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Abstract: In statistics of extremes we are usually interested in the estimation of pa-
rameters of extreme events. Such estimation is usually based on the largest k + 1 order
statistics or on the excesses over a high level u. In this paper, we consider the adaptive
estimation of either k or u through the nonparametric bootstrap methodology. We shall
introduce an improved version of Hall’s bootstrap methodology and compare it with the
double bootstrap methodology. The comparison of such methodologies is performed for
simulated data sets.
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1 Introduction

Let Xn = (X1, . . . , Xn) denote a sample of either independent, identically distributed
(i.i.d.) or even weakly dependent random variables (r.v.’s) from an underlying distri-
bution function F . We shall assume that we are in the max-domain of attraction
of the Extreme Value distribution EVξ(x) := exp(−(1 + ξx)−1/ξ), 1 + ξx > 0,
where the shape parameter ξ is the well known extreme value index (EVI). We shall
consider ξ > 0, i.e., models with a heavy right tail. Then, the quantile function
U(t) := F←(1 − 1/t) = inf{x : F (x) ≥ 1 − 1/t}, t > 1, is a regularly varying
function with a positive index of regular variation equal to ξ, i.e.,

lim
t→∞

U(tx)

U(t)
= xξ . (1)
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For a heavy tailed model, the classic semi-parametric Hill estimator of ξ, introduced in
[17], is

H(k) ≡ ξ̂Hn (k) :=
1

k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n) , k = 1, 2, . . . , n− 1, (2)

the average of the log excesses over the high threshold Xn−k:n, where Xi:n denotes
the i-th ascending order statistic of the sample of size n. Consistency is achieved for
intermediate k, i.e. for sequences of integers k = kn, 1 ≤ k < n, such that

k →∞ and k/n→ 0, as n→∞. (3)

To obtain the asymptotic distributional behaviour of the Hill and other semi-parametric
EVI-estimators, we need to assume a second-order condition, that measures the rate of
convergence in the first-order condition, i.e. the way lnU(tx) − lnU(t) approaches
ξ lnx,

lim
t→∞

lnU(tx)− lnU(t)− ξ lnx
A(t)

=

{
(xρ − 1)/ρ, if ρ < 0,

lnx, if ρ = 0,
(4)

for every x > 0, where ρ (≤ 0) is a second-order parameter that rules the rate of con-
vergence and |A| is compulsory a regular varying function with index ρ. For technical
simplicity, we shall assume ρ < 0. Under the second-order condition in (4) the Hill es-
timator has usually a high asymptotic bias and recently several authors have considered
different ways of reducing the bias. A simple class of second-order minimum-variance
reduced-bias (MVRB) EVI estimators is the one in [2], given by

CH(k) ≡ ξ̂CHn (k) := ξ̂Hn (k)

(
1− β̂(n/k)ρ̂

(1− ρ̂)

)
, k = 1, 2, . . . , n− 1, (5)

with (β̂, ρ̂) adequate estimators of the second-order parameters (β, ρ) such that A(t) =
γβtρ, ρ < 0. This estimator has an asymptotic variance equal to that of the Hill EVI-
estimator, but an asymptotic bias of smaller order, and thus beats the classical estimators
for all k. For a reliable estimation of the EVI, some attention should be given to the
choice of the number k, or equivalently to the threshold Xn−k:n. Recent overviews of
statistics of univariate extremes were recently published (see [1, 6, 12], among others).

In section 2 of this paper we present several known results that allow us to compute
the theoretical optimal level of the EVI-estimators in (2) and (5). In Section 3, we
discuss the estimation of the second-order parameters ρ and β. In Section 4 we shall
use bootstrap computer-intensive resampling methods for the choice of k, not only for
the use of H(k), but also for the use of CH(k). We introduce a new bootstrap method,
based on Hall’s methodology, and present the double bootstrap algorithm. Finally, we
provide an application to simulated data sets.

2 Asymptotic Properties

If we assume the validity of the second-order framework in (4), ξ̂Hn (k) is asymptotically
normal, provided that

√
kA(n/k) → λ, finite, as n→∞. Indeed, we have, with Nµ,σ2

denoting a normal random variable with mean value µ and variance σ2, and b1 = 1/(1−
ρ),
√
k
(
ξ̂Hn (k)− ξ

) d
= N0,ξ2 + b1

√
kA(n/k) + op

(√
kA(n/k)

)
, as n→∞. (6)
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The bias b1
√
kA(n/k) = ξ β

√
k (n/k)ρ/(1 − ρ) can be very large, moderate or small,

and increases as k increases. And since the variance decreases with k, we have usually
a very sharp mean square error (MSE) pattern, as a function of k. Under the same
conditions as before,

√
k
(
ξ̂CHn (k)−ξ

)
is asymptotically normal with variance also equal

to ξ2 but with a null mean value.
To obtain information on the bias of MVRB EVI-estimators it is common to slightly

restrict the class of models in (4), further assuming a third-order condition, ruling now
the rate of convergence in the second-order condition in (4). We shall consider the third-
order condition used in [3], which guarantees that for all x > 0,

lim
t→∞

lnU(tx)−lnU(t)−ξ lnx
A(t) − xρ−1

ρ

B(t)
=
xρ+ρ

′ − 1

ρ+ ρ′
, (7)

where |B| is a regular varying function with index ρ′. Further details can be found in
[11].

The full asymptotic behaviour of ξ̂CHn (k) is provided in the following theorem.

Theorem 1. If under the validity of the second-order condition in (4), we estimate β and
ρ consistently through β̂ and ρ̂, in such a way that ρ̂ − ρ = op(1/ lnn), the asymptotic

distributional representation
√
k
(
ξ̂CHn (k)−ξ

) d
= N0,ξ2+op

(√
kA(n/k)

)
holds. Under

the validity of equation (7), we can guarantee

√
k
(
ξ̂CHn (k)− ξ

) d
= N0,ξ2 + b2

√
kA2(n/k) (1 + op(1)), (8)

for adequate k values such that
√
kA2(n/k)→ λA, finite and b2 = (ω/(1− 2ρ)− (1−

ρ)−2)/ξ with ω = B(n/k)/A(n/k).

Regarding the choice of k, an usual approach is to minimize the MSE of the EVI-
estimator. With AMSE standing for ‘asymptotic MSE’, on the basis of (6) and (8),
and with the notation ξ̂

(1)
n = ξ̂Hn , ξ̂(2)n = ξ̂CHn , we get AMSE

(
ξ̂
(c)
n (k)

)
= ξ2/k +

b2c A
2c(n/k), c = 1, 2 and

k
(c)
0 (n) := argmin

k
AMSE

(
ξ̂(c)n (k)

)
=

(
n−2cρ

(−2cρ)b2c ξ2(1−c) β2c

)1/(1−2cρ)
, c = 1, 2.

(9)

3 Estimation of the second-order parameters

We have used particular members of the class of estimators of the second-order param-
eter ρ proposed in [10]. Such a class of estimators has been first parameterized by a
tuning parameter τ ≥ 0, that can be straightforwardly considered as a real number, and
is defined as

ρ̂τ (k) := min

{
0 ,

3(T
(τ)
n (k)− 1)

T
(τ)
n (k)− 3

}
, T (τ)

n (k) :=

(
M

(1)
n (k)

)τ − (M (2)
n (k)/2

)τ/2(
M

(2)
n (k)/2

)τ/2 − (M (3)
n (k)/6

)τ/3 , τ ∈ R,

with the notation abτ = b ln a if τ = 0 and where M
(j)
n (k) :=

1
k

∑k
i=1 {lnXn−i+1:n − lnXn−k:n}j , j = 1, 2, 3. Interesting alternative ρ-estimators

have recently been introduced in [5, 8]. Here we consider the same type of criterion
used in [15] for the adaptive estimation of ρ: Consider a sample with n positive values,
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compute {ρ̂τ (k)}k∈K, with K = (bn0.995c, bn0.999c), compute their median, denoted
ητ , and compute Iτ :=

∑
k∈K (ρ̂τ (k)− ητ )

2, τ = 0, 1. Next choose τ∗ = 0 if I0 ≤ I1;
otherwise, choose τ∗ = 1 and compute ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1), with k1 = bn0.995c.

The estimate of the scale second-order parameter β is given by β̂ = β̂ρ̂(k1) with
β̂ρ̂(k) the estimator in [13], given by

β̂ρ̂(k) :=

(
k

n

)ρ̂ Dρ̂,0(k)D0,1(k)−Dρ̂,1(k)

Dρ̂,0(k)Dρ̂,1(k)−D2ρ̂,1(k)
, Dα1,α2(k) :=

1

k

k∑
i=1

(
i

k

)−α1

Uα2
i ,

with Ui := i(lnXn−i+1:n − lnXn−i:n) the the rescaled log-spacings and dependent on
the estimator ρ̂, suggested before.

4 The bootstrap methodology

4.1 A method based on Hall’s single bootstrap

The bootstrap methodology for the selection of the threshold k was first introduced by
Hall ([16]). To avoid the underestimation of the bias, it is necessary to use smaller
resamples of size n1 = o(n), where n is the size of the initial sample. Let X∗n1

=
{X1, . . . , Xn1} denote a resample of size n1 = o(n) taken with replacement. Hall’s
considered the minimization of the bootstrap estimate of the MSE of ξ̂Hn1

(k),

MSE(n1, k) = E

[{
ξ̂Hn1

(k)− ξ̂Hn1
(kaux)

}2
|X∗n1

]
(10)

where kaux is an initial threshold such that ξ̂Hn1
(kaux) is consistent for ξ. Next we choose

the value k∗0(n1) that minimizes (10). The bootstrap estimate of the tail fraction is then

k∗0(n) = k∗0(n1)(n/n1)
α.

Hall suggested α = 2/3, which is equivalent to say that our model is under the second-
order condition with ρ = −1. Also, as noticed by [14], the method is very sensitive
to the choice of kaux. Here we shall consider again an auxiliary statistic of the type of
the one considered in [14], directly related to the EVI-estimator under consideration, but
going to the known value zero,

T (c)
n (k) := ξ̂(c)n (bk/2c)− ξ̂(c)n (k), k = 2, . . . , n− 1, c = 1, 2. (11)

Notice that if c = 1 this approach is equivalent to consider kaux = bk/2c in (10). On
the basis of the results similar to the ones in [14], we can get for T (c)

n (k), in (11), the
asymptotic distributional representation,

T (c)
n (k)

d
=

ξ2√
k
Qk + bc(2

cρ − 1)A(n/k)(1 + op(1)),

with Qk asymptotically N0,1, and bc, c = 1, 2 given in Section 2. Then, the AMSE of
T
(c)
n (k) is minimal at a level k(c)0|T (n), such that

k
(c)
0 (n) = k

(c)
0|T (n)(2

cρ − 1)
2

1−2cρ

Based on Hall’s method we now introduce a new bootstrap algorithm:
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Algorithm 1. Let ξ̂(c)n (k) denote any of the EVI-estimators in (2) (c = 1) or in (5) (c =
2). We now proceed with the description of the algorithm for the adaptive estimation of
the optimal threshold k(c)0 (n) and the adaptive estimation of ξ.

Step 1 Given a sample (x1, x2, . . . , xn), compute the estimates ρ̂ and β̂ of the second-
order parameters ρ and β as described in Section 3.

Step 2 Next, consider a sub-sample size n1 = o(n). For l from 1 untilB, generate inde-
pendentlyB bootstrap samples (x∗1, x

∗
2, . . . , x

∗
n1
) of size n1, from the empirical d.f.

F ∗n(x) =
1
n

∑n
i=1 I{Xi≤x} associated with the observed sample (x1, x2, . . . , xn).

Step 3 Denoting T (c)∗
n1 (k) the bootstrap counterpart of T (c)

n1 (k), defined in (11), obtain
t∗n1,l

(k), 1 ≤ l ≤ B, the observed values of T (c)∗
n1 (k). For k = 2, . . . , n1 −

1, compute MSE∗(n1, k) = 1
B

B∑
l=1

(
t∗n1,l

(k)
)2
, and obtain k̂∗0|T (n1) :=

argmin1<k<n1 MSE∗(n1, k).

Step 4 Compute the threshold estimate

k̂∗0(n) ≡
⌊
(1− 2cρ̂)

2
1−2cρ̂ k̂∗0|T (n1) (n/n1)

−2cρ̂
1−2cρ̂

⌋
+ 1.

If k̂∗0(n) > n−1 go back to Step 2, being careful not to generate the same samples.

Step 5 Obtain ξ̂∗ ≡ ξ̂(c)n (k̂∗0(n)).

4.2 The double bootstrap method

The assumptions in Hall’s methodology were overpassed with the use of a double boot-
strap method. This method was first used in [9] for the general max-domain of attraction
and in [7, 14] for heavy tailed models. More recently, [15] modified the double boot-
strap algorithm for an adaptive choice of the thresholds for second-order corrected-bias
estimators. The next algorithm follows closely the bootstrap method in [15].

Algorithm 2. Let ξ̂(c)n (k) denote any of the EVI-estimators in (2) (c = 1) or in (5) (c =
2). We now proceed with the description of the algorithm for the adaptive estimation of
the optimal threshold k(c)0 (n) and the adaptive estimation of ξ.

Step 1 Equal to Step 1 in Algorithm 1.

Step 2 Next, consider a sub-sample size n1 = o(n) and n2 = bn21/nc + 1. For
l from 1 until B, generate independently B bootstrap samples (x∗1, . . . , x

∗
n2
)

and (x∗1, . . . , x
∗
n2
, x∗n2+1, . . . , x

∗
n1
), of sizes n2 and n1, respectively, from the

empirical d.f. F ∗n(x) = 1
n

∑n
i=1 I{Xi≤x} associated with the observed sample

(x1, x2, . . . , xn).

Step 3 Denoting T (c)∗
ni (k) the bootstrap counterpart of T (c)

ni (k), in (11), obtain t∗ni,l(k),

1 ≤ l ≤ B, i = 1, 2 the observed values of T (c)∗
n (k). For k = 2, . . . , ni − 1,

and i = 1, 2 compute MSE∗(ni, k) =
1
B

B∑
l=1

(
t∗n1,l

(k)
)2, and obtain k̂∗0|T (ni) :=

argmin1<k<niMSE∗(ni, k).
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Step 4 Compute the threshold estimate

k̂∗0(n) ≡
⌊
(1− 2cρ̂)

2
1−2cρ̂ (k̂∗0|T (n1))

2/k̂∗0|T (n2)
⌋
+ 1.

If k̂∗0(n) > n−1 go back to Step 2, being careful not to generate the same samples.

Step 5 Obtain ξ̂∗ ≡ ξ̂(c)n (k̂∗0(n)).

Remarks:

• The use of the sample (x∗1, x
∗
2, . . . , x

∗
n2
), and of the extended sample (x∗1, . . . ,

x∗n2
, . . . , x∗n1

), n2 < n1, lead us to an increased precision of the result with the
same number B of bootstrap samples generated in Step 2. This is quite similar to
the use of the simulation technique of “Common Random Numbers” in compari-
son problems.

• Bootstrap confidence intervals are easily obtained, through the replication of this
algorithm r times. The replication can also provide us more precise estimates,
if we consider the estimate given by the mean or the median of the r bootstrap
estimates.

• A few practical questions may be raised under the set-up developed: How does
the asymptotic method work for moderate sample sizes? Is the method strongly
dependent on the choice of n1? Although aware of the theoretical need to have
n1 = o(n), what happens if we choose n1 = n? We will try to answer those
questions in the next section.

4.3 Applications to Simulated Data Sets

Here we shall present an illustration of the performance of the algorithms to simulated
samples, cases where we know the value of ξ. We have simulated one random sample of
size n = 500, from a Burr model with d.f. F (x) = 1 − (1 + x−ρ/ξ)1/ρ, x > 0, ξ > 0,
ρ < 0 with ξ = 0.25 and ρ = −0.75 and one Student’s-t4 sample of size n = 1000
(ξ = 0.25, ρ = −0.5).

Conclusions: Bootstrap estimates of the optimal sample fractions, k̂∗0(n)/n and of the
EVI, ξ̂∗, as functions of n1, for bn0.85c ≤ n1 ≤ n, are pictured in Figs. 1-2. Since
we know the true value of ξ, and we can easily assess the reliability of the estimates
provided by the Algorithms, immediately coming to the conclusion that Algorithm 2
provides a quite reliable EVI-estimation, even with n1 = n. Algorithm 2 can be very
sensitive to the choice of n1 (see Fig. 1). We noticed that we can have some volatility
in the estimates as function of n1 and such volatility only decreases substantially with
the replication of the algorithm r = 25 times. For the Burr sample, Algorithm 4.1 is
sensitive to the choice of n1. These results claim obviously for a simulation study of the
Algorithms and its application to real data sets. These are however topics that can only
be covered in a full-length paper.
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Figure 1: Adaptive estimates of k̂∗0(n)/n (above) and ξ̂∗ (below), as function of n1, with B =
250 (left), B = 1000 (center) and mean of r × B = 25 × 250 (right), for the Burr simulated
sample.
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Figure 2: Adaptive estimates of k̂∗0(n)/n (above) and ξ̂∗ (below), as function of n1, with B =
250 (left), B = 1000 (center) and mean of r ×B = 25× 250 (right), for Student’s-t sample.
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