Publications

Export 58 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
T
Neagu, E. R., R. M. Neagu, M. C. Lanca, and J. N. Marat-Mendes, "The time as a parameter to investigate the landscape of the apparent activation energies in the final thermally stimulated discharge current measurements", 12th International Symposium on Electrets (ISE 12), Proceedings, pp. 292-295, 2005. AbstractWebsite

The experimental results obtained in a wide range of temperatures, for polyethylene terephthalate, demonstrate that the apparent activation energy changes when the charging (polarization) time or the isothermal discharging time, prior to the final thermally stimulated discharge current measurement, are used as variable parameters. Consequently, the charging and/or discharging time can be used as a variable parameter to investigate the landscape of the apparent thermal activation energies. A continuous distribution of the traps in the range from 0.4 to 3 eV was observed. The experimental results demonstrate that there is a range of experimental conditions for which the thermal activation energy is independent of the experimental parameter values. This is the activation energy value which should be used to characterize a certain mechanism.

U
ER, N., D. CJ, L. MC, I. R, I. P, and M. - M. J. N., The use of the final thermally stimulated discharge current technique to study the molecular movements around glass transition, , vol. 354, pp. 385-390, Jan, 2011. Abstract
n/a
ER, N., D. CJ, L. MC, I. R, I. P, and M. - M. J. N., The use of the final thermally stimulated discharge current technique to study the molecular movements around glass transition, , vol. 354, issue 2, 2011. Abstract

During electric polarization charge is injected into the material. The structure is decorated with space charge and during the subsequent heating an apparent peak and the genuine peaks that are related to dipole randomization and charge detrapping are observed. The method is used here to analyze the molecular movements in polyimide in the temperature range from 293 to 623K. Two weak relaxations have been observed around 337K and around 402K. The electrical conductivity changes with temperature in agreement with the Arrhenius law only below (W=(0.84±0.03) eV ) and above ( W=(0.82±0.03) eV) the temperature range where the β relaxation is observed. The variation of the electrical conductivity with temperature, in the range of the β relaxation, is controlled by the variation of the charge currier mobility with temperature and it shows a non-Arrhenius behavior. We suggest that the β1 sub-glass relaxation is related to the rotation or oscillation of phenyl groups and the β2 sub-glass relaxation is related to the rotation or oscillation of the imidic ring. At higher temperatures an apparent peak was observed. The relaxation time of the trapped charge, at 573K, is high than 8895s.

Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, and J. N. Marat-Mendes, "The use of the final thermally stimulated discharge current technique to study the molecular movements around glass transition", Journal of Non-Crystalline Solids, vol. 357, no. 2, pp. 385-390, 2011. AbstractWebsite

During electric polarization charge is injected into the material. The structure is decorated with space charge and during the subsequent heating an apparent peak and the genuine peaks that are related to dipole randomization and charge detrapping are observed. The method is used here to analyze the molecular movements in polyimide in the temperature range from 293 to 623 K. Two weak relaxations have been observed around 337 K and around 402 K. The electrical conductivity changes with temperature in agreement with the Arrhenius law only below (W= (0.84 +/- 0.03) eV) and above ( W (0.82 +/- 0.03) eV) the temperature range where the beta relaxation is observed. The variation of the electrical conductivity with temperature, in the range of the beta relaxation, is controlled by the variation of the charge currier mobility with temperature and it shows a non-Arrhenius behavior. We suggest that the beta(1) sub-glass relaxation is related to the rotation or oscillation of phenyl groups and the beta(2) sub-glass relaxation is related to the rotation or oscillation of the imidic ring. At higher temperatures an apparent peak was observed. The relaxation time of the trapped charge, at 573 K, is high than 8895 s. (C) 2010 Elsevier B.V. All rights reserved.

W
Inês, C., M. J. Paulo, G. Luís, N. E. R., D. C. J., M. - M. J. N., and L. M. C., Water Content Control to Improve Space Charge Storage in a Cork Derivative, , pp. 395-400, Jan, 2012. Abstract
n/a
Inês, C., M. J. Paulo, G. Luís, N. E. R., D. C. J., M. - M. J. N., and L. M. C., "Water Content Control to Improve Space Charge Storage in a Cork Derivative", Materiais2011, 2012. Abstract
n/a
Lanca, M. C., I. Cunha, J. P. Marques, E. R. Neagu, L. Gil, C. J. Dias, and J. N. Marat-Mendes, "Water Content Control To Improve Space Charge Storage in a Cork Derivative", Advanced Materials Forum Vi, Pts 1 and 2, vol. 730-732, pp. 395-400, 2013. Abstract
n/a
M.C., L., C. I., M. J. Paulo, G. I. L. L., N. E. A. G. U. E.R., D. I. A. S. C.J., and M. - M. J. N., Water Content Control to Improve Space Charge Storage in a Cork Derivative, , vol. 730-732, pp. 395-400, 2012. Abstract
n/a