ, notO(ψ) : 〈ϕ,ψ〉 ∈ G} ∪
{ϕ←: ϕ ∈ A} ∪
{O(ϕ)←: ϕ ∈ A} ∪
{O(ψ)← notO(ψ) : ψ ∈ LCPL}

Then, taking out+1 as the out operator, we have

outfamily(G,A) =
⋃

T∈SM(P1)

{ϕ : O(ϕ) ∈ T}.

2) Consider the deontic logic program over an extended language that contains a con-
stant b for every classical propositional formula b ∈ LCPL.

P3 = {ψ ← ϕ, not ψ : 〈ϕ,ψ〉 ∈ G} ∪
{ϕ←: ϕ ∈ A} ∪
{ψ ← not ψ : ψ ∈ LCPL}

Then, taking out+3 as the out operator, we have

outfamily(G,A) = SM(P3)|LCP L
.

Proof. We just prove condition 2). The proof of 1) is simpler than 2) and can be easily
adapted from the proof of 2).

We prove that outfamily(G,A) = SM(P3)|LCP L
by proving the two inclusions

separately. First of all, we prove that outfamily(G,A) ⊆ SM(P3)|LCP L
. Let H ∈

maxfamily(G,A), i.e., H ⊆ G maximal such that out+3 (H,A) is consistent. Note
that if 〈ϕ,ψ〉 ∈ G \ H then clearly ψ 6∈ out+3 (H,A). Consider now the set Φ =
out+3 (H,A) ∪ Cn({ψ : ψ 6∈ out+3 (H,A)}). We prove that Φ is a stable model of P3.
The calculation of the G-L transformation of P3 modulo Φ gives the definite program
P3
Φ = {ψ ← ϕ : 〈ϕ,ψ〉 ∈ H and ψ ∈ out+3 (H,A)} ∪ {ψ ←: ψ 6∈ out+3 (H,A)} ∪
{ϕ ← : ϕ ∈ A}. It is easy to see that the minimal model of P3

Φ is precisely Φ and,
therefore, Φ is a stable model of P3. We now prove that out+3 (H,A) = Φ|LCP L

. First of
all, since {ψ ← ϕ : 〈ϕ,ψ〉 ∈ H and ψ ∈ out+3 (H,A)} ⊆ {ψ ← ϕ : 〈ϕ,ψ〉 ∈ H} we
can immediately conclude that Φ|LCP L

⊆ out+3 (H,A). To prove the converse inclusion
just note that Φ|LCP L

satisfies every rule {ψ ← ϕ : 〈ϕ,ψ〉 ∈ H}. This is the case
because if 〈ϕ,ψ〉 ∈ H and ψ ← ϕ /∈ P3

Φ then ϕ /∈ out+3 (H,A). Since out+3 (H,A) is
the minimal theory containing A which satisfies the rules of H we can conclude that
out+3 (H,A) ⊆ Φ|LCP L

.

Let us now prove that SM(P3)|LCP L
⊆ outfamily(G,A). Let T be a stable

model of P3. Consider H = {〈ϕ,ψ〉 ∈ G : ϕ 6∈ T or ψ is consistent with T}. We
need to prove two things: (1) T|CPL = out+3 (H,A) and (2) H is maximal such that
out+3 (H,A) is a consistent.

First of all, it is not hard to see that T is also a stable model of PH , where PH is
the program obtained from H just as P3 was obtained from G. To see this, note that, by
definition, if 〈ϕ,ψ〉 ∈ G \H then ϕ ∈ T and ψ is inconsistent with T . This means that
ψ /∈ T and, therefore, ψ ← ϕ /∈ PH

T .
We now prove (1), i.e., that T|CPL = out+3 (H,A). Recall that T is the minimal

theory which is closed under the rules of PH

T . Note that T contains A because {ϕ ←:
ϕ ∈ A} ∈ PH

T . Recall also that out+3 (H,A) is the minimal theory that contains A
and it is closed under the rules of H . To conclude that T|CPL = out+3 (H,A) we need

to compare the rules of PH

T with those of H . It is easy to see that if ψ ← ϕ ∈ PH

T

then 〈ϕ,ψ〉 ∈ H . In fact, we just need to note that if ψ ← ϕ ∈ PH

T then ψ /∈ T ,
which implies that ψ ∈ T . In that case, ψ is consistent with T and, therefore, we have
that 〈ϕ,ψ〉 ∈ H . So, we can immediately conclude that T|CPL ⊆ out+3 (H,A). We
now prove the reverse inclusion. It is not hard to see that 〈ϕ,ψ〉 ∈ H and ψ ← ϕ /∈
PH

T only if ϕ /∈ T . Therefore, we can conclude that T is a theory which contains A
and it is closed under H . Since out+3 (H,A) is the minimal one, we can conclude that
out+3 (G,A) ⊆ T|CPL. Therefore, we can conclude that T|CPL = out+3 (H,A).

We now prove (2), i.e., H is maximal such that out+3 (H,A) is consistent. Let H ′ ⊆
G such that H ⊂ H ′. Then, by definition of H , we have that 〈ϕ,ψ〉 ∈ H ′ \ H if
ϕ ∈ T and ψ is inconsistent with T . Using (1) we have that T|CPL = out+3 (H,A) ⊆
out+3 (H ′, A). Since ϕ ∈ T we conclude that ϕ ∈ out+3 (H ′, A). Therefore, we have
that ψ ∈ out+3 (H ′, A) because 〈ϕ,ψ〉 ∈ H ′. But since ψ is inconsistent with T it also
inconsistent with out+3 (H ′, A). Therefore, out+3 (H ′, A) is itself inconsistent. ut

One could wonder why, in the above theorem, and in the case of out+3 , we did not
need to consider deontic logic programs with deontic operators. The reason is that if
we admit throughput, i.e., inputs to be part of the output, and reusability, i.e., outputs
can be reused as inputs, the deontic reading of a pair 〈ϕ,ψ〉 is no longer accurate. This
fact, which was already noticed in [12], happens because the reuse of outputs as inputs
dilutes the difference between facts and the obligation of these facts. However, note that
even though in the case of out+3 obligations are not used, standard logic programming
is not enough for the above embedding. The reason is that, as already noted above after
Lemma 1, we need to consider complex propositional formulas in the body and head of
rules, something that is not possible in standard logic programs.

The above embedding theorem shows how we can recast IO logic in deontic logic
programming. An interesting question now is what additional features can deontic logic
programming immediately bring to IO logic.

First of all, it is very clear that deontic logic programs have a richer language. Note
that the deontic logic programs necessary to embed IO logic are not very expressive
compared with the expressivity of a normal deontic logic program. Moreover, in deontic
logic programming we have an explicit use of default negation, which is fundamental to
model exceptions. Also, deontic logic programs can have complex deontic formulas not
only in the head, but also in the body of a rule. This is fundamental to model violations
of obligations and to specify sanctions in case of violations.

Another fundamental notion that comes for free in the context of deontic logic pro-
gramming is the notion of equivalence between normative systems. In [6] the notion
of strong equivalence between deontic logic programs is presented. This notion is very
suited to normative systems because if two normative systems are strongly equivalent
(seen as deontic logic programs), then one can change one by the other in the middle of
a larger normative system without changing the meaning of this system. More impor-
tantly, in [6] an extension of the so-called equilibrium logic is defined, which allows to
check strong equivalence of deontic logic programs using logical equivalence.

We end this section with an example of the use of deontic logic programs, contrasted
with input-output logic, in a contrary-to-duty situation.

Example 1. Contrary-to-duty paradoxes are very important in the area of deontic rea-
soning. Not only were they crucial for revealing some of the weaknesses of SDL in
modeling norms, but, more importantly, they provided fundamental intuitions for the
extensions of SDL that overcame some of these weaknesses. In a nutshell, contrary-to-
duty paradoxes encode the problem of what obligations should follow from a normative
system in a situation where some of the existing obligations are already being violated.

Consider the following contrary-to-duty paradox adapted from [14].
You should have neither a fence nor a dog. But, if you have a dog you should have

both a fence and a warning sign. In a situation where you have a dog what obligations
should hold?

As a first attempt to represent the statement, we can try using a direct reading

O(¬dog ∧ ¬fence)←
O(fence ∧ warningSign)← dog

The problem is that, intuitively, this normative system is inconsistent. In fact, if
dog is the case, then the conflicting obligations O(¬dog ∧ ¬fence) and O(fence ∧
warningSign) both follow from the normative system. This reading is in accordance
with, for example, Prakken and Sergot [14].

If we take a closer look at the description of the problem we can see that the first
rule of the normative system wrongly does not distinguish between the two obligations
appearing there. While the obligation not to have a dog is unconditional, the obligation
not to have a fence is not. It has an exception: the case where you have a dog. Therefore,
using deontic logic programs we can have a proper representation with the use of default
negation to model this exception.

O(¬dog)← O(fence ∧ warningSign)← dog

O(¬fence)← not dog

Intuitively, the above normative system is no longer inconsistent. The rules
for O(¬fence) and O(fence ∧ warningSign) now have bodies that cannot
hold at the same time (dog and not dog). Moreover, if we assume that we
have both a dog and a fence the consequences of the normative systems include
{dog, fence,O(¬dog),O(fence),O(warningSign)}. Therefore, on the one hand,
we are able to detect a violation of the obligation not to have a dog, and, on the other
hand, the fact that we have a fence is not a violation, because the fact that there is a dog
prevents the derivation of the obligation not to have a fence.

The following is the representation proposed in [12] of the cottage contrary-to-duty
situation using IO logic.

〈t, ¬(dog ∨ fence)〉 〈dog, fence ∧ warningSign〉

The formula t stands for a tautology. As in our first attempt to model this situation
using deontic logic programs, in IO logic the unconstrained output gives an excessive
output whenever dog is the case. In fact, the output is not only inconsistent with the
input, but it is also itself inconsistent. The output is itself inconsistent because it includes
both fence and ¬fence, and it is inconsistent with the input because it include ¬dog.

The use of constraint output solves this particular problem. In fact, we have that
maxfamily(G,A) = {{〈dog, fence ∧ warningSign〉}} and outfamily(G,A) =
{Cn(fence∧warningSign)}. Intuitively, since dog is the case, the conditional norm
〈t, ¬(dog ∨ fence)〉 is always discarded and only the consequences of the other con-
ditional norm are considered. Although in this particular formulation of the example
the strategy behind the definitions of maxfamily and outfamily gives a reason-
able solution, this is not always the case. As it was pointed out in [12], this strategy
is very sensible to how the generating set is written, and in some case it cuts too deeply
the output. As an example, suppose that we only consider the first conditional norm
〈t, ¬(dog ∨ fence)〉. If dog is the case then, surprisingly, outfamily(G,A) only con-
tains the set of tautologies and therefore does not include ¬fence.

The motivation behind the idea of constraining the output to deal with contrary-to-
duty situations is, as argued in [11], the fact that we should not consider obligations
that are already being violated. In the cottage example, we should not conclude that
it is obligatory not to have a dog because having a dog is seen as an unchangeable
fact. Perhaps this argument is acceptable in the context of IO logic. We argue, however,
that this kind of reasoning is not accurate if we want to reason about violation of obli-
gations. In deontic logic programming we want (and can!) reason about the violation
of obligations. Consider that, in the cottage example we have rules for applying sanc-
tions in case of violations, i.e., we augment the above normative system with the rules
O(fineD)← O(¬dog), dog and O(fineF)← O(¬fence), fence. Then, given that
we have a dog and a fence, the obligation O(fineD) is entailed by the system but
O(fineF) is not. This kind of reasoning would not be possible we were assuming that
O(¬dog) should not follow from the normative system when dog is the case.

6 Conclusions

We started this paper by introducing a framework for representing and reasoning about
normative systems – deontic logic programs – which combines the expressivity of stan-
dard deontic logic with non-monotonic logic programs.

We have shown how deontic logic programs may embed, in a natural way, the orig-
inal input-output logic of [10]. Moreover, making use of the non-monotonic features of
logic programming, we were also able to embed in deontic logic programs the exten-
sion of input-output logic of [11], that is able to cope with contrary-to-duty paradoxes.
This latter result can be seen as a strengthening of the existing weak connection drawn
in [10] between input-output logic and Reiter’s default logic.

We then contrasted the use of deontic logic programs with that of IO logic in an
example of a contrary-to-duty situation. In IO logic, these situations may be handled by
the use of constraint output. However, as it was pointed out in [12], this strategy is very
sensible to how the generating set is written, and in some case it cuts too deeply the
output. This is not the case in deontic logic programs and, further, one can reason about
violation of obligations. Moreover, with deontic logic programs one can more easily
model exceptions, by the explicit use of default negation; and also model violations
of obligations and specify sanctions in case of violations, by being able to deal with
complex deontic formulas also in the body of rules. Guided by the recasting of IO logic

in deontic logic programs, an interesting topic for future work is how to extend IO logic
to incorporate these important features.

Another important possibility for future work, opened by the results in this paper,
is the study of equivalence, and strong equivalence, between normative systems in IO
logic. We think that strong equivalence is very suited notion in normative systems: if
two normative systems are strongly equivalent, then one can change one by the other in
the middle of a larger normative system without changing the meaning of this system,
thus opening the way to (modular) simplifications of normative systems.

References

1. J. Carmo and A. Jones. Deontic logics and contrary-to-duties. In D. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, vol. 8, pages 265–343, 2002.

2. B. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.
3. R. Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis, 24(2):33–36, 1963.
4. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In ICLP,

pages 1070–1080. MIT Press, 1988.
5. R. Gonçalves and J. J. Alferes. Parametrized logic programming. In T. Janhunen and

I. Niemelä, editors, Logics in Artificial Intelligence – JELIA, volume 6341 of LNCS, pages
182–194. Springer, 2010.

6. R. Gonçalves and J. J. Alferes. Parametrized equilibrium logic. In J. P. Delgrande and
W. Faber, editors, LPNMR, volume 6645 of LNCS, pages 236–241. Springer, 2011.

7. G. Governatori and A. Rotolo. Bio logical agents: Norms, beliefs, intentions in defeasible
logic. Autonomous Agents and Multi-Agent Systems, 17(1):36–69, 2008.

8. J. F. Horty. Deontic logic as founded on nonmonotonic logic. Ann. Math. Artif. Intell.,
9(1-2):69–91, 1993.

9. D. Lewis. Semantic analyses for dyadic deontic logic. Cambridge University Press, 1999.
10. D. Makinson and L. van der Torre. Input-output logics. Journal of Philosophical Logic,

29:383–408, 2000.
11. D. Makinson and L. van der Torre. Constraints for input/output logics. Journal of Philo-

sophical Logic, 30:155–185, 2001.
12. D. Makinson and L. van der Torre. What is input/output logic? input/output logic, constraints,

permissions. In G. Boella, L. van der Torre, and H. Verhagen, editors, Normative Multi-agent
Systems, volume 07122 of Dagstuhl Seminar Proceedings, 2007.

13. B. Motik and R. Rosati. Reconciling description logics and rules. J. ACM, 57(5), 2010.
14. H. Prakken and M. Sergot. Contrary-to-duty obligations. Studia Logica, 57(1):91–115, 1996.
15. L. van der Torre. Contextual deontic logic: Normative agents, violations and independence.

Ann. Math. Artif. Intell., 37(1-2):33–63, 2003.
16. G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.
17. R. Wójcicki. Theory of Logical Calculi. Synthese Library. Kluwer Academic Publishers,

1988.

