Mathematics

P. Amaral

University Nova de Lisboa, Portugal

Sequences

 $\begin{array}{l} \textbf{Definition} \\ (\text{Sequence}) \\ \text{A sequence (infinite) is a function of } \mathbb{N} \text{ in } \mathbb{R} \end{array}$

To simplify notation instead of f(n) we use f_n and in general we adopt the letter u, v, w to designate sequences.

Unlike a set, the same elements can appear multiple times at different positions in a sequence, and order matters. The variable n is called an index. The position of an element in a sequence is its rank or index

Example

$$u_n = \frac{n+1}{n+2} \tag{1}$$

For u_n in 1, the element of rank 1 is $u_1 = \frac{1+1}{1+2} = 2/3$. The element of rank 5 is 6/7.

A sequence can be defined by a list of its first elements, $v_n = \{1, 4, 9, 16, 25, ...\}$ by the general term $v_n = n^2$ or by recursion. In a sequence defined by recursion a term depends on previous terms, like the Fibonacci numbers

Example

$$\begin{cases} w_1 = 0\\ w_2 = 1\\ w_{n+2} = w_n + w_{n+1} \end{cases}$$

For the Fibonacci sequence to find the element of rank 5 we have first to find the element of rank 3, $w_3 = w_2 + w_1 = 1$, of rank 4 $w_4 = w_3 + w_2 = 2$ and finally $w_5 = w_4 + w_3 = 2 + 1 = 3$.

Example

For the sequence defined by recursion:

$$\begin{cases} a_1 = 1\\ a_{n+1} = a_n + n + 1, \quad \forall n \in \mathbb{N} \end{cases}$$

the first 7 elements are 1, 3, 6, 10, 15, 21, 28.

The sequence:

$$\begin{cases} a_1 = 1 \\ a_2 = 1 \\ a_{n+2} = 2a_{n+1} + a_n, & \forall n \in \mathbb{N} \end{cases}$$

has as first elements 1, 1, 3, 7, 17, 41.

Properties

There are several properties that are important to study a sequence.

```
Definition
(Increasing and decreasing)
A sequence u_n is said to be
```

- monotonically increasing if $u_{n+1} \ge u_n, \forall n \in \mathbb{N}.$
- strictly monotonically increasing if $u_{n+1} > u_n, \ \forall n \in \mathbb{N}.$

Definition

(Increasing and decreasing) A sequence u_n is said to be

- monotonically decreasing if $u_{n+1} \leq u_n, \ \forall n \in \mathbb{N}.$
- strictly monotonically decreasing if $u_{n+1} < u_n, \ \forall n \in \mathbb{N}.$

Example

Lets study the monotonicity of the sequence

$$a_n = \frac{n+1}{2^n}.$$

By definition lets study the sign of

$$a_{n+1} - a_n = \frac{(n+1)+1}{2^{n+1}} - \frac{n+1}{2^n} = \frac{n+2}{2^n \times 2} - \frac{n+1}{2^n}$$
$$= \frac{n+2-(n+1)\times 2}{2^n \times 2} = \frac{n+2-2n-2}{2^n \times 2}$$
$$= \frac{-n}{2^{n+1}}, \quad \forall n \in \mathbb{N}.$$

 a_n is strictly monotonically decreasing.

Example Now for

$$b_n = \frac{1}{7 - 2n}.$$

just looking at the first elements of this sequence,

$$b_1 = \frac{1}{5}; \ b_2 = \frac{1}{3}; \ b_3 = 1; \ b_4 = -1$$

we see that $b_1 < b_2 < b_3$ but $b_3 > b_4$ so we may conclude that b_n is not monotone.

Definition (Bounded) A sequence u_n is said to be

• bounded from above if all the terms are less than some real number M, there is if,

$$\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N} : u_n \leq M.$$

• bounded from below if all the terms are greater than some real number M, there is if,

$$\exists M \in \mathbb{R}, \forall n \in \mathbb{N} : u_n \geq M.$$

Definition

(Bounded) A sequence u_n is said to be

 bounded if it is both bounded from above and bounded from below,

 $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N} : |u_n| \le M.$

Arithmetic and Geometric Progressions

The sequence (a_n) with elements $1, 4, 7, 10, 13, \ldots$ have a special feature. In fact we can easily note that for (a_n)

$$\begin{cases} a_1 = 1\\ a_{n+1} = a_n + 3, \quad \forall n \in \mathbb{N} \end{cases}$$

Sequences with these behavior are known as Arithmetic Progressions.

The sequence (b_n) with elements $1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\ldots$, have a special feature. In fact for (b_n)

$$\begin{cases} b_1 = 1\\ b_{n+1} = \frac{1}{2}b_n, \quad \forall n \in \mathbb{N} \end{cases}$$

Sequences with these behavior are known as Geometric Progressions.

Definition (Progressions) A sequence u_n is said to be

• an Arithmetic Progressions if the difference between the consecutive terms is constant.

$$\forall n \in \mathbb{N} : u_{n+1} = u_n + k = u_1 + nk, k \in \mathbb{R}$$

 \boldsymbol{k} is the common difference.

Definition

(Progressions)

A sequence u_n is said to be

 a Geometric Progressions if the quotient of any two successive members of the sequence is a constant

$$\forall n \in \mathbb{N} : u_{n+1} = ru_n = r^n u_1, r \in \mathbb{R} \setminus \{0\}$$

 $r \neq 0$ is the common ratio and u_1 is a scale factor

We may observe that an arithmetic progression is monotonically

- increasing if the common difference $k>0\,$
- decreasing if k < 0.
- if k = 0 then the sequence is constant.

Regarding the monotonicity of a geometric progression with common ratio r and scale factor u_1 its is

- Increasing if $u_1 > 0$ and r > 1 or if $a_1 < 0$ and 0 < r < 1;
- Decreasing if $a_1 > 0$ and 0 < r < 1 or if $a_1 < 0$ and r > 1;

- Constant if r = 1;
- Not monotone if r < 0.

The sum ${\cal S}_n$ of the first n terms of an arithmetic progression $(a_n),$ is given by

$$S_n = \frac{a_1 + a_n}{2} \times n.$$

The sum S_n of the first n terms of a geometric progression (a_n) , is given by

$$S_n = a_1 \frac{1 - r^n}{1 - r}$$

where r is the common ratio and a_1 the scale factor.

Limits

Consider (a_n) the sequence $1 + \frac{1}{2}, 1 + \frac{1}{4}, 1 + \frac{1}{8}, \dots, 1 + \frac{1}{2^n}, \dots$ This sequence is monotonically decreasing, with elements positive and approaching 1. In fact the distance between the elements of the sequence and 1, given by

$$|a_n - 1|$$

takes the values $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{2^n}, \dots$ No matter how small we consider this distance, say ε , we know that we will find a rank p such that the distance of the elements of the sequence

An introduction to Calculus | February, 2019

21/49

For every real number $\varepsilon > 0$, there is a natural number p such that for every natural number n > p, we have $|a_n - 1| < \varepsilon$ ".

Definition (Limit) A sequence a_n is said to converge to the limit a and we write

$$\begin{split} \lim_{n \to +\infty} a_n &= a \text{ or } a_n \to a \text{ if} \\ \forall \varepsilon > 0 \ \exists \, p \in \mathbb{N} \ \forall n \in \mathbb{N} : \ n > p \Rightarrow |a_n - a| < \varepsilon. \end{split}$$

Algebra of limits

We shall introduce some results regarding arithmetic operations on limits.

Theorem

If (a_n) and (b_n) are convergent sequences, then the sequence (a_n+b_n) is convergent and

 $\lim (a_n + b_n) = \lim a_n + \lim b_n.$

If (a_n) and (b_n) are convergent sequences, then the sequence $(a_n\times b_n)$ is convergent and

 $\lim(a_n \times b_n) = \lim a_n \times \lim b_n.$

Theorem

If (a_n) is a convergent sequence and p is a natural number, then the sequence $(a_n)^p$ is convergent and

 $\lim (a_n)^p = (\lim a_n)^p.$

If (a_n) and (b_n) are convergent sequences, then the sequence $(a_n - b_n)$ is convergent and

$$\lim (a_n - b_n) = \lim a_n - \lim b_n.$$

Theorem

If (a_n) and (b_n) are convergent sequences, $b_n \neq 0, \forall n \in \mathbb{N}$, and $\lim b_n \neq 0$ then the sequence, $\left(\frac{a_n}{b_n}\right)$ is convergent and $\lim \frac{a_n}{b_n} = \frac{\lim a_n}{\lim b_n}$.

If p is a natural number and (a_n) is a convergent sequence with non-negative elements, then the sequence $(\sqrt[p]{a_n})$ is convergent and

$$\lim \sqrt[p]{a_n} = \sqrt[p]{\lim a_n}.$$

Infinite limits

Theorem

A sequence (a_n) is said to tend to infinity (as n tends to infinity), or to have infinity as its limit, and we write $\lim a_n = +\infty$, if $\forall L > 0 \quad \exists p \in \mathbb{N} \quad \forall n \in \mathbb{N} :$ $n > p \Rightarrow a_n > L$.

A sequence (a_n) is said to tend to minus infinity (as n tends to minus infinity), or to have $-\infty$ as its limit, and we write $\lim a_n = -\infty$, if $\forall L > 0 \quad \exists p \in \mathbb{N} \quad \forall n \in \mathbb{N} : n > p \Rightarrow a_n < -L$.

Question: What about $b_n = (-2)^n$?

Show that $\lim a_n = +\infty$ using the definition for

$$a_n = \begin{cases} n+1, & \text{se n \'e par} \\ n^2-10, & \text{se n \'e \'mpar} \end{cases}$$

Pre-University Semester

$\ln\,\overline{\mathbb{R}}:$

$a \times \infty = \infty$	$(a \neq 0)$
$\frac{a}{0} = \infty$	$(a \neq 0)$
$\frac{a}{\infty} = 0$	$(a \neq \infty)$
$\frac{\infty}{a} = \infty$	$(a \neq \infty)$
$\infty^p = \infty$	$(p\in\mathbb{N})$
$\sqrt[p]{\infty} = \infty$	$(p\in\mathbb{N})$
$\infty^k = 0$	(k < 0)

Indeterminates

In calculus limits involving an algebraic combination of sequences are evaluated by replacing the sequences by their limits; if the expression obtained after this substitution cannot be evaluates because of lack of information it is said to take on an indeterminate form.

The most common indeterminate forms are:

$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, 1^{\infty}, \infty - \infty, 0^0 \text{ and } \infty^0.$$

Special limits - ratio of polynomial in \boldsymbol{n}

For
$$k, r \in \mathbb{N}$$
,

$$\lim \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{b_r n^r + b_{r-1} n^{r-1} + \dots + b_0} = \begin{cases} \infty & \text{if } k > r \\ a_k / b_r & \text{if } k = r \\ 0 & \text{if } k < r \end{cases}$$

Pre-University Semester

Example
$$\lim\left(\frac{n^2-3}{2n^2+1}\right) = 1/2$$

Exercices:

1.
$$\left(\frac{n^2-3}{2n^2+3n+1}\right);$$
 3. $\left(\frac{n^2-3}{4n^3+n^2+1}\right);$
2. $\left(\frac{n^2-3}{n+1}\right);$ 4. $\left(\frac{4n^4+n^3+2}{2n^4+6n+1}\right);$

Special limits - Generalization of ratio of polynomials

The previous result cam be generalized to powers of racional exponent, for example:

$$\lim \frac{\sqrt[3]{3n^3 + 3}}{\sqrt[3]{2n^2 + 3}} = \lim \frac{\sqrt[6]{(3n^3 + 3)^2}}{\sqrt[6]{(2n^2 + 3)^3}} = \lim \sqrt[6]{\frac{(3n^3 + 3)^2}{(2n^2 + 3)^3}} = \frac{\sqrt[6]{3n^3}}{\sqrt[6]{2n^2}} = \frac{\sqrt[6]{3n^3}}{\sqrt[6]{2n^3}} = \frac{\sqrt[6]{3n^3}}{\sqrt[$$

For
$$k, r \in \mathbb{Q}^+$$
,

$$\lim \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{b_r n^r + b_{r-1} n^{r-1} + \dots + b_0} = \begin{cases} \infty & \text{if } k > r \\ a_k / b_r & \text{if } k = r \\ 0 & \text{if } k < r \end{cases}$$

Example $\lim \frac{\sqrt[2]{n^2 - 3}}{\sqrt[2]{4n^2 + n + 1}} = \frac{\sqrt[2]{1}}{\sqrt[2]{4}}$

Pre-University Semester

Exercices:

1.
$$\lim \frac{n^2 \sqrt[2]{n^2 + 1}}{\sqrt[2]{3n^6 + n + 1}};$$
 3. $\lim \frac{n \sqrt[4]{n^2 - 3} + n^2}{4n^3 + 1};$
2. $\lim \frac{2n \sqrt[2]{n - 3} + n^2}{\sqrt[6]{4n^6 + n^2 + 1}};$ 4. $\lim \frac{n^4 + \sqrt[2]{n - 3} + n^2}{\sqrt[5]{4n^{10} + n^2 + 1}};$

Special limits - Exponential

Value a	Monotony <i>aⁿ</i>
a > 1	increasing
a = 1	constant
0 < a < 1	decreasing
a = 0	constant
<i>a</i> < 0	not monotone

Value of a	Limit of a^n
a > 1	$+\infty$
a = 1	1
-1 < a < 1	0
a = -1	does not exist
a < -1	∞

Example
$$\left(\frac{3}{4}\right)^n = 0$$

Exercise
$$\left(\frac{4n}{2n+1}\right)^n$$

Special limits - Nepper

$$\lim\left(1+\frac{k}{n}\right)^n = e^k$$

If $u_n \longrightarrow +\infty$

$$\lim\left(1+\frac{k}{u_n}\right)^{u_n} = e^k$$

If $v_n \longrightarrow -\infty$

$$\lim\left(1+\frac{k}{v_n}\right)^{v_n} = e^k$$

Example

$$\left(\frac{n+2}{n}\right)^{n+2} = \left(\frac{n+2}{n}\right)^n \left(\frac{n+2}{n}\right)^2 =$$
$$= \left(1+\frac{2}{n}\right)^n \left(\frac{n+2}{n}\right)^2 = e^2 \cdot 1 = e^2$$

Pre-University Semester

Exercise

1.
$$\left(\frac{n-3}{n}\right)^{n+1}$$
; 5. $\left(1-\frac{4}{n^2}\right)^{2n}$;
2. $\left(1-\frac{1}{n+1}\right)^n$; 6. $\left(\frac{2n+3}{-3n+5}\right)^{4n}$
3. $\left(1+\frac{2}{3n}\right)^n$; 7. $\left(1-\frac{2}{n^2}\right)^{n^3}$.

;

Special limits - Product of an infinitesimal by a bounded sequence

If
$$u_n \longrightarrow \infty$$
 and $v_n \longrightarrow 0$ then $\lim (u_n v_n) = 0$.

Example

To find $\lim \left((-1)^n \frac{1}{n^2+1} \right)$ we cannot apply the algebra of limits because $\lim (-1)^n$ does not exists but it is bounded since $-1 \leq (-1)^n \leq 1$. Since $\lim \frac{1}{n^2+1} \longrightarrow 0$ we may conclude that $\lim \left((-1)^n \frac{1}{n^2+1} \right) \longrightarrow 0$.

Exercise

1.
$$\lim\left(\frac{-1}{n+1}\right)^n$$
; 2. $\left(\sin(n)\frac{1}{n+1}\right)$;

Exercises

- 1. Consider the sequence $u_n = \frac{2n-1}{n+1}$.
 - a) Find the terms of rank 5, 20 and n+1.
 - b) Given the real numbers $\frac{29}{16}$, $\frac{40}{19}$ find it they are elements of u_n .
 - c) Prove that:
 - (i) (u_n) is monotonically increasing;
 (ii) ∀n ∈ N, 1/2 ≤ u_n < 2;
 (iii) (u_n) is convergent.
 d) Find an upper and lower limit.

Pre-University Semester

2. Given
$$u_n = \frac{\sqrt{2n}}{1 + \sqrt{n}}$$
:

- a) Show that $\lim u_n = \sqrt{2}$
- b) Find the rank of the first element of the sequence that verifies

$$|u_n - \sqrt{2}| < 10^{-1}.$$

- 3. Show that the sequence $b_n = \frac{2^n}{(n+1)!}$ é is strictly increasing.
- 4. Consider

$$u_n = -2 \times 3^{n-5}.$$

a) Show that u_n is a geometric progression .

b) Study its monotonicity.

c) Find
$$\sum_{k=2}^{8} u_k$$
.

- 5. In a aritmetic progression with common diffrence 5 we know that the element of rank 10 its three times the element of rank 8. Find the sum of the first 20 elements.
- 6. Find the limit of

a)
$$\frac{4-n^2}{n^3-2}$$

b) $\frac{2}{n^3+5} \times \sqrt{n-3}$

c)
$$\frac{5^{n} + (-7)^{n+1}}{4^{n+2} - 3^{n}}$$

d)
$$\left(\frac{n+5}{n+2}\right)^{n}$$

e)
$$\left(\frac{n^{3}-2}{n^{3}}\right)^{n^{2}-3}$$

7. Let (a_n) be the general term . Write a_{n+1} , a_{2n} and a_{n+p} , $p \in \mathbb{N}$, for the following cases:

a)
$$a_n = \frac{2^n}{n+1}$$

b) $a_n = \frac{(n+1)!}{(3n-1)!}$

Pre-University Semester

c)
$$a_n = \frac{(n-1)^2}{2n+1}$$

d) $a_n = \sqrt[n]{\frac{(2n-1)!}{2^{n+1} + \log n}}$
e) $a_n = \frac{(n^2+1)!}{(n^2-1)!}$

- 8. Write the general term of the following sequences and check if they are bounded.
 - a) The sequence formed by the simetrics of the perfect squares.
 - b) The sequence of the powers of base (-2) and natural exponent.