
What is the Impact of Bad Layout in the

Understandability of Social Goal Models?

Mafalda Santos, Catarina Gralha, Miguel Goulão, João Araújo, Ana Moreira and João Cambeiro∗
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Abstract—The i* community has published guidelines, includ-
ing model layout guidelines, for the construction of models.
Our goal is to evaluate the effect of the layout guidelines on
the i* novice stakeholders’ ability to understand and review i*

models. We performed a quasi-experiment where participants
were given two understanding and two reviewing tasks. Both
tasks involved a model with a bad layout and another model
following the i* layout guidelines. We evaluated the impact of
layouts by combining the success level in those tasks and the
required effort to accomplish them. Effort was assessed using
time, perceived complexity (with NASA TLX), and eye-tracking
data. Participants were more successful in understanding than
in reviewing tasks. However, we found no statistically significant
difference in the success, time taken, or perceived complexity,
between tasks conducted with models with a bad layout and
models with a good layout. Most participants had little to no
prior knowledge in i*, making them more representative of
stakeholders with no requirements engineering expertise. They
were able to understand the models fairly well after a short
tutorial, but struggled when reviewing models. In the end,
adherence to the existing i* layout guidelines did not significantly
impact i* model understanding and reviewing performance.

Index Terms—social goal models; i*; diagram layout; task
complexity; eye-tracking

I. INTRODUCTION

The success of Requirements Engineering depends critically

on effective communication between requirements engineers

and other stakeholders [1]. However, the extent to which

software engineering visual modelling languages are adequate

for communication purposes has been somewhat neglected [2].

Indeed, the communication potential of these languages is not

fully explored, as their cognitive effectiveness is often not

optimised. Several modelling languages have been criticised

for their lack of semantic transparency, making it hard for

non-experts to correctly recognise their symbols (e.g., UML

[3] and i* [1]). Even if one correctly recognises the symbols of

a language, understanding the domain concerns in the models

is yet another challenge. Thus, choosing an adequate layout for

requirements models may be a relevant issue, as a bad layout

may compromise the adequacy of the models. In the long

run, poorly understood requirements may lead to problems

in artifacts produced in later stages of software development.

Although the visual syntax of a language is usually subordi-

nate to its semantics [2], organisations and languages’ creators

may propose what is understood as a good layout, as a standard

to follow. It is believed that these guidelines are important to

improve the readability and, consequently, the overall under-

standability of models used in software development. But one

may ask: is that true? What is the actual impact of adhering to

such guidelines, producing models with good or bad layouts,

on understanding and reviewing those models?

We evaluate the adequacy of such guidelines and the poten-

tial impact of not following them, for the case of i* models.

The i* guide, available at the i* wiki, offers several layout

rules proposed by experts. Our evaluation studies the success

of understanding and reviewing i* models, collecting measures

such as precision, recall, and F-measure, the duration of those

tasks, the visual effort while performing them (assessed with

eye-tracking [4]), and the participants perceptions on their

effort while performing the tasks, measured with a NASA Task

Load Index (NASA TLX) questionnaire [5].

We define the main goal of this paper following the goal

template formulated in [6]. Our goal is to analyse the i* layout

guidelines for the purpose of their evaluation with respect

to their impact on the effort required for understanding and

reviewing i* Strategic Rationale models, from the point of

view of potential system stakeholders, whose experience on

i* is expected to be reduced or non-existent, in the context

of a research project conducted in the Informatics Department

of Universidade Nova de Lisboa (UNL).

Participants were undergraduate and graduate students, post-

docs, and staff members of UNL, with little to no prior knowl-

edge in i*. They were recruited as surrogates for stakeholders

without i* expertise to perform the tasks of understanding and

reviewing i* models.

The paper is organised as follows. Section II describes back-

ground information about i*, the i* models design recommen-

dations, related studies, and relevance to practice. Section III

reports the experiment planning, including goals, participants,

experimental material, tasks, hypotheses, design, procedure,

and analysis procedure. Section IV describes the experiment

execution, with the preparation and deviations from the plan.

Section V analyses the results, including descriptive statistics,

data set preparation and hypothesis testing. Section VI presents

and discusses the results, also reporting threats to validity and

inferences. Section VII presents conclusions and future work.

II. BACKGROUND

A. The i* framework

The i* framework was developed for modelling and reason-

ing about organisational environments and their information

systems, covering both agent and goal-oriented modelling [7].

It focuses on the concept of intentional actor. Actors, in their



organisational environment, are viewed as having intentional

properties, such as goals, abilities and commitments.

This framework has two main modelling components: the

Strategic Dependency (SD) model and the Strategic Ratio-

nale (SR) model. The SD model describes the dependency

relationships, through dependency links, among the actors in

an organisational context. An actor (or depender) depends on

another actor (the dependee) to achieve goals and softgoals,

to perform tasks, to obtain resources, and to express beliefs.

The SR model provides a more detailed level of modelling

than the SD model, as it focuses on modelling intentional ele-

ments and relationships internal to actors. Intentional elements

(goals, softgoals, tasks, resources and beliefs) are related by

means-ends or decomposition links. Means-ends links can be

perceived as decomposition links that are used to link goals

(ends) to tasks (means) to specify alternative ways to achieve

goals. Decomposition links are used to decompose tasks into a

subgoal, a subtask, a resource, and/or a softgoal. Additionally,

contribution links, which can be positive or negative, and are

used to link intentional elements to softgoals.

B. i* models design recommendations

The i* community gathers a set of modelling recommen-

dations in the i* wiki1, namely the i* Guide, intended to be

both an introduction to i* for new users and a reference for

experienced users. Each guideline is annotated with a set of

attributes of the form (Level, Type). Level can be Beginner,

Intermediate, or Advanced, and Type can be Concept, Naming,

Notation, Layout, Methodology, or Evaluation. Since our goal

is to analyse the i* layout, we selected the guidelines within

the Layout type. According to the i* Guide, layout “deals

with the arrangement and organisation of i* models and the

way the contents of the models appear and are placed. It also

covers issues related to modelling space and complexity.”.

For designing the models, we used OpenOME2, one of

the most popular i* tools. Table I shows (i) the layout

guidelines from the i* Guide, (ii) if the guideline is enforced

by the chosen tool, and (iii) whether we have considered it

as a layout guideline or not. Although all of the presented

guidelines are categorised with the layout type by the i*

wiki, we have a different interpretation for some of them.

We consider guidelines #9, #11 and #17 as being concerned

with the well-formedness of the models, not with layout. For

guidelines #12 and #16, we considered they are related with

the completeness of the model, not with layout. Hence, those

guidelines were not considered when preparing the models for

this experiment.

C. Related studies

Störrle has found a significant impact of the usage of good

vs. bad diagram layouts on model comprehension tasks when

using UML analysis models often used during requirements

elicitation, namely, use case, class, and activity diagrams [8].

1i* wiki: http://istarwiki.org/
2OpenOME: http://www.cs.toronto.edu/km/openome/

He reported on three controlled experiments with 77 partici-

pants to support this claim. He also noted that novices benefit

considerably more than experts from the usage of a layout

adhering to several layout heuristics applied simultaneously,

when compared to a layout violating such heuristics.

Eye-tracking has been used on some occasions to assess

the effort involved in the comprehension of software models,

by monitoring participant’s visual attention through fixations

and other indicators [4]. Fixation is the stabilisation of the

eyes on a part of a stimulus (object of interest presented on

screen) during a period of time (200-300 ms). Psychology

studies reveal that most information acquisition and cogni-

tive processing occur during fixations. Thus fixation data is

used to calculate metrics that estimate visual effort based on

fixations number and duration in a certain area of interest

(AOI) of the stimulus. Yusuf et al. [9] used eye-tracking to

compare the visual effort involved in answering questions

about UML class diagrams containing the same information,

but designed following 3 different layout strategies: multiple-

cluster (classes with related functionality are in clusters);

three-cluster (positions classes based on their stereotype role)

and orthogonal layout (minimises edge crossings and bend-

ing). They concluded that multiple-cluster outperformed three-

cluster and orthogonal layouts, as participants had to make,

on average, a smaller number of fixations on the diagram.

This study was later extended without eye-tracking, confirming

the previous results [10]. Again including eye-tracking data,

the effect of different layouts was also studied for design

pattern roles identification in UML class diagrams [11], [12].

Another eye-tracking study showed that although the presence

of a visitor pattern and its layout had no significant impact

on the comprehension of UML class diagrams, it did have

a significant impact in modification tasks [13]. A common

feature in all these studies is the concern with the importance

of some aspect of a UML diagram layout (be that a layout

heuristic, or the explicit usage of a particular design pattern).

Other studies with eye-tracking focused on BPMN [14],

ER [15], and TROPOS diagrams [16]. The later contrasted

the effectiveness of a textual and the TROPOS diagram-

matic requirements language for requirements comprehension

purposes and the textual language turned out to be more

effective. Our requirements understanding tasks are similar in

complexity to those in [16], but using i*, and changing the

contrasted treatments (in our case, good vs. bad layout, rather

than a textual notation vs. a diagrammatic one).

D. Relevance to practice

The exploitation of human factors is increasingly regarded

as a relevant topic in Software Engineering [17] in general,

and modelling in particular. The Requirements Engineering

community is concerned with bridging the perceived gap

between sophisticated requirements engineering approaches,

such as i*, and the stakeholders which requirements engi-

neers need to interact with. The most common requirements

notation remains to be natural language. The problem is

that natural language often leads to ambiguous requirements

http://istarwiki.org/
http://www.cs.toronto.edu/km/openome/


TABLE I: Guidelines for i* models’ layout

# Guideline Enforced Layout

1 Avoid or minimise drawing intersecting Links and overlapping Links with other Links and elements’ text No Yes
2 Make both sides of a Dependency Link look like a single, continuous curve as it passes through the Dependum Yes Yes
3 Spread the connection points of Dependency Links out on an Actor Yes Yes
4 Keep elements horizontal. Do not tilt or twist them Yes Yes
5 Avoid or minimise overlapping boundaries of Actors where possible No Yes
6 Keep Dependency Links outside the boundaries of Actors to improve the readability of the models No Yes
7 Use the conventional Actors’ boundaries (circles) unless other shapes such as rectangles can improve models’ layout Yes Yes
8 Avoid overlapping elements inside or outside Actors No Yes
9 Connect each Dependency Link in an SR model to the correct element within the actor No No
10 Adopt or follow a consistent direction for the goal refinement/ decomposition hierarchy as much as possible No Yes
11 Do not draw SR model elements outside the boundaries of the corresponding actors No No
12 Unconnected elements within an Actor is indicative of an incomplete model No No
13 Don’t extend the text of the name of the element beyond the element’s border Yes Yes
14 Split a large and complex model into consistent pieces to facilitate easier presentation and rendering No Yes
15 Don’t extract or zoom into a section of an Actor in a model without showing the incoming and outgoing dependencies

with other actors or parts of the model
No Yes

16 Use the specialised actors notation to the degree that you can gain advantage in instantiating the actual stakeholders Yes No
17 Use the leaf-level tasks as the system requirements, not the high level Goals and Softgoals No No

specifications. On the other hand, specialised requirements

engineering frameworks support reasoning about the require-

ments, but are poorly understood by relevant stakeholders.

So, devising ways of making these requirements languages

more accessible is perceived as very important. This can be

achieved, for example, by improving the visual metaphors used

by a language (see, e.g., [1]). In this paper, we take on a

complementary approach by assessing the impact of layout in

the understandability of models, and in the ability to review

them. As discussed in section II-C, previous studies pointed to

a significant impact of layout style in model understandability.

III. EXPERIMENT PLANNING

A. Goals

We describe our two research goals following the GQM

research goals template [6]. Our first goal (G1) is to analyse

the effect of i* model layout, for the purpose of evaluation,

with respect to its impact on the understandability of i* SR

models, from the viewpoint of researchers, in the context

of an experiment conducted with participants with limited or

no experience with i* at UNL. Our second goal (G2) is to

analyse the effect of i* model layout, for the purpose of

evaluation, with respect to its impact on the review of i* SR

models, from the viewpoint of researchers, in the context of

an experiment conducted with participants with limited or no

experience with i* at UNL.

B. Participants

The participants in this experiment were recruited through

convenience sampling. They were made aware of this ongoing

study and volunteered to participate. As members of the UNL

community, they are aware of the importance of performing

evaluations with participants and, therefore, willing to volun-

teer. Several of them have conducted, or will conduct in a

near future, evaluations in the context of their own research

projects, so motivating them to participate was not a problem.

Participants read a “Participant consent letter”, adapted from

the one in [18], where we explained that they could leave the

experiment at any point, if they desired to do so, and that

all the collected data would remain anonymous. They were

offered the possibility of receiving a notification on the results

of the study, when the final report became available.

The experiment was initially performed by 24 participants.

However, 6 cases were excluded due to problems with the data

collection, detected at the end of the experiment. We used the

data of the remaining 18 participants.

We collected demographic data on age, gender, nationality,

field of studies, usage of medical devices (glasses, or contact

lenses), completed education level, current occupation, and

previous experience with i*. Concerning the usage of medical

devices, 2 of the participants had contact lenses, and 4 were

wearing glasses. With regard to previous experience with i*,

4 learnt i* in the context of a course and 14 did not know it.

C. Experimental material

In this evaluation, we wanted to assess the effect of good vs.

bad layout in i* models in two particular tasks: understanding

and reviewing i* SR models. We designed our experiment to

test good and bad layouts for understanding correct models,

and for reviewing incorrect models. So, each participant had 4

models to examine, all from different domains. We designed

4 different models, 2 correct and 2 incorrect. Each of those

models was then depicted in two versions: with a good layout,

and with a bad layout. All the used models are similar in size,

and use the same model elements, just varying the domain.

Concerning the bad layout and the injected model defects,

their size was also similar. Thus, the models were very similar,

but from very distinct domains, to minimise learning effects

in the experiment. The chosen domains were gaming centre,

tolls system, patient wellness tracking, and goods acquisition.

Table II summarises the models’ size, namely their number of

actors, intentional elements, and dependencies between actors.

Fig. 1 provides an example of the tasks made available to

participants, all following a common structure. At the top, we

have the question the participant is supposed to answer. On the

left, we have a key with the main i* elements in the models, so



TABLE II: Basic metrics about the models

#actors #elements #dependencies

Gaming Centre 2 21 2

Tolls System 2 21 2

Patient Wellness 2 21 2

Goods Acquisition 2 17 1

that the participant can check what a particular symbol means.

The main area of the screen has an SR model, about which

the question is asked. Each model area has a relevant area,

containing the model elements corresponding to the correct

answer, and an irrelevant area, with all the remaining elements.

D. Tasks

Each participant performed four tasks. Two of the performed

tasks were aimed at evaluating the effort in understanding

a correct i* model. In one of them, the model had a good

layout (according to the guidelines discussed in section II-B),

while on the other the layout was bad (violating several layout

guidelines). Each participant also performed two reviews, to

detect seeded defects in i* models. Again, one of the models

used in the review session had a good layout, while the other

had a bad one. Both in the understanding and in the reviewing

tasks, the participants had to answer orally a simple question.

For example, an understanding task would be to enumerate the

tasks involved in making payments, in the goods acquisition

system. The reviewing task consisted in describing all the

defects the participant could identify in a given model. The

answers were recorded in audio, for further analysis, along

with a video with the contents of the screen during task

execution, annotated with eye-tracking data. No eye-tracking

feedback was visible to the participant while performing the

evaluation, to avoid an unnecessary validity threat. Likewise,

no feedback on the success of the tasks was provided to the

participants, preventing contamination of subsequent tasks.

Each task was followed by a corresponding NASA TLX

questionnaire, so that participant’s feedback was collected on

their experience while performing the task. The participant

filled the form made available through the web browser.

E. Hypotheses, parameters and variables

For each of the two goals, we have defined the null

hypothesis (H0) and the alternative hypothesis (H1).

H0Understand: Adherence to layout guidelines do not influ-

ence the understandability of requirements expressed in i*.

H1Understand: Adherence to layout guidelines influences

the understandability of requirements expressed in i*.

H0Review: Adherence to layout guidelines do not influence

the performance when reviewing requirements expressed in i*.

H1Review: Adherence to layout guidelines influences the

performance when reviewing requirements expressed in i*.

The independent variable is the layout, which may be bad,

or good. The dependent variables are:

• Precision — the fraction of model elements retrieved by

participants (for the first hypothesis) or of defects (for the

second hypothesis) which are relevant.

• Recall — the fraction of relevant model elements (or of

relevant defects) retrieved by participants, over the total

number of model elements (or potential defects) retrieved.

• F-measure — a measure that combines precision and

recall, computed as
2∗(Precision∗Recall)
(Precision+Recall) ; this measure

provides an harmonic mean of precision and recall.

• Duration — the time taken by the participants to com-

plete the task.

• NASA TLX score — an overall weighted score resulting

from the application of the TLX questionnaire, covering

perceived mental, physical and temporal demand, perfor-

mance, effort and frustration while performing a task.

• FixRel — Fixation Rate on Relevant elements; the frac-

tion of number of fixations in an given AOI over the total

number of fixations in the AOG (Area of Glance).

• FixIrrel — Fixation Rate on Irrelevant elements; the

fraction of number of fixations in an given AOI over the

total number of fixations in the AOG.

• AvDurFixRel — Average Duration of Relevant Fixation;

the fraction of total duration of fixations for relevant AOIs

over the number of elements of the relevant AOIs.

• AvDurFixIrrel — Average Duration of Irrelevant Fixa-

tion; the fraction of total duration of fixations for relevant

AOIs over the number of elements of the relevant AOIs.

Precision, Recall, and the F-measure are used as metrics for

the success of the tasks being performed. Duration is used to

assess the efficiency in performing the task. NASA TLX score

measures the self-perception of effort made by the participants,

while performing the tasks. Finally, the eye-tracking metrics

FixRel, FixIrrel, AvDurFixRel, and AvDurFixIrrel evaluate

visual effort in the understanding tasks. A higher number

and duration of fixations can be associated with a higher

visual attention in a given set of AOIs (in this case, relevant

vs. irrelevant model elements) of the stimulus (the screen)

presented to the participant [19]. We are only using these

eye-tracking metrics for the first hypothesis. Although we

collected eye-tracking data for the whole session, the error

margin of the eye-tracking data makes it unreliable to tag

really small elements in the screen (such as the annotations

on dependencies), which were crucial for the reviewing task.

F. Design

To reduce learning effects, the order of the 4 tasks changed

from participant to participant. All participants had two under-

standing tasks and two review tasks. Each of the tasks used

one of 4 models. Each of these models had 2 versions, one

with a layout following the guidelines, another with a layout

violating several of these guidelines. Other than the layout,

the 2 model versions were exactly the same. We balanced the

number of times each task was performed as first, second,

third, or fourth task. We also balanced the number of times

each model was used with a good or bad layout. Finally, the

particular sequence of tasks that was used by each participant

was selected from the ones not used yet by other participants.

There was no pre-defined sequence for ordering participants.



Question

Key

Model

Relevant

Fig. 1: Example of an understanding task to solve, illustrating the areas of interest

The sequence experienced by each participant is different

and illustrated in Table III, where each line represents one

participant. The structure is similar to all participants, except

in the sequence of tasks (U stands for understand, R stands

for review, the number represents the model, G represents a

good layout and B a bad layout).

TABLE III: Crossover experimental design

Participant Letter Tutorial T1 T2 T3 T4 Back.

1 X X U1G U2B R3G R4B X

2 X X R4G U1B U2G R3B X

3 X X U2B R3G R4B U1G X

4 X X R3B R4B U1B U2G X

... X X ... ... ... ... X

G. Procedure

We prepared the lab setting so that all participants could

have similar conditions. There was only one participant in

each evaluation session. We informed the participant that the

tasks consisted in watching a short tutorial on a requirements

language, analysing requirements expressed in that language,

and answering questions about those requirements. We further

informed the participants that we would be recording their

voice, the contents of the screen, and tracking their eyes

movements while they were analysing the requirements and

(orally) answering questions about them. Finally, we explained

the participants that they could quit at any moment, if they so

desired. They then read the “Participant consent letter” and

gave their free and informed consent to participate in the study.

We helped the participant seating comfortably so that his

eyes would be around 50 cm away from the screen. The

eye-tracker was placed below the screen, without blocking

it. We adjusted the eye-tracker’s angle to cope with physical

differences among the participants (e.g., the eye-tracker must

point towards the subject’s eyes, so the participant’s height de-

termines the ideal eye-tracker angle). During this process, we

explained the procedures, the participant put the headphones,

equipped with a microphone, and the session started.

We asked each participant to watch a video tutorial3 of

7 minutes and 15 seconds, explaining the elements of an

i* model. The tutorial includes the construction of a correct

model, similar to those used in the experiment, along with

an audio description of both the modelling elements, as they

are being introduced, and their role in the model under

construction. The modelling elements were described by using

the exact phrases and explanations present in the i* wiki.

After watching this tutorial, we proceeded with the cal-

ibration of the eye-tracker, using 9 points. Once the eye-

tracker was calibrated, the evaluation session started. Each

participant was asked to perform a sequence of four tasks.

Each task consisted in either understanding or reviewing an

i* model, and then answering the NASA TLX questionnaire

concerning the effort on that task. This was repeated for each

of the combinations of good and bad layout with correct

and incorrect models. The task (and corresponding model)

sequence varied from one participant to the next, as discussed

in section III-F. Finally, each participant answered a short

questionnaire about demographic information, so that we could

better characterise her or him. For each session, we recorded

a video with the contents of the screen, synchronised with

the voice of the subject during the whole session. We also

recorded the 4 NASA TLX sets of answers, one for each task,

as well as the answers to the profiling questionnaires.

H. Analysis procedure

We start by collecting descriptive statistics on our variables,

namely the mean, standard deviation, skewness and kurtosis,

to get an overview of their distribution. We are using a

crossover design, where our participants apply more than one

treatment. This design choice allows controlling the variability

among subjects and dealing with the relatively low number

of participants (18), but requires controlling the potential

3Video tutorial: https://goo.gl/me1jJ2

https://goo.gl/me1jJ2


carryover effect (i.e., the potential persistence of the effect

of a treatment when another treatment is applied later). In this

case, there is a potential learning effect to consider. Following

the guidelines of [20], we use a linear mixed model, which is

adequate for mitigating this threat.

IV. EXECUTION

A. Preparation

The data collection was carried out with a core i7 Windows

10 laptop, connected to an external 22 inch, wide screen,

full HD monitor, an EyeTribe eye-tracker4, a headset with a

microphone, and an external mouse and keyboard. All data

collection was performed in this platform. The experimenter

controlled the session on the laptop, while the participant used

the eye-tracker and headset microphone to perform the models’

analysis, viewing the tasks in the external monitor.

After reading the consent letter, each participant watched the

video tutorial on the i* framework. That was the only source of

information on i* the participant would have for the duration of

the experiment, other than an i* key (always present while the

participants were analysing the models). Finally, we recorded

the audio and video of the whole section, so that the answers

were collected with a “think aloud” approach.

We proceeded with the calibration of the eye-tracker, which

consists of having the participant following with her gaze

a target as it moves and fixates in predetermined screen

coordinates. We used the EyeTribe calibration application,

only accepting good or excelent calibrations (top levels of a 5

points ordinal scale) to proceed to the actual data collection.

B. Deviations

A technical problem with the software for controlling the

audio capturing the participants’ answers lead to the exclusion

of 6 cases. Another situation, where we were not able to

determine when the participant started viewing each one of the

models, led to the partial exclusion of one case. This can be

seen in Table IV, in the lines corresponding to duration, where

the total number is 17. Two participants were also excluded

from the eye-tracking analysis due to technical problems with

the eye-tracker (leaving 16 cases in eye-tracking metrics).

V. ANALYSIS

A. Descriptive statistics

Table IV outlines the descriptive statistics of the collected

variables, covering the relative success in the tasks performed

by our participants, as well as their perceptions on their perfor-

mance. Task success was measured by computing the precision

and recall of the answers provided by the participants, the F-

Measure aggregating precision and recall, and the duration

of the task in seconds. We further collected the participants’

perception of their effort while performing the tasks, through

the NASA TLX survey, of which the overall weighted score

is also presented in Table IV. For each of these variables, the

table is split by task (either understanding (Und.), or reviewing

4http://www.theeyetribe.com/

(Rev.)), layout (Bad, or Good), number of cases (#), mean,

standard deviation (S.D), skewness (Skew), kurtosis (Kurt), and

the p-value of the Shapiro-Wilk normality test, in which the

null-hypothesis is that the population is normally distributed.

We used an alpha value of 0.05 in the Shapiro-Wilk test. Most

variables do not have a normal distribution.

TABLE IV: Descriptive statistics

Task Layout # Mean S.D. Skew Kurt S-W

P
re

c. Und.
Bad 18 .548 .363 -.461 -1.150 .022
Good 18 .678 .355 -.828 -.590 .005

Rev.
Bad 18 .206 .311 1.394 1.036 .000
Good 18 .178 .341 1.853 2.302 .000

R
ec

al
l Und.

Bad 18 .492 .376 .154 -1.348 .021
Good 18 .622 .344 -.354 -.964 .024

Rev.
Bad 18 .069 .098 1.031 -.445 .000
Good 18 .049 .087 1.613 1.405 .000

F
-M

ea
s. Und.

Bad 18 .492 .331 -.296 -1.070 .097
Good 18 .607 .307 -.688 -.278 .145

Rev.
Bad 18 .103 .147 1.097 -.247 .000
Good 18 .073 .130 1.603 1.394 .000

D
u

ra
ti

o
n

Und.
Bad 17 216.1 142.8 1.385 1.704 .018
Good 17 170.1 85.1 .780 -.112 .104

Rev.
Bad 17 342.1 275.2 2.739 9.031 .000
Good 17 317.7 217.0 1.376 1.173 .007

T
L

X

Und.
Bad 18 52.9 20.0 -.671 -.734 .107
Good 18 50.6 17.5 -.455 -.905 .069

Rev.
Bad 18 62.4 10.4 -.779 .241 .251
Good 18 62.5 20.4 -.422 -.308 .881

R
el

F
ix Und.

Bad 16 .096 .111 1.024 -.092 .007
Good 16 .079 .081 1.174 .729 .011

Rev.
Bad NA
Good NA

Ir
re

lF
ix Und.

Bad 16 .169 .093 .470 -1.149 .150
Good 16 .168 .141 .864 -.615 .023

Rev.
Bad NA
Good NA

A
v

R
el

D
u

r

Und.
Bad 16 211.0 138.9 .596 .085 .346
Good 16 202.2 135.2 1.007 1.314 .193

Rev.
Bad NA
Good NA

A
v

Ir
re

lD
u

r

Und.
Bad 16 251.8 96.3 .350 -1.169 .182
Good 16 252.2 98.6 .287 -.488 .896

Rev.
Bad NA
Good NA

The information in Table IV is further illustrated through

boxplot diagrams, Figs. 2 to 8, contrasting good and bad

layouts for understanding and reviewing tasks. Each figure

highlights a different perspective (and corresponding metric).

For the reviewing tasks, heat maps are presented in Fig.

9. Fig. 2 presents the precision, which is much higher for

the understanding task than for the revision task. At a first

glance, it seems that precision is slightly better with a good

layout than with a bad one, but we will test whether this

is significant in section V-C. The distributions seem similar

for the review tasks with good and bad layouts. Fig. 3

presents the recall. A good layout seems slightly better than

a bad one, in the boxplot, for the understanding task, but

no difference is observable for the review task. Again, these

will be tested later for significance. Fig. 4 presents the F-

Measure, a combination of Precision and Recall, that leads

to the same observations. Fig. 5 presents the task duration in

seconds. There seems to be no clear difference between good

and bad layouts, for both tasks. Fig. 6 presents the NASA TLX



results, showing no significant difference in the perceptions

of the overall complexity of the tasks, when contrasting good

and bad layouts. Fig. 7 presents both relevant and irrelevant

fixation rates. Fig. 8 presents the average fixation duration.

Fig. 9 presents the heat maps with the duration of fixations

during reviewing tasks, for both good and bad layout.
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Fig. 6: NASA TLX scores

B. Data set preparation

In each session, we recorded without pausing the video and

audio between the models and the NASA TLX, to disturb

the participant as little as possible. Ergo, we had to manually

collect the times when the participant started and ended the

visualisation of a given model. Since the answers were given

orally, a preparation of that data was also necessary. For the

understanding tasks, we had a table with all the elements

present in the model, one per column. When listening to the

answers, elements that a participant described as being the

correct ones were marked with 1, in a row dedicated to each

participant. For the reviewing tasks, the procedure was the

same, but when the answer was different from the expected, we

added a column with that answer, if it was not already present.

In the end, the table contained all the answers given by the

participants, and their frequency. Concerning the eye-tracking

data, the main areas of the stimulus and its elements were

mapped into pixel coordinates to determine which regions and

elements the participants were looking at. This allowed tagging

the eye-tracking data with the elements being gazed at any

given moment, which was a necessary step for computing the

eye-tracking metrics used in this paper.
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C. Hypotheses testing

We used linear mixed models for testing our hypotheses.

The models included the following terms: layout and domain,

as fixed factors, and participant as random factor within

sequence. Although the residuals of some of these models

depart from normality, mixed linear models have been shown

robust to violations of the residuals normality assumption [21].

RQ1: Does adherence to layout guidelines influence the

understandability of i* models? According to the tests of fixed

effects presented in table V, the layout was not a significant

factor (sig. > 0.05), for any of the dependent variables.

However, we did observe significant (but small) differences

concerning the impact of the particular domain in three of the

eye-tracking metrics. Further, we found no evidence of any

influence of the sequence in which the tasks were performed

in the results co-variate variance ≈ 0. These results suggest

that adherence to layout guidelines has no significant effect on

understanding the diagram, on the participants’ perception of

their performance, or even on the visual effort taken, for the

size and complexity of the models used in this evaluation.

RQ2: Does adherence to layout guidelines influence the

ability to review of i* models? Similar to RQ1, according to

the tests of fixed effects presented in Table VI, neither the

layout nor the domain are significant (sig. > 0.05) for any

of the dependent variables. Further, we found no evidence

of any influence of the sequence in which the tasks were

performed in the results co-variate variance ≈ 0. These results

suggest that adherence to layout guidelines had no effect

(a) Heat map for bad layout (b) Heat map for good layout

Fig. 9: Heat maps for fixations during reviewing tasks

TABLE V: Understanding - Type III Tests of Fixed Effects

Dep.Var. Source Num. df Den. df F Sig.

Precision
Intercept 1 16.812 110.272 .000
Domain 1 16.728 1.973 .178
Layout 1 16.716 1.394 .254

Recall
Intercept 1 17.946 72.676 .000
Domain 1 17.955 2.306 .146
Layout 1 17.956 1.803 .196

F-Measure
Intercept 1 17.924 96.551 .000
Domain 1 17.817 .000 .984
Layout 1 17.756 1.315 .267

Duration
Intercept 1 24.027 74.124 .000
Domain 1 18.233 .017 .899
Layout 1 17.256 2.243 .152

TLX
Intercept 1 14.682 161.954 .000
Domain 1 16.003 .348 .563
Layout 1 16.053 .059 .812

FixRel
Intercept 1 22.140 30.172 .000
Domain 1 16.406 17.078 .001
Layout 1 15.674 .707 .413

FixIrrel
Intercept 1 22.874 45.195 .000
Domain 1 15.686 .770 .393
Layout 1 14.419 .171 .685

AvDurFixRel
Intercept 1 22.771 62.158 .000
Domain 1 15.711 9.188 .008
Layout 1 14.501 .142 .712

AvDurFixIrrel
Intercept 1 22.653 197.947 .000
Domain 1 16.072 6.894 .018
Layout 1 15.034 .009 .924

on the success of the diagram reviewing tasks, and on the

participants’ perception of their performance, for the size and

complexity of the models used in this evaluation.

VI. DISCUSSION

A. Evaluation of results and implications

RQ1: Does adherence to layout guidelines influence the

understandability of i* models? Concerning precision and

looking at only the answers given by the participants, the

median value is similar with a good and a bad layout.

There is no statistically significant difference between both

distributions, so we found no evidence that the impact of the

layout is relevant, for that size and complexity of models.

Concerning recall, the median values are lower than the ones

from precision. Although the good layout had a higher median

than the bad one for recall (by approximately 20%), the

difference in the distributions is not statistically significant.



TABLE VI: Reviewing - Type III Tests of Fixed Effects

Dep.Var. Source Num. df Den. df F Sig.

Precision
Intercept 1 16.812 110.272 .000
Domain 1 16.728 1.973 .178
Layout 1 16.716 1.394 .254

Recall
Intercept 1 17.946 72.676 .000
Domain 1 17.955 2.306 .146
Layout 1 17.956 1.803 .196

F-Measure
Intercept 1 17.924 96.551 .000
Domain 1 17.817 .000 .984
Layout 1 17.756 1.315 .267

Duration
Intercept 1 17.000 74.883 .000
Domain 1 17.000 .140 .712
Layout 1 17.000 1.923 .183

TLX
Intercept 1 14.682 161.954 .000
Domain 1 16.003 .348 .563
Layout 1 16.053 .059 .812

The F-Measure results show a higher median value for the

good layout (around 10%), but, again the distributions are not

significantly different. Overall, in spite of the generally better

performance of the good layout in terms of the median value,

we found no evidence that the distribution, as a whole, is

significantly different when we contrast good and bad layouts.

This contradicts our initial expectations, which were based

on our intuition, as well as on findings with other modelling

languages (see examples in section II-C).

The layout quality does not seem to have a significant

impact on the duration for performing the tasks for this

size/complexity of models. This was also supported by the

hypotheses tests. Hence, a good layout does not seem to

contribute to a faster understanding of the model.

Regarding the participants overall perception of effort and

complexity, that is practically the same when performing

understanding tasks for both good and bad layouts. Thus,

participants did not perceive an improvement while using a

good layout, when compared with a bad one. This perception

is reinforced by the eye-tracking data, which also provided

no evidence of a significantly different distribution of visual

effort in understanding diagrams with good and bad layouts.

The short answer for RQ1 is that we found no evidence

that adherence to layout guidelines had influence in the under-

standability of the i* models. As a side note, we also observe

that the understanding tasks were much more accessible to

our participants than the reviewing tasks. This is not really

surprising, as proper reviewing requires both understanding the

model being reviewed and knowing the modelling language,

to detect when it is misused.

RQ2: Does adherence to layout guidelines influence the

ability to review i* models? The reviewing in general had

worse results compared to the understanding task. This was

expected. Reviewing a model is harder for non-i* practition-

ers than just understanding what an i* model represents. It

involves not only reasoning about what the model represents

(as in the understanding task) but also about what it does

not represent (and should), and what it misrepresents. Our

participants clearly struggled with this task.

Concerning precision, recall, F-Measure and duration, we

found no evidence that the impact of a good vs. a bad layout

is neither relevant nor significant. The layout seemed to be

irrelevant for the performance of our participants in this task.

This is consistent with the participants overall perceived effort

and complexity of the task, which is practically the same when

performing reviewing tasks for both good and bad layouts.

In Fig. 9, we observe that the heat map for good layout

is less scattered than the one for bad layout. In the latter,

participants spend more time in the model as a whole, while

in the former the fixations are more focused in particular model

elements. Furthermore, the time participants spend in the key

area is higher for links than for other model elements, which

hint that participants struggle with this notation. This justifies,

in part, the worse results in the reviewing tasks, since most of

the problems were related with links.

B. Threats to validity

Conclusion validity. In this experiment, we have a low

number of participants to be able to have sound statistical

inferences and to reveal a true pattern in the data. Therefore,

there is a risk of having erroneous conclusions. For example,

although the differences of the distributions with a good

and bad layout were not statistically significant for RQ1,

for some of those measures the median values with a good

layout were better. So, it may be the case that a larger

number of participants will lead to the identification of a

small, but significant improvement. We plan to mitigate this

low statistical power threat by replicating this experiment

with a higher number of participants. Elements outside the

experimental setting might have disturbed the results, such as

noise outside the lab. However, this random irrelevancies in

experimental settings threat was not detected during the course

of the experiment nor in the overall results.

Internal validity. Since the participants had 4 tasks to

perform, they could have learnt in the process. We tried

to mitigate this maturation threat by changing the order of

the 4 tasks and models from participant to participant. The

assignment of the version to a particular participant was

random. We have used convenience sampling. To mitigate

this selection threat we are launching a replication of this

experiment with participants selected through a recruitment

call, as well as with replications conducted independently by

colleagues from other universities and from different countries.

External validity. Since most subjects had little to no prior

knowledge in i*, they are representatives of stakeholders with

no requirements engineering expertise. By having participants

with a greater level of experience, we could have a representa-

tion of stakeholders with requirements engineering expertise,

and could analyse the differences between these two profiles.

We plan to mitigate this interaction of selection and treatment

threat by replicating this experiment with a more heteroge-

neous group in terms of experience with the models. Since

the models are not large and have a low complexity level, they

may not be representative of models used in industry. However,



the relatively low success in performing the reviewing tasks

with these models shows that they were not too simple.

Even with this apparently (for requirements experts, at least)

simple models, non-requirements experts already found them

challenging. Nevertheless, we plan to mitigate this interaction

of setting and treatment threat by varying the complexity of

these models in a future replication, to assess whether there is

a significant variation on the success of these tasks as models

become more complex. In particular, we expect bad layout

to become increasingly a penalising factor as models become

more complex and bigger. In this experience, though, we could

not use larger models due to technical problems with the

eye-tracker device, such as limitations in the external monitor

dimensions and distance to the eye-tracker. We need to resolve

those technical problems before replicating this experience

with more complex models.

Construct validity. Since we have showed a video tutorial

about i*, and afterwards participants answered questions about

this modelling language, they might have felt that they were

being evaluated. This fact may have caused an evaluation ap-

prehension threat, where participants try to look better, which

is confounded to the outcome of the experiment. However,

since the success level of the tasks was not high, this threat

was not detected in the overall results.

C. Inferences

The success level of understanding tasks was, in general,

higher than the one in reviewing tasks. As for our research

questions, for models of this size and complexity, and for

stakeholders with little to none experience with this require-

ments modelling language, we found no significant difference

resulting from using a good, or a bad layout. Further research

is necessary to confirm these findings and generalising them

to a wider population (both in terms of stakeholders expertise

level and of models complexity and size).

VII. CONCLUSIONS AND FUTURE WORK

We evaluated the impact of adhering, or not, to guidelines

for producing good layouts on the understanding and review-

ing of i* models. A series of 4 tasks (2 for understanding

and 2 for reviewing) were designed and applied to a set of

participants, in order to evaluate the impact of the layout

quality. All models had a similar size and complexity. We

found that a good or bad layout had no significant impact in the

performance of the participants in the assigned tasks. This was

somewhat surprising, considering our intuition and evidence

found in other experiments conducted with requirements mod-

els precisely on the impact of layout in model understanding.

It may be the case that the models used in this study were

too simple, or too small, for layout to play a significant role,

although their size was comparable to that of models used in

some of the earlier related studies for other notations. In heat

maps for the review tasks, participants’ gaze seemed more

dispersed by the noise caused by bad layouts.

The evidence collected here suggests that the impact of a

good vs. a bad layout is not significant, at least for diagrams of

this size and complexity. However, we expect layout quality

to have a stronger impact as diagrams increase in size and

complexity, in line with findings on software models expressed

with other languages (e.g. with UML).

We plan to replicate the experiment in other institutional

contexts and apply it to bigger and more complex models.
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