Publications

Export 12 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
L
Lapa, N. a, R. a Barbosa, S. a Camacho, R. C. C. b Monteiro, M. H. V. c Fernandes, and J. S. a Oliveira. "Leaching behaviour of a glass produced from a MSWI bottom ash." Materials Science Forum. 514-516 (2006): 1736-1741. AbstractWebsite

This paper is mainly focused on the characterisation of a glass material (GM) obtained from the thermal treatment of a bottom ash (BA) produced at the Municipal Solid Waste (MSW) incineration plant of Valorsul. By melting the BA at 1400°C during 2 hours, and without using any chemical additives, a homogeneous black-coloured glass was obtained. The thermal and mechanical properties of this glass were characterised. The thermal expansion coefficient, measured by dilatometry, was 9-10 × 10-6 per °C and the modulus of rupture, determined by four-point bending test, was 75±6 MPa, which are similar values to those exhibited by commercial soda-lime-silica glasses used in structural applications. The chemical and the ecotoxicological leaching behaviour of the GM were also analysed. The GM was submitted to a leaching procedure composed of 15 sequential extraction cycles. A liquid/solid (L/S) ratio of 2 1/kg was applied in each cycle. The leachates were filtered through a membrane of PTFE (porosity: 0.45 μm). The filtered leachates were characterised for different chemical parameters and for an ecotoxicological indicator (bacterium Vibrio fischeri). The GM was also submitted to a microwave acidic digestion for the assessment of the total metal content. The crude BA was also submitted to the same experimental procedures. The GM showed levels of chemical emission and ecotoxicity for V. fischeri much lower than those determined for the crude BA. Similar characterisation studies will be pursued with the glass-ceramics produced by adequate thermal treatment of the glass, in order to investigate the effect of the crystallization on the final properties.

Leroy, C. a, M. C. a Ferro, R. C. C. b Monteiro, and M. H. V. a Fernandes. "Production of glass-ceramics from coal ashes." Journal of the European Ceramic Society. 21 (2001): 195-202. AbstractWebsite

Coal fly ashes produced by an extinguished power plant in the north of Portugal have been melted with addition of CaCO3 and Na2CO3 to obtain glasses. One of the formulated compositions was selected for further studies and it was possible to manufacture glass-ceramics by crystallizing the parent glass through adequate time-temperature schedules. The macroscopic appearance, microstructure, mechanical, thermal and chemical properties indicated that these materials are quite attractive for cladding applications, exhibiting in some cases better performances than the conventional ceramic tiles.

Lima, M. M. R. A. a, R. C. C. a Monteiro, M. P. F. b Graça, and M. G. c Ferreira Da Silva. "Structural, electrical and thermal properties of borosilicate glass-alumina composites." Journal of Alloys and Compounds. 538 (2012): 66-72. AbstractWebsite

Borosilicate glass-alumina composites with (1 - x) Glass + x Al 2O 3 (x = 0, 5, 10, 25 vol.%) were prepared and the effect of Al 2O 3 addition on the structural, electrical and thermal characteristics was investigated. XRD patterns revealed the presence of cristobalite (SiO 2) in sintered borosilicate glass and that the addition of Al 2O 3 hinders cristobalite formation. This behavior is due to the diffusion of some Al 3+ ions from alumina to glass, which leads to changes in glass structure and composition as identified by SEM/EDS. Cristobalite was undetected in composites containing 10% Al 2O 3 that attained the lowest thermal expansion coefficient value (∼4.6 × 10 -6 °C -1). Conductivity (dc and ac) increased with the amount of Al 3+ ions present in the glass structure as modifiers and formers. Dielectric constant values, in the range 5.0-7.2, increased with Al 2O 3 addition and the values of loss tan δ (1.5-2.1 × 10 -2) indicate that these materials are good insulators. © 2012 Elsevier B.V. All rights reserved.

Lima, M. M., and R. Monteiro. "Characterisation and thermal behaviour of a borosilicate glass." Thermochimica Acta. 373 (2001): 69-74. AbstractWebsite

The changes occurring during the heating of a borosilicate glass have been investigated by differential thermal analysis, dilatometric analysis and thermomechanical analysis. The thermal properties of this glass, such as glass transition temperature, dilatometric softening temperature and linear thermal expansion coefficient, have been determined. Viscosity measurements in the temperature range 898-1048 K were performed in a thermomechanical analyser equipped with a penetration attachment for isothermal measurement, and from the temperature dependence of viscosity a value of 290 kJ mol-1 was obtained for the activation energy for viscous flow. Devitrification of the glass was observed, specifically in finely powdered glass samples, where the precipitation of cristobalite was identified by X-ray diffraction. Glass powder compacts sintered by viscous flow and cristobalite precipitation reduced strongly the shrinkage rate. © 2001 Elsevier Science B.V.

Lima, M. M. R. A., and R. C. C. Monteiro. "Crystallization of a borosilicate glass during sintering studied by dilatometry and XRD analysis." Materials Science Forum. 455-456 (2004): 212-215. AbstractWebsite

The crystallization of a borosilicate glass, when compacts of powdered glass were sintered under various conditions, was investigated by dilatometric and XRD analysis. The dilatometry results from non-isothermal sintering experiments until 800°C, performed at different heating rates (1, 2, 5, 8 and 10°C/min), revealed that the compacts started to shrink above ∼ 600°C and that the shrinkage decreased with the increase of the heating rate for temperatures up to ∼750°C. Above this temperature, and specifically when the samples were heated at heating rates < 5°C /min, the shrinkage was hindered, while samples heated at heating rates ≥ 5°C/min showed continuous shrinkage. XRD results showed that the formation of cristobalite had occurred during the sintering at the lowest heating rates and therefore, the presence of this crystalline phase was affecting the shrinkage of the compacts, inhibiting further sintering of the glass. The crystallization of the glass when sintered at a temperature in the range 700-850°C and hold at the selected temperature during various times was also analysed. XRD results showed that both cristobalite and quartz were present in glass compacts sintered under particular conditions (for example, after heating during 24h at 725°C and 765°C). Quartz dissolution took place when the glass samples were sintered at 850°C. At this temperature and whatever the sintering time, cristobalite was the only crystalline phase present in the sintered compacts.

Lima, M. M. R. A., and R. C. C. Monteiro. "Viscous sintering in a glass-alumina system." Materials Science Forum. 587-588 (2008): 143-147. AbstractWebsite

The densification during sintering of borosilicate glass matrix composites with 25 vol. % alumina (Al2O3) particles was investigated. The powder compacts, isostatically pressed at 200 MPa, were sintered at a temperature within the range 800-1000° C and maintained at this temperature during various times. The sintering behaviour of the composites was investigated by density measurement and by axial and radial shrinkage measurements. The crystalline phases present in the sintered composites were identified by XRD and the microstructure was analyzed by SEM. For temperatures up to 900°C, the relative density of the composites increased continuously with sintering temperature and sintering time, while for higher temperatures, the density increased rapidly and then slowed down to achieve a nearly constant value after sintering the composites for 30 minutes. The composites exhibited isotropic shrinkage behaviour when sintered at 800°C and 850°C, but at higher temperatures slightly higher axial shrinkage than radial shrinkage was observed. The shrinkage behaviour and microstructural characteristics of the composites indicate that densification during sintering can be attributed to the viscous flow of the borosilicate glass.

Lima, M. M. R. A., F. M. Braz Fernandes, and R. C. C. Monteiro. "Study of the crystallization of a borosilicate glass." Key Engineering Materials. 230-232 (2002): 157-160. AbstractWebsite

The crystallization of a commercial borosilicate glass powder has been studied in the temperature range 750-900°C. Crystal growth was investigated by high temperature XRD and cristobalite precipitation was identified. Glass devitrification exhibited a characteristic incubation period that decreased with increasing temperature: 25-30 min at 750°C, 9-12 min at 775°C, 5-10 min at 810°C, and 0-5 min at 840°C. Cristobalite is an unfavorable transformation product in terms of thermal expansion behavior. The precipitation of cristobalite in sintered glass compacts was confirmed by dilatometric analysis, where the increase in thermal expansion coefficient due to the presence of cristobalite and its transition from the tetragonal to the cubic phase were verified. Correlation between the XRD results and the dilatometric data from sintered glass compacts showed the partial dissolution of cristobalite when the glass was heated at the highest temperatures.

Lima, M. M. R. A., and R. C. C. Monteiro. "Shrinkage behaviour of borosilicate glass-Al2O3 composites during isothermal sintering." Materials Science Forum. 514-516 (2006): 648-652. AbstractWebsite

The effect of rigid inclusions on the densification during isothermal sintering of glass matrix composites was investigated. Mixtures containing borosilicate glass powder and 0, 5, 10 and 25 vol. % alumina (Al 2O3) particles were prepared and powder compacts isostatically pressed at 200 MPa have been used. The sintering behaviour of the samples heated at 800°C during various times was investigated through density measurement, axial and radial shrinkage measurements. The microstructure was analysed by SEM and the crystalline phases present in the sintered composites were identified by XRD. The relative density of the isothermally treated borosilicate glass-Al2O3 composites decreased significantly with the increase in Al2O3 content because the presence of rigid inclusions retarded the densification of the compacts. The borosilicate glass exhibited anisotropic shrinkage behaviour, showing a radial shrinkage higher than the axial shrinkage and isotropic shrinkage was favoured by Al2O3 additions. Sintered glass showed a dense microstructure with some spherical closed pores. The microstructure of composites with 5 vol. % Al2O3 revealed that most of the pores were filled by capillary flow of the glass. The microstructure of composites with higher Al2O3 additions showed dense areas together with interconnected pores, which appeared at the sites of large glass particles in the green compacts.

Lima, M. M. R. A., L. F. C. Braz, R. C. C. Monteiro, and JP Veiga. "Effect of phosphogypsum on the clinkerization temperature of portland cement clincker." Materials Science Forum. 730-732 (2013): 94-99. AbstractWebsite

Phosphogypsum (PG) is a pollutant residue resulting from the production of phosphoric acid in the phosphated fertilizers industry. About 180 millions of tons of PG are generated worldwide per year, which originates storage problems because of the environmental restrictions and the high costs of storage spaces. Taking into account the mineralizer properties of PG it has been studied a way to valorize this residue as an alternative material in the production of Portland cement clinker. The PG and the raw-materials (limestone, marl, sand and iron oxide) were chemical, mineralogical and thermally characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and differential thermal analysis and termogravimetric analysis (DTA/TGA). After milling, the phosphogypsum was mixed with the raw-materials in different amounts up to 10% weight. The raw mixtures were submitted to two types of firing schedules, heating up to 1500°C without any holding time or heating up to 1350°C and holding for 20 minutes. After firing, the clinkers were analyzed by optical microscopy, milled and characterized in terms of chemical and mineralogical compositions. The clinkers were used to produce cement mortar according to NP EN 196-1 standard. The resultant test specimens were mechanically tested at 2 and 28 days according to the same standard. The obtained results show a reduction of about 140°C in the clinkerization temperature, when a raw mixture with 5% phosphogypsum was used. Standard clinkers, without phosphogypsum addition, which were fired at 1500°C, originated test specimens with a compressive strength of 48.1MPa at 28 days. Test specimens produced with clinker containing 5% phosphogypsum present higher compressive strength values at 28 days, being 55.1MPa for clinkers produced at 1500°C, and 49.4 MPa for clinkers produced at 1350°C. © (2013) Trans Tech Publications, Switzerland.

Lopes, A., P. Nunes, P. Vilarinho, R. Monteiro, E. Fortunato, and R. Martins. "Study of the sensing mechanism of SnO2 thin-film gas sensors using hall effect measurements." Key Engineering Materials. 230-232 (2002): 357-360. AbstractWebsite

Hall effect measurements are one of the most powerful techniques for obtaining information about the conduction mechanism in polycrystalline semiconductor materials, which is the basis for understanding semiconductor gas sensors. In order to investigate the correlation between the microscopic characteristics and the macroscopic performances exhibited by undoped tin oxide gas sensors deposited by spray pyrolysis, Hall effect measurements were performed at different temperatures, from room temperature up to 500 K, and in the presence of two different atmospheres, air and methane. From these measurements, it was possible to infer the potential barrier and its dependence with the used atmosphere. The obtained results were analysed in terms of the oxygen mechanism at grain boundaries on the basis of the grain boundary-trapping model. In the presence of methane gas, the electrical resistivity decreases due to the lowering of the inter-grain boundary barrier height.

Lopes, A. A. S. a, R. C. C. a Monteiro, R. S. a Soares, M. M. R. A. a Lima, and M. H. V. b Fernandes. "Crystallization kinetics of a barium-zinc borosilicate glass by a non-isothermal method." Journal of Alloys and Compounds. 591 (2014): 268-274. AbstractWebsite

The crystallization kinetics of a glass with a molar composition 40BaO-20ZnO-30B2O3-10SiO2 was investigated. The kinetic parameters, activation energy for crystallization (Ec) and Avrami exponent (n), were evaluated under non-isothermal conditions using the results obtained by differential thermal analysis (DTA) performed at different heating rates. DTA curves exhibited two overlapping exothermic peaks associated with the crystallization of the glass. Barium borate (BaB4O 7) was the first crystalline phase to be formed and it was followed by the formation of barium zinc silicate (BaZnSiO4), as identified by XRD. For the first exothermic peak, when the fraction of crystallization (χ) increased from 0.1 to 0.9, the local activation energy (E c(χ)) decreased from 700 to 500 kJ/mol, while for the second exothermic peak, Ec(χ) slightly increased from 490 to 570 kJ/mol. For the range of 0.1 < χ < 0.9, the local Avrami exponent (n(χ)) increased from ∼1 to 1.4 for the first exothermic peak and it decreased from ∼1.7 to 1.4 for the second exothermic peak. Observation by SEM of the microstructure of sintered glass samples revealed that crystallization started at the surface of glass particles, with growth of lamellar crystallites, that together with some quasi-spherical nano-sized crystallites progressed towards the inside of the glass at the highest sintering temperatures. The change of the local activation energy with the fraction of crystallization suggested that a multi-step kinetic reaction took place during sintering and crystallization of the glass. © 2013 Elsevier B.V. All rights reserved.

Lopes, A. A. S., R. S. Soares, M. M. A. Lima, and R. C. C. Monteiro. "Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method." Journal of Applied Physics. 115 (2014). AbstractWebsite

The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B2O3-10SiO2were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (Tg) and of the maximum crystallization temperature (Tp) on the heating rate was used to determine the activation energy associated with the glass transition (Eg), the activation energy for crystallization (Ec), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB2O4) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba5Si8O21). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (Ec(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures. © 2014 AIP Publishing LLC.