
A Multiple View Interactive Environment to Support

MATLAB and GNU/Octave Program Comprehension

Ivan de M. Lessa, Glauco de F. Carneiro

Salvador University (UNIFACS)

Salvador/Bahia, Brazil

ivan.lessa@gmail.com,

gluaco.carneiro@unifacs.br

Miguel Jorge T. P. Monteiro

New University of Lisbon (UNL)

Lisbon, Portugal

mtpm@fct.unl.pt

Fernando Brito e Abreu

Lisbon University Institute (ISCTE-IUL)

Lisbon, Portugal

fba@iscte-iul.pt

Abstract— Program comprehension plays an important role in

Software Engineering. In fact, many of the software lifecycle

activities depend on program comprehension. Despite the

importance of MATLAB and Octave programing languages in

the Engineering and Statistical communities, little attention has

been paid to the conception, implementation and characterization

of tools and techniques for the comprehension of programs

written in these languages. Considering this scenario, this paper

presents a Multiple View Interactive Environment (MVIE) called

OctMiner that supports the comprehension of programs

developed in the aforementioned languages. OctMiner provides a

set of coordinated visual metaphors that can be adjusted in

accordance with the comprehension goals. An example is

presented to illustrate the main functionalities of OctMiner in a

real scenario of program comprehension.

Keywords- Program Comprehension; Software Visualization;

MATLAB; Octave; Crosscutting Concerns.

I. INTRODUCTION

Program comprehension is about understanding how a
software system or a part of it works [15]. The strategies
followed to understand software might vary among developers
depending on their personality, experience, skills, task at hand,
or technology used [15]. The literature has pointed out the need
to provide support to the comprehension of MATLAB and
Octave programs [5][12]. MATLAB (acronym for Matrix
Laboratory)

1
 is an interpreted and imperative programming

language with focus on matrix data types and operations on
them. Octave

2
 is the General Public License version of the

MATLAB programming language. MATLAB and Octave are
quite similar; hence programs written in both languages are
easily portable to one another. These two languages are used in
scientific computing, control systems, signal processing, image
processing, system engineering, simulation, among other fields
[2][5][9]. MATLAB and Octave programs comprise functions
(known as M-files) and scripts. Functions have a name,
arguments, and may have zero or more return variables.
Functions can be called without passing all the arguments, but
those that are used are passed by value. Scripts correspond to
files with code without specifying inputs and outputs. Scripts
can be also called by other scripts and functions [2][9] .

1
 http://www.mathworks.com/products/matlab/

2
 https://www.gnu.org/software/octave/

Multiple view interactive environments (MVIEs) provide
visualization resources that can support programmers to
analyze and understand source code. The views available in the
MVIE can be configured in real time to better fit the
comprehension needs [4]. Considering the motivation
presented in this paper, we conceived and tailored a MVIE
called OctMiner to visually represent MATLAB and Octave
routines. The goal is to use visualization resources to support
their comprehension using multiple views. The main reason for
this is that a single visual metaphor may not be sufficient to
portray the relevant peculiarities of many of the routine
properties [4]. A visual metaphor is a paradigm used to visually
represent a scene, a situation, or an entity through a structured
shape and organized as a map, a tree, a graph, among others
[3].

This paper is structured as follows: section II describes the
key functionalities of MVIEs to support software
comprehension activities; section III summarizes the main
concepts of the MATLAB and Octave languages; section IV
presents OctMiner main architecture structure; section V
discusses crosscutting concerns (CCCs) in the context of
MATLAB and Octave programs; section VI summarizes the
rationale used to map real to visual attributes in OctMiner;
section VII describes an example of use of OctMiner to support
the understanding of MATLAB and Octave programs. Finally,
section VIII presents the final considerations and future work.

II. MULTIPLE VIEW INTERACTIVE ENVIRONMENTS

Visualization is a means of providing perceivable cues to
several aspects of the data under analysis to reveal patterns and
behaviors that would otherwise remain hidden [11]. Card et al.
[1] proposed a well-known reference model for information
visualization. According to them, the creation of views goes
through a sequence of successive steps: pre-processing and data
transformations, visual mapping and view creation. Carneiro
and Mendonça [3] extended this model to adapt it to the
context of MVIEs. The extended model is portrayed in Figure
1

3
 emphasizing that the visualization process is highly

interactive. Moreover, it enables the combined use of resources
of a multiple view interactive environment. The process starts
with original (raw) data obtained from a repository that

3
 All the figures of these paper are available at

http://www.sourceminer.org/octminer

undergoes a set of transformations to be organized into data
structures suitable for information exploration. This process is
called data transformation [3]. Next, the data structures are
used to assemble visual data structures. Those structures
organize data properties and visual information properties in
ways that facilitate the construction of visual metaphors. This
step defines the mapping from real attributes – which are
derived from the data properties, software attributes, in our
case – to visual attributes such as shapes, colors and positions
on the screen. This process is called visual mapping [3]. It is
important to highlight that these activities do not deal with
rendering, but rather with building suitable data structures from
which the views can be easily computed and rendered. The last
step, presented in Figure 1, is the view transformation, aimed at
drawing the information on the screen to produce the views. In
this step, a specific visual scene is actually rendered on the
computer screen [3].

Nunes et al. [8] proposed a toolkit implemented as a Java
Eclipse plugin from which MVIEs could be developed. The
plugin provides a basic structure that allows the creation and
inclusion of new resources and functionalities to develop
MVIEs. Figure 2 presents the way the toolkit was used and
extended by other plugins to comprise the SourceMiner MVIE.
This MVIE was originally developed to support the
comprehension of Java source code. As can be seen in the
figure, the extension points of the toolkit.aimv plugin enable
the inclusion of new plugins to the MVIE. Each of the
extension points conveyed provides an interface with methods
and their respective signatures. In the case of OctMiner, we
needed to access and transform raw data (the Abstract Syntax
Tree, well-known as AST, of MATLAB and Octave programs)
to a format compatible with the visual data structure.
According to the extended reference model for MVIEs, this is a
requirement to feed the views.

Figure 1. An Extended Reference Model for MVIEs [3]

Figure 2 presents a set of plugins that comprise the

SourceMiner MVIE. The following guides are available to
help MVIE developers: (1) Data Transformation: to extend the
plugin Import Module to implement the plugin
sourceminer.modules; (2) Creating and Applying Filters to
extend the plugins Filter and Filter View; (3) Creating Tools
to extend the plugin Tools; (4) Creating Views to extend the
plugins Data Views and Tools. These guides are available in
the SourceMiner

4
 site. The goal of the toolkit is to provide an

infrastructure to develop MVIEs for different domains. The
domain targeted in this paper is comprised of programs written
in MATLAB and Octave.

4 http://www.sourceminer.org

III. THE MATLAB AND OCTAVE PROGRAM LANGUAGES

MATLAB is an interpreted language very popular among
students and researchers of physics, biomedical engineering
and related areas. It is not uncommon that a young engineer is
fluent in using MATLAB, but hardly familiar with C, and
even less of Fortran [5][12].

Figure 2. The MVIE SourceMiner [8]

MATLAB has been used to teach linear algebra, numerical

analysis, and statistics. Since the MATLAB language is
proprietary, a similar language, named Octave was developed,
and is distributed under the terms of the GNU General Public
License. It was originally conceived in 1988 to be a companion
programming language for an undergraduate-level textbook on
chemical reactor design. Due to the similarities among the
languages, it is possible to interpret MATLAB programs in the
interpreter of the GNU/Octave with no major problems. The
main differences among the two languages are presented as
follows: i) Some similar functions can have different names in
each language; ii) Comments in MATLAB are written after
―%‖ while in Octave you can use both ―%‖ and ―#‖; iii) In
MATLAB the control blocks (while, if and for) as well as the
functions delimiter all finish with ―end‖ while in Octave you
can also use ―endwhile‖, ―endif‖, ―endfor‖ and ―endfunction‖
respectively; iv) In MATLAB the not equal to operator is ―˜=‖
while in Octave ―!=‖ is also valid; v) MATLAB does not
accept increment operators such as ―++‖ and ―—―, while
Octave accepts them.

IV. OCTMINER: A MVIE FOR MATLAB AND OCTAVE

The main motivation for the visual representation of
concerns in a MVIE is the possibility to enhance the
comprehension of these programs considering the way these
concerns are manifested in MATLAB and Octave programs.
For this reason, we present an overview of OctMiner
architecture in this section. In terms of plugins that interact
with the MVIE toolkit, the scenario is the same as presented in
Figure 2. Figure 3 depicts the main four elements of OctMiner:
the Eclipse IDE RAP/RCP, the Octclipse plugin, the Octave
interpreter and the MVIE toolkit proposed in [8]. Considering
that the Eclipse IDE enables its extension through the use of
plugins, the MVIE toolkit uses this feature to provide its
functionalities as well as to make possible the MVIE tailoring

for the analysis of data from different domains, in this case the
data gathered from MATLAB and Octave programs. To
achieve this goal we implemented an Analyzer module as
conveyed in Figure 3. This analyzer is analogous to the
sourceminer.modules presented in Figure 2. As can be seen, it
is an extension of the Import Module, whose goal is to import
and convert data from the original data repository to be
represented later in the multiple views. The Octclipse plugin
converts data from the routine to the Abstract Syntax Tree
(AST). From the AST provided by the Octclipse plugin we
were able to develop a plugin to analyze the AST and to extract
data from the routine in a format appropriated to feed the visual
structures. This corresponds to the data transformation step of
Figure 1. The Octclipse plugin also provides an Octave
development environment built upon Eclipse's Dynamic
Languages Toolkit. This environment enables programmers to
create Octave scripts (*.m files), edit them in a multi featured
text editor, run the Octave interpreter, and see the result
displayed in the IDE's console.

Figure 3: OctMiner Architectural Overview

The AST plays an important role in the context of

OctMiner. In the AST, all data gathered from the routine is

stored in a hierarchy structure. The following statement has its

corresponding AST created by the Octclipse plugin depicted in

Figure 4:
x = x-2 * pi * floor (x / (2*pi))

As can be seen in Figure 4, the AST provides identifiers for

each enclosed element, which are crucial to search the AST.

For example, it enables finding out which parameter list a

function receives. The AST also provides information about

the location of the element in the routine. The Analyzer

module gets the data set provided by the AST to feed the

visual structures as presented in the visual mapping step in

Figure 1. To analyze the structure of statements such as the

one presented in Figure 4, we considered the following

definitions of each AST element: ExpressionStatement

(declarations of a given expression); BinaryExpression

(binary, arithmetic and equality operators);

AssignmentLHSExpression (classifies the identifiers as

variables); SymbolReference (usually a variable or function in

the sentence); Constant; SymbolCallExpression (a function is

called through the passage of parameters); CallArgumentList

(the list of arguments that is passed for the function);

ParenthesisExpression (indicates a parenthesis in the

statement to define the precedence order). These definitions

were considered to create the algorithm that parses the AST to

obtain the elements to comprise the visual structure (Figure 1).

At this point we are able to execute the three steps of the

reference model presented in Figure 1. Now we can decide

about the views to make available for the comprehension of

the routines of the two languages. To accomplish this, we will

present in the next section the concepts related to CCCs in

MATLAB and Octave programs.

Figure 4: AST Structure of a MATLAB/Octave Program

V. CROSSCUTTING CONCERNS IN MATLAB AND OCTAVE

This subsection presents a scenario that illustrates

comprehension tasks of MATLAB and Octave programs, how

concerns are identified as well as how they are show up in the

routine. A concern – or abstraction, or would-be module – is

anything a stakeholder wishes to consider a conceptual unit,

namely domain-specific features, nonfunctional requirements,

and design patterns [10][13]. Some concerns are known to cut

across module boundaries in systems developed by means of

traditional technologies, including distribution, persistence,

transaction management and security, which are found in

many programs [4]. Such concerns are known as crosscutting

concerns [6]. Studies have reported that acknowledging how

concerns are manifested in the code supports programmers to

better understand it as well as provides hints to the logic

behind it [4]. Two primitive symptoms of the presence of

CCCs in source code are scattering and tangling [10].

Scattering [10] is the degree to which a concern is spread over

different modules or other units of decomposition. Tangling

[13] is the degree to which concerns are intertwined to each

other in the same functions.

Studies about concerns reported in the literature are focused

on object-oriented systems in most cases, with an emphasis on

the Java programming language [14]. Cardoso et al. [2]

highlighted the importance of the identification and analysis of

concerns in MATLAB. To this end, they analyzed 17

repositories and a total of 209 MATLAB programs to identify

relevant concerns considering the number, local and frequency

of their occurrences in the programs. They presented a list of

concerns grouped in nine categories as shown in Table 1.

Table 2 shows examples of MATLAB functions that illustrate

each of these categories.
Monteiro et al. [7] proposed a simple but effective, token-

based, approach for identifying and locating CCCs in a
MATLAB repository. It is based on the idea that any

decomposition unit (function in the case of MATLAB) should
ideally enclose a routine relating to a single concern [7].
However, in many cases, a given function encloses code that
can conceptually be traced to more than one concern [7]. In
light of this fact, a CCC in a function is always a secondary
concern that is found in addition to the core concern.
Discovering some of these concerns is not a trivial task. The
authors identified a preliminary list of CCCs categories upon
manual inspection of a number of real cases, complemented
with insights acquired upon analysis of data collected from a
specific tool. The core idea is to count occurrences of function
calls in non-comment lines [7]. For each separate MATLAB
file, several metrics are computed, including: i) number of
times a given function name appears in a given MATLAB file
and; ii) number of different functions appearing in a given
MATLAB file [7]. Based on this scenario, the MVIE for
MATLAB and Octave programs supports the identification of
CCCs through the use of multiple views. According to previous
studies, MVIEs provide effective support to that end [3][4].

VI. MAPPING REAL TO VISUAL ATTRIBUTES IN OCTMINER

To achieve the comprehension goals with the support of
the multiple views, an important step is the mapping of real
attributes (attributes from the original data properties domain
such as MATLAB/Octave functions) to visual attributes such
as shapes, colors and position in the screen. This step is the
visual mapping conveyed in Figure 1, i.e. a transition from data
to the visual forms [1]. Visual metaphors are instantiated to
represent data stored in the visual structures. Moreover, they
use the results of the mapping described in this section to
produce the visual representations of the data selected by the
programmer. Table 2 presents the mapping from real to visual
attributes of two views of OctMiner: the Treemap and Grid
views. Each pair of real-visual attribute is associated with a
comprehension goal to be achieved while using the views. The
results of these mappings can be seen in the views represented
in figures 6-9. For example, the part G of Figure 6 presents the
Treemap view while the part D of the same figure presents the
Grid view. Besides the views created as a result of these
mappings, the MVIE provides functionalities to interact with
these views and to adjust them to best fit the comprehension
goals. The next section describes an example to illustrate the
functionalities.

VII. AN EXAMPLE OF USING OCTMINER

The example presented in this section aims at discussing
the main functionalities provided by OctMiner. It is based on
the study conducted by [7]. The main goal of the study was to
identify the more frequently used tokens in the programs of a
specific repository and how they are manifested in the routine
in terms of tangling and scattering. The selected repository had
22 MATLAB files/programs. OctMiner was used to support the
identification of tokens that were used most often in the
repository. Figure 6 depicts a typical scenario of the MVIE
integrated with the IDE Eclipse. Part A of the figure is the
Project Explorer provided by the Octclipse.

Table 1. Concerns and their Categories in MATLAB and Octave [2]

Concern´s

Category
Category Description

Color

Assigned in

OctMiner

Examples of

MATLAB and

Octave Functions

Messages and

monitoring

Messages to the user,

warnings, errors, graphics

visualization, monitoring,

etc.;

plottools, semilogx,

semilogy, loglog,

plotyy, plot3, grid,

title, xlabel,

I/O data

Reading data from file,

writing data to file, saving an

image, loading an image, etc.;

imwrite, imread,

imformats, hgsave,

saveas, hgload,save,

Verification

of function

arguments

and return

values

Default shapes and values for

the arguments that may not be

passed in certain function

calls;

nargchk, nargin,

nargout, varargin,

vararout;

Data type

verification

and

specialization

Check whether a variable is

of certain type, configuring

the assignment of data types

to variables, etc.

quantize, quantizier,

fi, isscalar, isstruct,

iscell, isempty;

System

Code that verifies certain

system environment

properties, to pause

execution, etc.

White

pause, print, printop,

wait, last, input,

syntax, run, tic,

start;

Memory

allocation and

deallocation

The use of the ‗zeros‘

function is most of times used

to allocate a specific array

size. This avoids the

reallocation for each new

item to be stored in an array.;

clear, delete, zeros,

persistent, global;

Parallelization
Use of parallel primitives

such as ―parfor‖;

parfor,spmd,

gpuDevice, feval,

demote, taskStartup,

cancel, submit,

resume;

Dynamic

properties

Constructing inline function

objects (inline), executing a

string containing MATLAB

expressions (‗eval‘), etc.

eval, evalc, evalin,

inline

Table 2. Mapping Real to Visual Attributes in Two OctMiner Views

TREEMAP VIEW

Real

Attribute

Visual

Attribute
Comprehension Goal

File
External

Rectangle

Identify the different files analyzed in the

repository

Token
Internal

Rectangle
Identify the tokens used in each file

Number of

Tokens per

file

Size of

rectangles
Identify the number of tokens per file

Category of

each token
Color

Identify the category of crosscutting concerns

(CCC) that a token belongs to

GRID VIEW

Tokens Rectangle Identify the tokens used in a repository

Number of

Tokens per

file

Number in

each

rectangle

Identifies the number of tokens in each file

Category of

tokens
Color

Identify the category of crosscutting concerns

(CCC) that a token belongs to

LIST VIEW

File List of Files Identify the name of the files and their location

Token
List of

Tokens
Identify the name of the tokens and their location

Category of

each token
Color

Identify the category of crosscutting concerns

(CCC) that a token belongs to

Figure 6. A Typical Scenario of OctMiner Use in the Eclipse IDE

This view presents all the repository files in different views

(parts D, E and G of Figure 6). When one of these files is

selected in the Project Explorer, their corresponding functions

and variables are conveyed in the Outline (part B of Figure 6).

The Outline is also provided by the Octclipse plugin. The

corresponding routine of the same program is depicted in the

Editor (Part C). The Grid (Part D), List (Part E) and Treemap

(Part G) are the visual metaphors provided by OctMiner to

support the comprehension of the programs in the repository.

In the case of the Treemap view, it is possible to spot in a

panoramic fashion how the tokens are distributed in the

repository among the 22 files (Part G). Analyzing the colors

presented in the Treemap view it is possible to conclude that

the more representative tokens of the repository are classified

in the following categories: dynamic properties (yellow), data

type verification and specialization (red), design space

exploration (brown), memory allocation/deallocation (black)

and verification of functions arguments, i/o data (light green)

and returns values (light gray). Passing the mouse in each

rectangle it is possible to identify the name of each token

using the tooltip resource provided by the view.

The goal of the List view (part E of Figure 6) is to present a

list of the programs of the repository and to enable the

selection of one of them to be highlighted in the other views.

The goal of the Grid view is to represent the programs with

their respective number of types of tokens manifested in the

routine enabling the user to see the programs both in

ascending or descending order according to the number of

types of tokens. To identify the most used token in the

repository the user can change the filter dataset in OctMiner

from ―All‖ to ―Tokens‖. At this point, the new visual scenario

corresponds to the one depicted in Figure 7.

In Figure 7 all the types of tokens manifested in the

repository are visually represented. All three views have their

visual entities colored indicating the category that a token

belongs to. The List view now presents the list of types of

tokens colored. The Treemap view presents the quantity of

types of tokens in the repository. The grid view presents the

quantity of these tokens in all the programs of the repository.

Together, these views allow the user to identify the tokens that

are used most often in the repository and their corresponding

categories.

Figure 7. OctMiner Views Focusing on the Tokens Representation

This visual scenario enables the analysis of how a specific

token is manifested in the repository. To accomplish this, the

user should use the filter ID to select the token to be

highlighted in the views. In the example of Figure 8, the token

―signal‖ is selected. As can be seen in the figure, the red

arrows marked in the figure indicate the occurrence of this

token in each program. The yellow color stands for the

category of token ―dynamic properties‖. The size of each

rectangle represents the proportion of use of this token in the

file compared with the others. This is an interesting view for

the analysis of CCCs and for further conclusions about their

symptoms in terms of scattering and tangling.

The views provided by OctMiner enable the analysis of

how the token ―signal‖ is scattered in the repository files and

to which category it belongs to. It is also possible to apply the

semantic zoom to navigate over a specific data set from a

panoramic view. Figure 9 presents how tokens are manifested

in a given program. In this case, the program is the lowest

level of abstraction visually represented in the views.

This level of detail enables the visualization of each

program presented in the List view, how the tokens are

manifested using the Treemap view and the quantity of tokens

by analyzing the Grid view.

Figure 8. OctMiner Views Focusing on the All ―signal‖ Representation

Figure 9. OctMiner Tailored to Present Tokens in a File

These evidences let us conclude that OctMiner can support

the comprehension goals discussed [7]. A controlled

experiment is been planned by the authors to analyze this

effectiveness in more details and based on both quantitative

and qualitative analysis.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper presented OctMiner as a multiple view

interactive environment to support the comprehension of

MATLAB/Octave programs. Multiple views are tailored to

represent data according to the comprehension goals discussed

in [7].

The paper also presented an architectural overview of

OctMiner plugin integrated on the Eclipse IDE. OctMiner

works upon data provided by the AST of MATLAB and

Octave programs so that these data can be transformed to

appropriated visual data structures to feed the views that

comprise the multiple view environment. As future work, we

are planning a controlled experiment with a repository with a

large number of MATLAB and Octave programs to identify

the more referenced tokens as indicators of the presence of

CCCs, as well as their symptoms in terms of scattering and

tangling more thoroughly.

REFERENCES

[1] Card, S. K., Mackinlay, J. and Shneiderman, B. Readings in Information
Visualization Using Vision to Think. San Francisco, CA, Morgan
Kaufmann, 1999.

[2] Cardoso, J.; Fernandes, J; Monteiro, M.; Carvalho, T; Nobre, R.
Enriching MATLAB with aspect-oriented features for developing
embedded systems. Journal of Systems Architecture 59 (2013) p. 412–
428.

[3] Carneiro, G.; Mendonça, M.. SourceMiner: Towards an Extensible
Multi-perspective Software Visualization Environment. In: Slimane
Hammoudi;José Cordeiro;Leszek A. Maciaszek;Joaquim Filipe. (Org.).
Enterprise Information Systems. 1ed.: Springer International Publishing,
2014, v. 190, p. 242-263.

[4] Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant‘Anna, C., Garcia,
A., Mendonc¸ a, M., 2010. Identifying code smells with multiple
concern views. In: XXIV BrazilianSymp. on Software Engineering
(SBES 2010), IEEE Comp. Soc., Washington, DC, USA, pp. 128–137.

[5] Chaves, J.; Nehrbass, J.; Guilfoos, B.; Gardiner, J.; Ahalt, S.;
Krishnamurthy, A.; Unpingco, J., Chalker, A.; Warnock, A.; Samsi, S.
Octave and Python: High-Level Scripting Languages Productivity and
Performance Evaluation. In Proc. of the HPCMP Users Group
Conference (HPCMP-UGC '06).

[6] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier
J., Irwin J., Aspect- Oriented Programming. ECOOP‟97, Jyväskylä,
Finland, June 1997.

[7] Monteiro, M.; Cardoso, J.; Posea, S. Identification and characterization
of crosscutting concerns in MATLAB systems. In Conference on
Compilers, Programming Languages, Related Technologies and
Applications (CoRTA 2010), Braga, Portugal (pp. 9-10).

[8] Nunes, A.; Carneiro, G.; David, J. Towards the Development of a
Framework for Multiple View Interactive Enviironments. In:
International Conference on Information Technology:New Generations
(ITNG), 2014, Las Vegas/EUA. p. 23-30.

[9] Octave Programming Language. Available at
www.gnu.org/software/octave/.

[10] Robillard, M; Murphy, G. Representing Concerns in Source Code. ACM
TOSEM, 2007.

[11] Spence, R. Information Visualization: Design for Interaction (2nd
Edition). 2. ed.Prentice Hall, 2007.

[12] Stenroos, M.; Mäntynen, V.; Nenonen, J. A MATLAB library for
solving quasi-static volume conduction problems using the boundary
element method. - Computer methods and programs in biomedicine,
2007.

[13] Tarr, P.; Ossher, H.; Harrison, W.; Jr., N. Degrees of Separation: Multi-
Dimensional Separation of Concerns. ICSE, 1999.

[14] Uirá Kulesza et al. The crosscutting impact of the AOSD Brazilian
research community. J. Syst. Softw. 86, 4 (April 2013), 905-933.

[15] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke.
2014. On the Comprehension of Program Comprehension. ACM Trans.
Softw. Eng. Methodol. 23, 4, Article 31 (September 2014), 37 pages.

