Mathematics

P. Amaral

University Nova de Lisboa, Portugal

Sequences

Pre-University Semester

Definition
 (Sequence)
 A sequence (infinite) is a function of \mathbb{N} in \mathbb{R}

To simplify notation instead of $f(n)$ we use f_{n} and in general we adopt the letter u, v, w to designate sequences.

Pre-University Semester

Unlike a set, the same elements can appear multiple times at different positions in a sequence, and order matters. The variable n is called an index. The position of an element in a sequence is its rank or index

Example

$$
\begin{equation*}
u_{n}=\frac{n+1}{n+2} \tag{1}
\end{equation*}
$$

For u_{n} in 1 , the element of rank 1 is $u_{1}=\frac{1+1}{1+2}=2 / 3$. The element of rank 5 is $6 / 7$.

An introduction to Calculus | February, 2019

Pre-University Semester

A sequence can be defined by a list of its first elements, $v_{n}=\{1,4,9,16,25, \ldots\}$ by the general term $v_{n}=n^{2}$ or by recursion. In a sequence defined by recursion a term depends on previous terms, like the Fibonacci numbers

Example

$$
\left\{\begin{aligned}
w_{1} & =0 \\
w_{2} & =1 \\
w_{n+2} & =w_{n}+w_{n+1}
\end{aligned}\right.
$$

For the Fibonacci sequence to find the element of rank 5 we have first to find the element of rank $3, w_{3}=w_{2}+w_{1}=1$, of rank $4 w_{4}=w_{3}+w_{2}=2$ and finally $w_{5}=w_{4}+w_{3}=$ $2+1=3$.

Example

For the sequence defined by recursion:

$$
\left\{\begin{array}{l}
a_{1}=1 \\
a_{n+1}=a_{n}+n+1, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

the first 7 elements are $1,3,6,10,15,21,28$.

The sequence:

$$
\left\{\begin{array}{l}
a_{1}=1 \\
a_{2}=1 \\
a_{n+2}=2 a_{n+1}+a_{n}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

has as first elements $1,1,3,7,17,41$.

An introduction to Calculus | February, 2019

Pre-University Semester

Properties

There are several properties that are important to study a sequence.

Definition

(Increasing and decreasing)
A sequence u_{n} is said to be

- monotonically increasing if

$$
u_{n+1} \geq u_{n}, \forall n \in \mathbb{N}
$$

- strictly monotonically increasing if

$$
u_{n+1}>u_{n}, \forall n \in \mathbb{N} .
$$

Pre-University Semester

Definition

(Increasing and decreasing)
A sequence u_{n} is said to be

- monotonically decreasing if

$$
u_{n+1} \leq u_{n}, \forall n \in \mathbb{N} .
$$

- strictly monotonically decreasing if

$$
u_{n+1}<u_{n}, \forall n \in \mathbb{N} .
$$

Pre-University Semester

Example

Lets study the monotonicity of the sequence

$$
a_{n}=\frac{n+1}{2^{n}} .
$$

By definition lets study the sign of

$$
\begin{aligned}
a_{n+1}-a_{n} & =\frac{(n+1)+1}{2^{n+1}}-\frac{n+1}{2^{n}}=\frac{n+2}{2^{n} \times 2}-\frac{n+1}{2^{n}} \\
& =\frac{n+2-(n+1) \times 2}{2^{n} \times 2}=\frac{n+2-2 n-2}{2^{n} \times 2} \\
& =\frac{-n}{2^{n+1}}, \quad \forall n \in \mathbb{N} .
\end{aligned}
$$

a_{n} is strictly monotonically decreasing.

An introduction to Calculus | February, 2019

Pre-University Semester

Example

Now for

$$
b_{n}=\frac{1}{7-2 n} .
$$

just looking at the first elements of this sequence,

$$
b_{1}=\frac{1}{5} ; \quad b_{2}=\frac{1}{3} ; \quad b_{3}=1 ; \quad b_{4}=-1
$$

we see that $b_{1}<b_{2}<b_{3}$ but $b_{3}>b_{4}$ so we may conclude that b_{n} is not monotone.

Pre-University Semester

Definition

(Bounded) A sequence u_{n} is said to be

- bounded from above if all the terms are less than some real number M, there is if,

$$
\exists M \in \mathbb{R}, \forall n \in \mathbb{N}: u_{n} \leq M
$$

- bounded from below if all the terms are greater than some real number M, there is if,

$$
\exists M \in \mathbb{R}, \forall n \in \mathbb{N}: u_{n} \geq M
$$

An introduction to Calculus | February, 2019

Pre-University Semester

Definition

(Bounded) A sequence u_{n} is said to be

- bounded if it is both bounded from above and bounded from below,

$$
\exists M \in \mathbb{R}, \forall n \in \mathbb{N}:\left|u_{n}\right| \leq M
$$

Pre-University Semester

Arithmetic and Geometric Progressions

The sequence $\left(a_{n}\right)$ with elements $1,4,7,10,13, \ldots$ have a special feature. In fact we can easily note that for $\left(a_{n}\right)$

$$
\left\{\begin{array}{l}
a_{1}=1 \\
a_{n+1}=a_{n}+3, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

Sequences with these behavior are known as Arithmetic Progressions.

An introduction to Calculus | February, 2019

Pre-University Semester

The sequence $\left(b_{n}\right)$ with elements $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$, have a special feature. In fact for $\left(b_{n}\right)$

$$
\left\{\begin{array}{l}
b_{1}=1 \\
b_{n+1}=\frac{1}{2} b_{n}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

Sequences with these behavior are known as Geometric Progressions.

Pre-University Semester

Definition

(Progressions)
A sequence u_{n} is said to be

- an Arithmetic Progressions if the difference between the consecutive terms is constant.

$$
\forall n \in \mathbb{N}: u_{n+1}=u_{n}+k=u_{1}+n k, k \in \mathbb{R}
$$

k is the common difference.

Pre-University Semester

Definition

(Progressions)
A sequence u_{n} is said to be

- a Geometric Progressions if the quotient of any two successive members of the sequence is a constant

$$
\forall n \in \mathbb{N}: u_{n+1}=r u_{n}=r^{n} u_{1}, r \in \mathbb{R} \backslash\{0\}
$$

$r \neq 0$ is the common ratio and u_{1} is a scale factor

Pre-University Semester

We may observe that an arithmetic progression is monotonically

- increasing if the common difference $k>0$
- decreasing if $k<0$.
- if $k=0$ then the sequence is constant.

Regarding the monotonicity of a geometric progression with common ratio r and scale factor u_{1} its is

- Increasing if $u_{1}>0$ and $r>1$ or if $a_{1}<0$ and $0<r<1$;
- Decreasing if $a_{1}>0$ and $0<r<1$ or if $a_{1}<0$ and $r>1$;

An introduction to Calculus | February, 2019

- Constant if $r=1$;
- Not monotone if $r<0$.

Pre-University Semester

The sum S_{n} of the first n terms of an arithmetic progression $\left(a_{n}\right)$, is given by

$$
S_{n}=\frac{a_{1}+a_{n}}{2} \times n
$$

The sum S_{n} of the first n terms of a geometric progression $\left(a_{n}\right)$, is given by

$$
S_{n}=a_{1} \frac{1-r^{n}}{1-r}
$$

where r is the common ratio and a_{1} the scale factor.

Pre-University Semester

Limits

Consider $\left(a_{n}\right)$ the sequence $1+\frac{1}{2}, 1+\frac{1}{4}, 1+\frac{1}{8}, \ldots, 1+$ $\frac{1}{2^{n}}, \ldots$. This sequence is monotonically decreasing, with elements positive and approaching 1 . In fact the distance between the elements of the sequence and 1 , given by

$$
\left|a_{n}-1\right|
$$

takes the values $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots, \frac{1}{2^{n}}, \ldots$. No matter how small we consider this distance, say ε, we know that we will find a rank p such that the distance of the elements of the sequence

An introduction to Calculus | February, 2019

Pre-University Semester

Figure 1: Plot $\left|a_{n}-1\right|$.

Pre-University Semester

For every real number $\varepsilon>0$, there is a natural number p such that for every natural number $n>p$, we have $\left|a_{n}-1\right|<\varepsilon^{\prime \prime}$.

Definition

(Limit)
A sequence a_{n} is said to converge to the limit a and we write

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} a_{n}=a \text { or } a_{n} \rightarrow a \text { if } \\
\forall \varepsilon>0 \quad \exists p \in \mathbb{N} \quad \forall n \in \mathbb{N}: \quad n>p \Rightarrow\left|a_{n}-a\right|<\varepsilon .
\end{gathered}
$$

An introduction to Calculus | February, 2019

Pre-University Semester

Algebra of limits

We shall introduce some results regarding arithmetic operations on limits.

Theorem

If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent sequences, then the sequence $\left(a_{n}+b_{n}\right)$ is convergent and

$$
\lim \left(a_{n}+b_{n}\right)=\lim a_{n}+\lim b_{n} .
$$

Pre-University Semester

Theorem

If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent sequences, then the sequence $\left(a_{n} \times b_{n}\right)$ is convergent and

$$
\lim \left(a_{n} \times b_{n}\right)=\lim a_{n} \times \lim b_{n}
$$

Theorem

If $\left(a_{n}\right)$ is a convergent sequence and p is a natural number, then the sequence $\left(a_{n}\right)^{p}$ is convergent and

$$
\lim \left(a_{n}\right)^{p}=\left(\lim a_{n}\right)^{p} .
$$

Pre-University Semester

Theorem

If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent sequences, then the sequence $\left(a_{n}-b_{n}\right)$ is convergent and

$$
\lim \left(a_{n}-b_{n}\right)=\lim a_{n}-\lim b_{n} .
$$

Theorem

If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent sequences, $b_{n} \neq 0, \forall n \in \mathbb{N}$, and $\lim b_{n} \neq 0$ then the sequence, $\left(\frac{a_{n}}{b_{n}}\right)$ is convergent and

$$
\lim \frac{a_{n}}{b_{n}}=\frac{\lim a_{n}}{\lim b_{n}}
$$

An introduction to Calculus | February, 2019

Pre-University Semester

Theorem

If p is a natural number and $\left(a_{n}\right)$ is a convergent sequence with non-negative elements, then the sequence $\left(\sqrt[p]{a_{n}}\right)$ is convergent and

$$
\lim \sqrt[p]{a_{n}}=\sqrt[p]{\lim a_{n}}
$$

Pre-University Semester

Infinite limits

Theorem

A sequence $\left(a_{n}\right)$ is said to tend to infinity (as n tends to infinity), or to have infinity as its limit, and we write $\lim a_{n}=+\infty$, if $\forall L>0 \quad \exists p \in \mathbb{N} \quad \forall n \in \mathbb{N}$: $n>p \Rightarrow a_{n}>L$.

Pre-University Semester

Theorem

A sequence $\left(a_{n}\right)$ is said to tend to minus infinity (as n tends to minus infinity), or to have $-\infty$ as its limit, and we write $\lim a_{n}=-\infty$, if $\forall L>0 \exists p \in \mathbb{N} \forall n \in$ $\mathbb{N}: n>p \Rightarrow a_{n}<-L$.

Question: What about $b_{n}=(-2)^{n}$?

Pre-University Semester

Show that $\lim a_{n}=+\infty$ using the definition for

$$
a_{n}= \begin{cases}n+1, & \text { se } \mathrm{n} \text { é par } \\ n^{2}-10, & \text { se } \mathrm{n} \text { é ímpar }\end{cases}
$$

Pre-University Semester

In $\overline{\mathbb{R}}$:

$$
\begin{array}{ll}
a \times \infty=\infty & (a \neq 0) \\
\frac{a}{0}=\infty & (a \neq 0) \\
\frac{a}{\infty}=0 & (a \neq \infty) \\
\frac{\infty}{a}=\infty & (a \neq \infty) \\
\infty^{p}=\infty & (p \in \mathbb{N}) \\
\sqrt[p]{\infty}=\infty & (p \in \mathbb{N}) \\
\infty^{k}=0 & (k<0)
\end{array}
$$

Pre-University Semester

Indeterminates

In calculus limits involving an algebraic combination of sequences are evaluated by replacing the sequences by their limits; if the expression obtained after this substitution cannot be evaluates because of lack of information it is said to take on an indeterminate form.

The most common indeterminate forms are:

$$
\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, 1^{\infty}, \infty-\infty, 0^{0} \text { and } \infty^{0}
$$

Special limits - ratio of polynomial in n

For $k, r \in \mathbb{N}$,
$\lim \frac{a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{0}}{b_{r} n^{r}+b_{r-1} n^{r-1}+\cdots+b_{0}}=\left\{\begin{aligned} \infty & \text { if } k>r \\ a_{k} / b_{r} & \text { if } k=r \\ 0 & \text { if } k<r\end{aligned}\right.$

Example

$\lim \left(\frac{n^{2}-3}{2 n^{2}+1}\right)=1 / 2$

Exercices:

$$
\begin{array}{ll}
\text { 1. }\left(\frac{n^{2}-3}{2 n^{2}+3 n+1}\right) ; & \text { 3. }\left(\frac{n^{2}-3}{4 n^{3}+n^{2}+1}\right) \\
\text { 2. }\left(\frac{n^{2}-3}{n+1}\right) ; & \text { 4. }\left(\frac{4 n^{4}+n^{3}+2}{2 n^{4}+6 n++1}\right)
\end{array}
$$

Special limits - Generalization of ratio of polynomials

The previous result cam be generalized to powers of racional exponent, for example:
$\lim \frac{\sqrt[3]{3 n^{3}+3}}{\sqrt[2]{2 n^{2}+3}}=\lim \frac{\sqrt[6]{\left(3 n^{3}+3\right)^{2}}}{\sqrt[6]{\left(2 n^{2}+3\right)^{3}}}=\lim \sqrt[6]{\frac{\left(3 n^{3}+3\right)^{2}}{\left(2 n^{2}+3\right)^{3}}}=$

$$
\sqrt[6]{\frac{3^{2}}{2^{3}}}=\frac{\sqrt[3]{3}}{\sqrt[2]{2}}
$$

Pre-University Semester

For $k, r \in \mathbb{Q}^{+}$,
$\lim \frac{a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{0}}{b_{r} n^{r}+b_{r-1} n^{r-1}+\cdots+b_{0}}=\left\{\begin{aligned} \infty & \text { if } k>r \\ a_{k} / b_{r} & \text { if } k=r \\ 0 & \text { if } k<r\end{aligned}\right.$

Example

$\lim \frac{\sqrt[2]{n^{2}-3}}{\sqrt[2]{4 n^{2}+n+1}}=\frac{\sqrt[2]{1}}{\sqrt[2]{4}}$

Exercices:

$$
\begin{array}{ll}
\text { 1. } \lim \frac{n^{2} \sqrt[2]{n^{2}+1}}{\sqrt[2]{3 n^{6}+n+1}} ; & \text { 3. } \lim \frac{n \sqrt[4]{n^{2}-3}+n^{2}}{4 n^{3}+1} \\
\text { 2. } \lim \frac{2 n \sqrt[2]{n-3}+n^{2}}{\sqrt[6]{4 n^{6}+n^{2}+1}} ; & \text { 4. } \lim \frac{n^{4}+\sqrt[2]{n-3}+n^{2}}{\sqrt[5]{4 n^{10}+n^{2}+1}}
\end{array}
$$

Pre-University Semester

Special limits - Exponential

Value a	Monotony a^{n}
$a>1$	increasing
$a=1$	constant
$0<a<1$	decreasing
$a=0$	constant
$a<0$	not monotone

An introduction to Calculus | February, 2019

An introduction to Calculus | February, 2019

Pre-University Semester

Example
$\left(\frac{3}{4}\right)^{n}=0$

Exercise $\left(\frac{4 n}{2 n+1}\right)^{n}$

An introduction to Calculus | February, 2019

Special limits - Nepper

$$
\lim \left(1+\frac{k}{n}\right)^{n}=e^{k}
$$

If $u_{n} \longrightarrow+\infty$

$$
\lim \left(1+\frac{k}{u_{n}}\right)^{u_{n}}=e^{k}
$$

If $v_{n} \longrightarrow-\infty$

$$
\lim \left(1+\frac{k}{v_{n}}\right)^{v_{n}}=e^{k}
$$

Example

$$
\begin{aligned}
& \left(\frac{n+2}{n}\right)^{n+2}=\left(\frac{n+2}{n}\right)^{n}\left(\frac{n+2}{n}\right)^{2}= \\
& \quad=\left(1+\frac{2}{n}\right)^{n}\left(\frac{n+2}{n}\right)^{2}=e^{2} \cdot 1=e^{2}
\end{aligned}
$$

Pre-University Semester

Exercise

$$
\text { 1. }\left(\frac{n-3}{n}\right)^{n+1} ; \quad \text { 5. }\left(1-\frac{4}{n^{2}}\right)^{2 n} \text {; }
$$

$$
\text { 2. }\left(1-\frac{1}{n+1}\right)^{n} \text {; }
$$

3. $\left(1+\frac{2}{3 n}\right)^{n}$;
4. $\left(\frac{2 n+3}{-3 n+5}\right)^{4 n}$;
5. $\left(\frac{2 n-1}{3 n+2}\right)^{n}$;

$$
\text { 7. }\left(1-\frac{2}{n^{2}}\right)^{n^{3}} \text {. }
$$

Pre-University Semester

Special limits - Product of an infinitesimal by a bounded sequence

If $u_{n} \longrightarrow \infty$ and $v_{n} \longrightarrow 0$ then $\lim \left(u_{n} v_{n}\right)=0$.

Example

To find $\lim \left((-1)^{n} \frac{1}{n^{2}+1}\right)$ we cannot apply the algebra of limits because $\lim (-1)^{n}$ does not exists but it is bounded since $-1 \leq(-1)^{n} \leq 1$. Since $\lim \frac{1}{n^{2}+1} \longrightarrow 0$ we may conclude that $\lim \left((-1)^{n} \frac{1}{n^{2}+1}\right) \longrightarrow 0$.

Pre-University Semester

Exercise

$$
\text { 1. } \lim \left(\frac{-1}{n+1}\right)^{n} \text {; }
$$

$$
\text { 2. }\left(\sin (n) \frac{1}{n+1}\right) \text {; }
$$

Pre-University Semester

Exercises

1. Consider the sequence $u_{n}=\frac{2 n-1}{n+1}$.
a) Find the terms of rank 5, 20 and $\mathrm{n}+1$.
b) Given the real numbers $\frac{29}{16}, \frac{40}{19}$ find it they are elements of u_{n}.
c) Prove that:
(i) $\left(u_{n}\right)$ is monotonically increasing;
(ii) $\forall n \in \mathbb{N}, \frac{1}{2} \leq u_{n}<2$;
(iii) $\left(u_{n}\right)$ is convergent.
d) Find an upper and lower limit.

An introduction to Calculus | February, 2019

Pre-University Semester

2. Given $u_{n}=\frac{\sqrt{2 n}}{1+\sqrt{n}}$:
a) Show that $\lim u_{n}=\sqrt{2}$
b) Find the rank of the first element of the sequence that verifies

$$
\left|u_{n}-\sqrt{2}\right|<10^{-1} .
$$

3. Show that the sequence $b_{n}=\frac{2^{n}}{(n+1)!}$ é is strictly increasing.
4. Consider

$$
u_{n}=-2 \times 3^{n-5}
$$

a) Show that u_{n} is a geometic progression.

Pre-University Semester

b) Study its monotonicity.
c) Find $\sum_{k=2}^{8} u_{k}$.
5. In a aritmetic progression with common diffrence 5 we know that the element of rank 10 its three times the element of rank 8 . Find the sum of the first 20 elements.
6. Find the limit of

$$
\begin{aligned}
& \text { a) } \frac{4-n^{2}}{n^{3}-2} \\
& \text { b) } \frac{2}{n^{3}+5} \times \sqrt{n-3}
\end{aligned}
$$

Pre-University Semester

c) $\frac{5^{n}+(-7)^{n+1}}{4^{n+2}-3^{n}}$
d) $\left(\frac{n+5}{n+2}\right)^{n}$
e) $\left(\frac{n^{3}-2}{n^{3}}\right)^{n^{2}-3}$
7. Let $\left(a_{n}\right)$ be the general term. Write $a_{n+1}, a_{2 n}$ and $a_{n+p}, p \in \mathbb{N}$, for the following cases:
a) $a_{n}=\frac{2^{n}}{n+1}$
b) $a_{n}=\frac{(n+1)!}{(3 n-1)!}$

Pre-University Semester

c) $a_{n}=\frac{(n-1)^{2}}{2 n+1}$
d) $a_{n}=\sqrt[n]{\frac{(2 n-1)!}{2^{n+1}+\log n}}$
e) $a_{n}=\frac{\left(n^{2}+1\right)!}{\left(n^{2}-1\right)!}$
8. Write the general term of the following sequences and check if they are bounded.
a) The sequence formed by the simetrics of the perfect squares.
b) The sequence of the powers of base (-2) and natural exponent.

