Publications

Export 58 results:
Sort by: Author Title [ Type  (Asc)] Year
Conference Paper
Lança, C. M., E. R. Neagu, C. Dias, and J. Marat-Mendes, Dielectric spectra of natural cork and derivatives, , vol. 356, pp. 763-767, Jan, 2010. Abstract
n/a
R., N. E., C. Dias, L. M. Carmo, I. R., I. P., and M. - M. J. N., Discrimination between Space Charge and Dipolar Contributions in Ferroelectric Polymers, , pp. 145-146, Jan, 2011. Abstract
n/a
R., N. E., C. Dias, L. M. Carmo, I. R., I. P., and M. - M. J. N., "Discrimination between Space Charge and Dipolar Contributions in Ferroelectric Polymers", 14th International Symposium on Electrets, 2011. Abstract

The final thermally stimulated discharge current method allows a better selection of the experimental conditions for sample polarization. By decreasing the ratio between the charging time and the discharging time, the apparent peak is of the same order of magnitude as the genuine peaks and there is only a partial overlap between then. Two peaks have been identified for polyamide 11, one associated with the glass transition around 60 °C and the second associated with the Curie transition around 96 °C.

Neagu, E. R.;Neagu, R. M.;Lanca, M. C.;Vassilikou-Dova, A.;Marat-Mendes, and J. N., Identification of an apparent peak by use of the final thermally stimulated discharge current technique, , pp. 296-299, Jan, 2005. Abstract
n/a
Lanca, M. C.;Neagu, E. R.;Marat-Mendes, and J. N., Studies of space charge in electrically aged low density polyethylene, , pp. 19-22, Jan, 2002. Abstract
n/a
Inês, C., M. J. Paulo, G. Luís, N. E. R., D. C. J., M. - M. J. N., and L. M. C., Water Content Control to Improve Space Charge Storage in a Cork Derivative, , pp. 395-400, Jan, 2012. Abstract
n/a
Inês, C., M. J. Paulo, G. Luís, N. E. R., D. C. J., M. - M. J. N., and L. M. C., "Water Content Control to Improve Space Charge Storage in a Cork Derivative", Materiais2011, 2012. Abstract
n/a
Journal Article
Neagu, E. R., R. M. Neagu, C. J. Dias, C. M. Lança, and J. N. Marat-Mendes, The analysis of isothermal current in terms of charge injection or extraction at the metal-dielectric contact, , vol. 356, pp. 833-837, Jan, 2010. Abstract
n/a
Neagu, E. R., R. M. Neagu, C. J. Dias, M. C. Lanca, and J. N. Marat-Mendes, "The analysis of isothermal current in terms of charge injection or extraction at the metal-dielectric contact", Journal of Non-Crystalline Solids, vol. 356, no. 11-17, pp. 833-837, 2010. AbstractWebsite

The measured isothermal charging and discharging currents are analyzed either in terms of polarization mechanisms or in terms of charge injection/extraction at the metal-dielectric interface and the conduction current through the dielectric material. We propose to measure the open-circuit isothermal charging and discharging currents just to overpass the difficulties related to the analysis of the conduction mechanisms through the dielectric materials. Besides a polarization current, there is a current related with charge injection or extraction at the metal-dielectric contact and a reverse current related to the charge trapped into the superficial trap states of the dielectric and that can jump at the interface in a reverse way. By fitting the experimental data, two important parameters can be determined (i) the highest value of the relaxation time for the polarization mechanisms still involved into the transient current and (ii) the height W-0 of the potential barrier at the metal-dielectric interface immediately after the step voltage is applied. Only the initial part of the measured isothermal charging or discharging current can be used to obtain information about the polarization processes. By transforming the time-domain data into the frequency domain, a maximum for the imaginary part of the dielectric permittivity is obtained, in good agreement with the data obtained from AC dielectric measurements and the finally thermally stimulated discharge current measurements. (C) 2009 Elsevier B.V. All rights reserved.

Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, and J. N. Marat-Mendes, "Charge Carriers Injection/Extraction at the Metal-Polymer Interface and Its Influence in the Capacitive Microelectromechanical Systems-Switches Actuation Voltage", Journal of Nanoscience and Nanotechnology, vol. 10, no. 4, pp. 2503-2511, 2010. AbstractWebsite

Opposite results concerning the sign of the parasitic charge accumulated at the metal dielectric contact in RF microelectromechanical systems (MEMS) capacitive switches are found in the literature. The mechanism concerning charge injection/extraction at the metal-dielectric contact and its influence on the pull-in voltage needs to be further clarified. A model-switch, for which only one dimension is in the microns range, is used to study the behaviour of a capacitive RF MEMS switch. The aim is to analyze how the electric charge is injected/extracted into or from the dielectric material under the applied field and to obtain realistic data to understand how this parasitic charge influences the pull-in voltage V-pi and the pull-off voltage V-po. A triangle voltage is employed to measure V-pi and V-po by measuring the isothermal charging/discharging currents. Our results demonstrate that V-pi is strongly dependent on the injected/extracted charge on the free surface of the dielectric. The charge injected/extracted at the bottom side of the dielectric has no influence on the actuation voltage. The charge injected/extracted on the free surface of the dielectric determines an increase of the modulus of V-pi and, eventually, the switch can fail to actuate. An estimation of the charge stored into the material was obtained (i) by measuring the charging current and the discharging current and (ii) from the value of the V-pi. The parasitic charge necessary to keep the bridge stick to the insulator is 5.3 x 10(-4) cm(-2) for our experimental conditions. The modification of the V-pi determined by the stored charge in the dielectric is analyzed. An increase of the relative dielectric permittivity by a factor of 2 produces a decrease of the actuation voltage of 10%. A variation of 30% in the elastic constant determines a variation of about 20% in the V-pi. A voltage threshold for charge injection/extraction was not observed.

Lanca, M. C., E. R. Neagu, and J. N. Marat-Mendes, "Combined isothermal and non-isothermal current measurements applied to space charge studies in low-density polyethylene", Journal of Physics D-Applied Physics, vol. 35, no. 8, pp. L29-L32, 2002. AbstractWebsite

A new experimental procedure combining usual isothermal DC charging and discharging with non-isothermal current measurements has been recently proposed. It is mainly suitable for very high insulating polymers and it was successfully applied to the study of space charge trapping and transport in low-density polyethylene. The analysis of the isothermal currents revealed the presence of different traps whose characteristic (de)trapping times can be deduced. The isothermal procedures allowed the selective charging of the sample. By choosing the charging field and the ratio of charge/discharge times, non-isothermal analysis permitted the differentiation of three or four peaks (at approximate to50degreesC, approximate to65degreesC, approximate to70degreesC and approximate to85degreesC) associated with charge detrapping from surface or near-surface (<20 mum) traps. These traps have activation energies between 0.21 and 1.54 eV. The mobility at 30degreesC is around 5 x 10(-16) m(2) V-1 s(-1). Samples had to be conditioned before each experiment in order to obtain reproducible results.

Lanca, M. C., E. R. Neagu, and J. N. Marat-Mendes, "Combined isothermal and non-isothermal current measurements applied to space charge studies in low-density polyethylene", Journal of Physics D-Applied Physics, vol. 35, no. 8, pp. L29-L32, 2002. AbstractWebsite

A new experimental procedure combining usual isothermal DC charging and discharging with non-isothermal current measurements has been recently proposed. It is mainly suitable for very high insulating polymers and it was successfully applied to the study of space charge trapping and transport in low-density polyethylene. The analysis of the isothermal currents revealed the presence of different traps whose characteristic (de)trapping times can be deduced. The isothermal procedures allowed the selective charging of the sample. By choosing the charging field and the ratio of charge/discharge times, non-isothermal analysis permitted the differentiation of three or four peaks (at approximate to50degreesC, approximate to65degreesC, approximate to70degreesC and approximate to85degreesC) associated with charge detrapping from surface or near-surface (<20 mum) traps. These traps have activation energies between 0.21 and 1.54 eV. The mobility at 30degreesC is around 5 x 10(-16) m(2) V-1 s(-1). Samples had to be conditioned before each experiment in order to obtain reproducible results.

Neagu, E. R., R. M. Neagu, C. J. Dias, M. C. Lanca, and J. N. Marat-Mendes, "The determination of the metal-dielectric interface barrier height from the open-circuit isothermal charging current", Journal of Applied Physics, vol. 104, no. 3, 2008. AbstractWebsite

There is a sustained interest both from theoretical and from practical points of view to understand the isothermal charging and the isothermal discharging currents in dielectrics. The measured currents are analyzed either in terms of polarization mechanisms or in terms of charge injection/extraction at the metal-dielectric interface and the conduction current through the dielectric material. As long as we do not know the nature of the origin of the current, it is not clear what information we can get by analyzing the experimental data. We propose to measure the open-circuit isothermal charging and discharging currents just to overpass the difficulties related to the analysis of the conduction mechanisms in dielectric materials. We demonstrate that besides a polarization current, there is a current related with charge injection or extraction at the metal-dielectric contact and a reverse current related to the charge trapped into the superficial trap states of the dielectric and that can jump at the interface in a reverse way. An analytical expression for the current is proposed. By fitting the experimental data to this analytical equation, two important parameters can be determined: (i) the highest value of the relaxation time for the polarization mechanisms still involved into the transient current and (ii) the height of the potential barrier W-0 at the metal-dielectric interface at the initial time when the step voltage is applied. The value obtained for Al-polyethylene terephthalate interface is (0.43 +/- 0.02) eV. For a charging voltage of 220 V there are 6x10(14) trapped electrons/m(2). (c) 2008 American Institute of Physics.

Neagu, E. R., R. M. Neagu, C. J. Dias, C. M. Lanca, and J. N. Marat-Mendes, "The determination of the metal-dielectric interface barrier height from the open-circuit isothermal charging current", Journal of Applied Physics, vol. 104, no. 3, 2008. Abstract
n/a
Neagu, E. R., R. M. Neagu, C. J. Dias, C. M. Lança, and J. N. Marat-Mendes, The determination of the pull-in voltage from the condition of bridge stability, , vol. 5, pp. 139-151, Jan, 2010. Abstract
n/a
Lanca, M. C., M. Brandt, E. R. Neagu, C. J. Dias, and J. N. Marat-Mendes, "Dielectric spectra of natural cork and derivatives", Journal of Non-Crystalline Solids, vol. 356, no. 11-17, pp. 763-767, 2010. AbstractWebsite

Cork is a cellular biomaterial that has unique characteristics that make it suitable for many types of applications. Since it is also an electrical insulator, the study of its electrical and dielectric properties can lead to new interesting applications. The moisture present in cork and derivatives has a very important role on the dielectric properties. In this work a composite made of both recycled cork and TetraPak (R) used containers was studied and compared with other cork products. The dielectric relaxation spectra of natural cork (as received), commercial cork agglomerate and of a composite cork/Tetrapak (R) was investigated in the temperature range of -50 to 120 degrees C and in the frequency range of 10(-1) Hz-2 MHz. For some samples of the composite a small amount of paraffin was added. The highest values for the imaginary part of the dielectric permittivity were found for the commercial material and the composite without paraffin. The lowest was found for the cork/TetraPak (R)/paraffin composite. The influence of humidity content was investigated for the composite with wax. Natural cork shows a peak around 80 degrees C (not seen in the derivative materials). The commercial agglomerate and the cork/TetraPak (R)/paraffin composite show a peak around 40-50 degrees C. In the composite this peak becomes smaller as humidity is removed. (C) 2009 Elsevier B.V. All rights reserved.

Lanca, M. C., S. Peuckert, E. R. Neagu, L. Gil, P. C. Silva, and J. Marat-Mendes, "Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite", Advanced Materials Forum Iv, vol. 587-588, pp. 613-617, 2008. AbstractWebsite

Lately the electrical and dielectric properties of cork and some cork-based materials (commercial and non-commercial) have been studied in order to understand their ability to store electrical charge. The main problem found so far is related to the water content in cork, only of a few % weight. but large enough to influence greatly the conductivity of cork and, consequently, the charge storage capability. To overcome this problem cork has been combined with hydrophobic materials. In this work a commercial wax (paraffin wax) was used to produce a cork/paraffin composite by hot pressing. After milled and mixed natural cork. TetraPak (R) containers waste and paraffin were pressed to make plaques of a new composite. Different concentrations of cork. TetraPak (R) and paraffin, different granules sire, different temperature and pressure were used to produce the samples. The electrical properties of the new composite were measured by the isothermal charging and discharging current method and the results compared to previously ones obtained for natural cork and other derivative products. The new composite has shown to have lower conductivity than the commercial agglomerate. which makes it a better material for charge storage.

Lanca, M. C., W. Wirges, E. R. Neagu, R. Gerhard, and J. Marat-Mendes, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, no. 47-51, pp. 4501-4505, 2007. AbstractWebsite

Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)). (c) 2007 Elsevier B.V. All rights reserved.

Pedrosa, A., M. C. Lanca, J. P. Borges, E. R. Neagu, C. J. Dias, J. N. Marat-Mendes, and Ieee, "Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite", 2011 14th International Symposium on Electrets (Ise), pp. 55-56, 2011. Abstract
n/a
Teixeira, S. S., M. P. F. Graça, J. Lucas, M. A. Valente, P. I. P. Soares, M. C. Lança, T. Vieira, J. C. Silva, J. P. Borges, L. - I. Jinga, G. Socol, C. Mello Salgueiro, J. Nunes, and L. C. Costa, "Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine", Nanomaterials, vol. 11, no. 1: MDPI AG, pp. 193, jan, 2021. AbstractWebsite

The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of $ε$′ (≈10 up to ≈14) with a tan$δ$ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g−1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.

Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee, "On the Width of the Thermally Stimulated Discharge Current Peak", Proceedings of the 2010 Ieee International Conference on Solid Dielectrics (Icsd 2010), 2010. Abstract
n/a
Lanca, M. C., M. Fu, E. Neagu, L. A. Dissado, J. Marat-Mendes, A. Tzimas, and S. Zadeh, "Space charge analysis of electrotherinally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, no. 47-51, pp. 4462-4466, 2007. AbstractWebsite

Cross-linked polyethylene (XLPE) is currently widely used as an insulating material for power cables due to its good physical properties, however when in use it undergoes an electrical ageing process. Its ability to trap electric charge can give rise to space charge accumulation in the bulk of the polymer and produce localised electric stresses that can lead to cable failure, since the electric field will be increased above the design stress in some regions favouring the initiation of degradation there. In this work the PEA (pulsed electro-acoustic) method was used to compare the charge dynamics in three samples (XLPE cable peelings) aged in different ways (electrothermally in the laboratory, field aged in service and thermally aged in the laboratory). Very different transient behavior was found depending upon the ageing history. This is related to differences in the migration of chemical species in the insulation layer, which are known to act as charge traps. All materials showed heterocharge peaks when the space charge reached stability, the magnitude of which seems to be related to the severity of the ageing. (c) 2007 Elsevier B.V. All rights reserved.

Neagu, E. R., M. C. Lanca, C. J. Dias, and J. N. Marat-Mendes, "Space Charge and Dipolar Charge Contribution at Polar Polymers Polarization", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 3, pp. 1419-1426, 2015. AbstractWebsite
n/a
Lanca, M. C., E. R. Neagu, R. M. Neagu, C. J. Dias, J. N. Marat-Mendes, and D. K. Das-Gupta, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 1, pp. 25-34, 2004. AbstractWebsite

Using a recently developed procedure combining isothermal and non-isothermal current measurements space charge trapping and transport in LDPE was successfully studied. Unaged, thermally and electrically aged samples were investigated. The samples were conditioned before each measurement in order to obtain reproducible results. In the non-isothermal measurements appeared a broad peak (40degreesC to 50degreesC) that was possible to decompose into two or three peaks (35, 45 and 65degreesC). At even higher temperature another peak was sometimes present (85degreesC) depending on the prior sample conditioning. The space charge is trapped near the surface in deep traps (maximum depth of approximate to 15 mum). Relaxation times, mobilities and activation energies have been calculated for different charging/discharging conditions. For unaged samples the reproducibility of the results was poor while for the aged polyethylene it was quite good, meaning that aging helps conditioning. In the electrically aged LDPE there is a decrease of conductivity and the broad peak of the non-isothermal spectra shows a slight shift towards higher temperatures when compared with the data found in the thermally aged polymer.