Mathematics

P. Amaral

University Nova de Lisboa, Portugal

Pre-University Semester

Sets

Sets Theory was develop by Cantor in the end of XIX century and it has influenced almost all areas of Mathematics and constitutes a pilar of Modern Mathematics. The term "set" was coined by Bernard Bolzano as the translation of the German "Menge", appearing in his work "The Paradoxes of the Infinite".

Pre-University Semester

Definition

Sets A set is a collection of distinct and well-defined objects, of any kind. These objects are the elements of the set. Usually we use capital letters to designate a set and small letters for elements.
To say that x is an element of set $X x \in X$ meaning that " x belongs to X ". To represent that " x is not in X " we write $x \notin X$ reading " x does not belong to X ".

In what follows A and B are two arbitrary set.

Definition

A is a subset of B and we say that A is contained in B, writing $A \subseteq B$, if every element of A is also an element of B. Otherwise we write $A \nsubseteq B$, in which case at least one element from A is not an element of B. B is a superset of A and we say that B contains A, writing $B \supseteq A$

$$
\begin{align*}
& A \subseteq B \leftrightarrow \forall a \in A, a \in B \\
& A \nsubseteq B \leftrightarrow \exists a \in A, a \notin B \\
& A \subseteq A, \forall A \tag{1}
\end{align*}
$$

\forall For all, \exists It exists

An introduction to Calculus | February, 2019

Definition

A and B are similar if they have the same elements and we write that $A=B$.

$$
\begin{gathered}
A=B \leftrightarrow \forall a \in A, a \in B \text { and } \\
\forall a \in B, a \in A \\
A=B \leftrightarrow A \subseteq B \text { and } B \subseteq A .
\end{gathered}
$$

Example

Let $A=\{1,2,3,5\}, B=\{1,3\}$ e $C=\{2,4,5\}$.

$$
\begin{aligned}
& 2 \in A, \text { but } 2 \notin B . \\
& B \subseteq A, \text { but } B \varsubsetneqq A . \\
& B \nsubseteq C \text { and } C \nsubseteq B .
\end{aligned}
$$

Pre-University Semester

Definition

Empty set An empty set is a set without any element represented by $\}$ or \varnothing.

Some common sets are:
\mathbb{N} - Set of natural numbers
\mathbb{Z}-Set of integer numbers
\mathbb{Q} - Set of racional numbers
\mathbb{R} - Set of real numbers
\mathbb{C} - Set of complex numbers.

Pre-University Semester

Definition
We can represent a set using
Tabular Form Listing all the elements of a set, separated by commas and enclosed within curly brackets $\}$.

Descriptive Form State in words the elements of the set.

Set Builder Form Writing in symbolic form the common characteristics shared by all the elements of the set

Pre-University Semester

Example

These are different representations of the same set

- Tabular Form - $A=\{1,3,5,7,9, \ldots\}$.
- Descriptive Form - $A=$ Set of positive odd integer.
- Set Builder Form - $A=\{x: x=2 n-1, n \in \mathbf{N}\}$

Definition

Operations with sets Given sets A and B, we m
Union $A \cup B$ - set that consists of all elements belonging to either set A or set B (or both).

Intersection $A \cap B$ - set composed of all elements that belong to both A and B.

Setminus $A \backslash B$ - set composed by all elements in A that are not in B.

Complemet A^{c} - set of all elements in the universe U that are not in A. We admit that the admissible elements are restricted to some fixed class of objects U called the universal set (or universe). Also can be described as $U \backslash A$

An introduction to Calculus | February, 2019

Cartesian Product $A \times B$ - set consisting of all ordered pairs (a, b) for which $a \in A$ and $b \in B$.

Pre-University Semester

Example

Given $A=\{1,5\}, B=\{1,4\}$ and $U=\{1,2,3,4,5\}$

$$
\begin{aligned}
A \cup B & =\{1,4,5\} \\
A \cap B & =\{1\} \\
A \backslash B & =\{5\} \\
A^{c} & =\{2,3,4\} \\
A \times B & =\{(1,1),(1,4),(5,1),(5,4)\} \\
B \times A & =\{(1,1),(1,5),(4,1),(4,5)\}
\end{aligned}
$$

1. Given $A=[-1,4]$ and $B=\{0,3,5,9\}$ find
a) $B \backslash A$.
b) $A \backslash B$.
c) $B \cup A$.
d) $B \cap A$.
2. Given $A=[-1,4]$ and $B=] 0,4[\cup\{-1\}$ find
a) $B \backslash A$.
b) $A \backslash B$.
c) $B \cup A$.
d) $B \cap A$.

Pre-University Semester

1. Given $A=]-\infty, 4]$ and $B=]-1,+\infty[$ find:
a) $B \backslash A$.
b) $A \backslash B$.
c) $B \cup A$.
d) $B \cap A$.
2. Given $A=\{-1,0,2\}$ and $B=\{-1,1\}$ find:
a) $B \backslash A$.
b) $A \backslash B$.
c) $B \cup A$.
d) $B \cap A$.
e) $B \times A$.
f) $B \times B$.

LOGIC Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and argument flow. Compound propositions are formed by connecting propositions by logical connectives. The propositions without logical connectives are called atomic propositions.

Unlike first-order logic, propositional logic does not deal with nonlogical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic.

An introduction to Calculus | February, 2019

Pre-University Semester

Definition

Propositional logic is a mathematical model that allows us to reason about the truth or falsehood (T,F) of logical expressions.

Truth tables

Negation (NO)

p	$\sim p$
T	F
F	T

Conjunction (AND)

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Disjunction (OR)

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Exclusive Disjunction (XOR)

p	q	$p \dot{\vee} q$
T	T	F
T	F	T
F	T	T
F	F	F

\section*{Implication (IF THEN)
 | p | q | $p \Rightarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |}

Equivalence (IIF)

p	q	$p \Leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

An introduction to Calculus | February, 2019

Pre-University Semester

Properties	Conjunction
Comutativity	$(p \wedge q) \Leftrightarrow(q \wedge p)$
Associativity	$[(p \wedge q) \wedge r] \Leftrightarrow[p \wedge(q \wedge r)]$
Idempotence	$(p \wedge p) \Leftrightarrow p$
Identity	$(p \wedge V) \Leftrightarrow p \Leftrightarrow(V \wedge p)$
Annihilator	$(p \wedge F) \Leftrightarrow F \Leftrightarrow(F \wedge p)$

Pre-University Semester

Properties	Disjunction
Comutativity	$(p \vee q) \Leftrightarrow(q \vee p)$
Associativity	$[(p \vee q) \vee r] \Leftrightarrow[p \vee(q \vee r)]$
Idempotence	$(p \vee p) \Leftrightarrow p$
Identity	$(p \vee F) \Leftrightarrow p \Leftrightarrow(F \vee p)$
Annihilator	$(p \vee V) \Leftrightarrow V \Leftrightarrow(V \vee p)$

An introduction to Calculus | February, 2019

Properties Disjunction - Conjunction

Distributivity of \wedge over \vee

$$
\begin{aligned}
& {[p \wedge(q \vee r)] \Leftrightarrow[(p \wedge q) \vee(p \wedge r)]} \\
& {[(q \vee r) \wedge p] \Leftrightarrow[(q \wedge p) \vee(r \wedge p)]}
\end{aligned}
$$

Distributivity of \vee over \wedge,

$$
\begin{aligned}
& {[p \vee(q \wedge r)] \Leftrightarrow[(p \vee q) \wedge(p \vee r)]} \\
& {[(q \wedge r) \vee p] \Leftrightarrow[(q \vee p) \wedge(r \vee p)]}
\end{aligned}
$$

Negation of $\vee, \wedge, \Rightarrow, \Leftrightarrow$,

$$
\begin{aligned}
& \sim(p \vee q) \Leftrightarrow \sim p \wedge \sim q \\
& \sim(p \wedge q) \Leftrightarrow \sim p \vee \sim q \\
& \sim(p \Rightarrow q) \Leftrightarrow p \wedge \sim q
\end{aligned}
$$

Pre-University Semester

1. Prove that $(u \wedge v) \vee(u \wedge \sim v) \Leftrightarrow u$
2. Write the table of truth of $(u \wedge v) \vee(u \Rightarrow \sim v)$
3. Simplify $\sim((u \wedge v) \vee(u \Rightarrow \sim v))$
4. Consider the following propositions
p : Paul studies Maths
q : Carla studies English
r : Rui studies Economics
Knowing that

$$
((p \wedge q) \Rightarrow r) \Leftrightarrow(q \vee r) \Leftrightarrow \text { FALSE }
$$

find the subjects that each student studies.
5. Write the table of truth of $(u \wedge v) \Rightarrow(u \vee \sim v)$

An introduction to Calculus | February, 2019

Pre-University Semester

1- Considering $r \Leftrightarrow(p \vee \neg q) \Rightarrow(p \wedge q)$
1a- then
a) $r \Leftrightarrow q$
b) $r \Leftrightarrow p$
c) $r \Leftrightarrow p \wedge q$

1b- then
a) $\neg r \Leftrightarrow p \vee q$
b) $\neg r \Leftrightarrow p$
c) $\neg r \Leftrightarrow \neg q$

1c- For $p=F \wedge q=T$ find the logical value of r.

Operator	Precedence
\neg	1
\wedge	2
\vee	3
\rightarrow	4
\leftrightarrow	5

Find the logical value of

$$
\begin{gathered}
F \vee \neg T \rightarrow F \wedge T \\
\text { and } \\
(F \vee(\neg T \rightarrow F)) \wedge T
\end{gathered}
$$

Pre-University Semester

Representation of equivalence and implication

$$
\begin{gathered}
(p \Leftrightarrow q) \Leftrightarrow((p \rightarrow q) \vee(q \rightarrow p)) \\
(p \rightarrow q) \Leftrightarrow(\neg p \wedge q)
\end{gathered}
$$

Pre-University Semester

INFERENCE RULE

In logic, a rule of inference, inference rule or transformation
rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions).

$$
P, Q \vdash S
$$

For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form " p ", and returns the conclusion " q ".

$$
P \rightarrow Q, P \vdash Q
$$

An introduction to Calculus | February, 2019

Pre-University Semester

"If you play and you study you'll pass the exams, while if you play and don't study you won't pass. Thus, if you play, either you study and you'll pass the exams, or you don't study and you won't pass."
$1 p \wedge s \Rightarrow e$
$2 p \wedge \neg s \Rightarrow \neg e$
$3 p \Rightarrow(s \wedge e) \vee(\neg s \wedge \neg e)$
Prove $1,2 \vdash 3$

Pre-University Semester

MODUS PONENS

Premise 1: If it's raining then it's cloudy.
Premise 2: It's raining.
Conclusion: It's cloudy.

Premise 1: $P \rightarrow Q$
Premise 2: P
Conclusion: Q
The same can be stated succinctly in the following way:

$$
P \rightarrow Q, P \vdash Q
$$

An introduction to Calculus | February, 2019

Pre-University Semester

MODUS TOLLENS

If p then q ; not q ; therefore not p

$$
((p \rightarrow q) \wedge \neg q) \vdash \neg p
$$

Pre-University Semester

Baslo and Derlived Argunsent Forms			
Name	inguant	Desoripton	
Modus Poners	$((p \rightarrow d \wedge p) \vdash q$	If shen ip; theretreq	
Modus Toliers		Tp then qinot q : Theretore not p	
Hipotheical Byligism	$((p \rightarrow ¢ \wedge(q-1 r))+(p \rightarrow r)$		
Disjunclue Sploysm	$((p \vee q) \wedge \rightarrow p) \vdash q$		
Consrusthe Dilemm	$\left((p \rightarrow d \wedge(r \rightarrow s) \wedge(p \vee r)) \vdash^{\prime} g \vee s\right)$		
Destuche Dilenms	$((p \rightarrow s \wedge(r-1 s) \wedge(-\nabla \vee-s)) \mid-(-p \vee-\tau)$		
Biolectional Dilemma	$((p \rightarrow d \wedge(r-1 s) \wedge(p \vee-s))+(q \vee \rightarrow)$	If then es, and it r then x, but y or nots; theretire of or notr	
Simplification	$(p \wedge q)+p$	gand f are Tue, reetore p \% sue	
Conjunetion	$p, q+(p \wedge q)$	\% and q are tue secraself, neretore tej are tue conjointy	
Adalitor	$p \vdash(p \vee q)$		
Compostion	$((p \rightarrow$ क $\wedge(p+r)) \vdash(p \rightarrow(q / r))$	If then q, and It p hen of thetore it is tue then q ast r are fue	
De Morgarls Thexem (1)		The negaton of \hat{p} and q) is equik so (not p or rot ip)	
Dellorgan's Thevern (a)	$-\langle p \vee q) \vdash(\neg p \wedge-q)$	The negaton of \hat{p} ar q) is coulk to (not p and rot q)	
Commuation (1)	$(p \vee q)+(q \vee p)$	in orgi is coulk to a orgi	
Commuation (a)	$(p \wedge q)+(q \wedge p)$	(f) and fi s equik ti if and p	
Commuation (3)	$(p \leftrightarrow q) \vdash(q \leftrightarrow p)$		
Associrion (1)	$(p \vee(q \vee r))+((p \vee q) \vee r)$	for iq oris is equllio if or 4 or \%	
Assocision (4)	$(p \wedge(q \wedge r)) \vdash([p \wedge q) \wedge \tau)$		
Disritulion (1)	$(p \wedge(q \vee r)) \vdash([p \wedge q) \vee(p \wedge r) \\|$		
Distloution (a)	$(p \vee(q \wedge r)) \vdash([p \vee q) \wedge(p \vee r) \\|$	for (q/ ande) is equk to (yarq) and (yorn)	
Douole Neastion	pr	Als eouvatent to te neastion of nots	
Tharspesmion	$(p \rightarrow q) \vdash(-q \rightarrow \rightarrow p)$		
Maserial implicaton	$(p \rightarrow q)+(-p>q)$		
Maserial Equlvaience (1)	$(p \leftrightarrow q) \vdash((p+q) \wedge(q \rightarrow p))$		
Mosersal Equasance (a)	$(p \leftrightarrow q) \vdash((p \wedge q) \vee(7 \wedge \neg q))$		
Mosersal Equlvience (3)	$(p \leftrightarrow q) \vdash((p \vee \neg q) \wedge(p \vee q))$		
Eporastor ${ }^{10]}$	$((p \wedge q) \rightarrow r) \vdash(p \rightarrow(q \rightarrow r))$		
immentrn	$(p \rightarrow(q \rightarrow r))+((p \wedge q i \rightarrow r)$		
Tounologi (1)	$p \vdash(p \backslash p)$	of sue is equal top is rue y_{p} is rue	
Toutioge (a)	$p \vdash(p / p)$	pis rue is equik top is rue ard p is rue	
Tertum non dota (law of ExcludedMidile)	$\vdash(p \vee \sim p)$	for not p is tue	
Lew of Non-Contsoletion.	$\vdash \neg(p \wedge \neg)$	fond nots is tase is a ruestaremert	

An introduction to Calculus | February, 2019

Pre-University Semester

$p(x)$ for $x \in A$

$$
\begin{aligned}
& \forall x \in A, p(x) \\
& \exists x \in A, p(x)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \forall x \in A, x^{2} \geq 0 \\
& \forall x \in A, x^{2} \geq 1 \\
& \exists x \in A, x^{2} \geq 0 \\
& \exists x \in A, x^{2} \geq 1
\end{aligned}
$$

Negation

$$
\begin{aligned}
& \neg(\forall x \in A, p(x)) \Leftrightarrow \exists x \in A, \neg p(x) \\
& \neg(\exists x \in A, p(x)) \Leftrightarrow \forall x \in A, \neg p(x)
\end{aligned}
$$

