Publications

Export 94 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
ER, N., D. CJ, L. MC, I. R, and M. - M. JN, Medium Electric Field Electron Injection/Extraction at Metal-Dielectric Interface, , no. 636-637, pp. 437-443, Jan, 2010. Abstract
n/a
ER, N., D. CJ, L. MC, I. R, and M. - M. JN, Medium Electric Field Electron Injection/Extraction at Metal-Dielectric Interface, , vol. 636-637, pp. 437-443, Jan, 2010. Abstract
n/a
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, and J. N. Marat-Mendes, "Medium Electric Field Electron Injection/Extraction at Metal-Dielectric Interface", Advanced Materials Forum V, Pt 1 and 2, vol. 636-637, pp. 437-443, 2010. Abstract

The isothermal charging current and the isothermal discharging current in low mobility materials are analyzed either in terms of polarization mechanisms or in terms of charge injection/extraction at the metal-dielectric interface and the conduction current through the dielectric material. We propose to measure the open-circuit isothermal charging and discharging currents just to overpass the difficulties related to the analysis of the conduction mechanisms in dielectric materials. We demonstrate that besides a polarization current there is a current related to charge injection or extraction at the metal-dielectric interface and a reverse current related to the charge trapped into the shallow superficial or near superficial states of the dielectric and which can move at the interface in the opposite way that occurring during injection. Two important parameters can be determined (i) the highest value of the relaxation time for the polarization mechanisms which are involved into the transient current and (ii) the height of the potential barrier W-0 at the metal-dielectric interface. The experimental data demonstrate that there is no threshold field for electron injection/extraction at a metal-dielectric interface.

N
Teixeira, S. S., M. P. F. Graça, J. Lucas, M. A. Valente, P. I. P. Soares, M. C. Lança, T. Vieira, J. C. Silva, J. P. Borges, L. - I. Jinga, G. Socol, C. Mello Salgueiro, J. Nunes, and L. C. Costa, "Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine", Nanomaterials, vol. 11, no. 1: MDPI AG, pp. 193, jan, 2021. AbstractWebsite

The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of $ε$′ (≈10 up to ≈14) with a tan$δ$ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g−1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.

RM, N., N. ER, L. MC, and M. - M. JN, "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials", Advanced Materials Forum Iv, vol. 587-588, no. 587-588, pp. 328-332, Jan, 2008. Abstract
n/a
Neagu, R. M., E. R. Neagu, M. C. Lanca, and J. N. Marat-Mendes, "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials", Advanced Materials Forum Iv, vol. 587-588, pp. 328-332, 2008. Abstract

The thermally stimulated discharge current (TSDC.) method is a very sensitive and a very selective technique to analyze dipole disorientation and the movement of de-trapped space charge (SC). We have proposed a variant of the TSDC method, namely the final thermally stimulated discharge current (FTSDC) technique. flee experimental conditions can be selected so that the FTSDC is mainly determined by the SC de-trapping. The temperatures of the maximum intensity of the fractional polarization peaks obtained at low temperature, in the range of the local (secondary) relaxation, are in general about 10 to 20 K above the poling temperature. Measurements of the FTSDC in a wide temperature range demonstrate the existence of an apparent peak at a temperature T-ma shifted with about 10 to 30 K above the charging temperature T-c. The shift of T-ma with respect to T-c depends on the experimental conditions. The peak width at the half maximum intensity decreases as T-c increases and the thermal apparent activation energy increases. The variations are not monotonous revealing the temperature range where the molecular motion is stronger and consequently the charge trapping and de-trapping processes are affected. Our results demonstrate that there is a strong similarity between the elementary peaks obtained by the two methods, and the current is mainly determined by SC de-trapping. Even the best elementary peaks are not fitted very well by the analytical equation, indicating that the hypothesis behind this equation have to be reconsidered.

Neagu, R. M., E. R. Neagu, C. M. Lanca, and J. N. Marat-Mendes, "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials", Advanced Materials Forum Iv, vol. 587-588, pp. 328-332, 2008. Abstract

The thermally stimulated discharge current (TSDC.) method is a very sensitive and a very selective technique to analyze dipole disorientation and the movement of de-trapped space charge (SC). We have proposed a variant of the TSDC method, namely the final thermally stimulated discharge current (FTSDC) technique. flee experimental conditions can be selected so that the FTSDC is mainly determined by the SC de-trapping. The temperatures of the maximum intensity of the fractional polarization peaks obtained at low temperature, in the range of the local (secondary) relaxation, are in general about 10 to 20 K above the poling temperature. Measurements of the FTSDC in a wide temperature range demonstrate the existence of an apparent peak at a temperature T-ma shifted with about 10 to 30 K above the charging temperature T-c. The shift of T-ma with respect to T-c depends on the experimental conditions. The peak width at the half maximum intensity decreases as T-c increases and the thermal apparent activation energy increases. The variations are not monotonous revealing the temperature range where the molecular motion is stronger and consequently the charge trapping and de-trapping processes are affected. Our results demonstrate that there is a strong similarity between the elementary peaks obtained by the two methods, and the current is mainly determined by SC de-trapping. Even the best elementary peaks are not fitted very well by the analytical equation, indicating that the hypothesis behind this equation have to be reconsidered.

Neagu, R. M., E. R. Neagu, C. M. Lanca, J. N. Marat-Mendes, A. T. Marques, A. F. Silva, A. P. M. Baptista, C. Sa, F. J. L. A. Alves, L. F. Malheiros, and M. Vieira, "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials", Advanced Materials Forum Iv, vol. 587-588, pp. 328-332, 2008. Abstract
n/a
O
ER, N., D. CJ, L. MC, I. R, I. P, and M. - M. JN, On the width of the thermally stimulated discharge current peak, , Jan, 2010. Abstract
n/a
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee, "On the Width of the Thermally Stimulated Discharge Current Peak", Proceedings of the 2010 Ieee International Conference on Solid Dielectrics (Icsd 2010), 2010. Abstract
n/a
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee, "On the Width of the Thermally Stimulated Discharge Current Peak", Proceedings of the 2010 Ieee International Conference on Solid Dielectrics, 2010. Abstract

The Thermally Stimulated Discharge Current (TSDC) method is a very sensitive technique to analyze the movement of dipoles and of space charge (SC). To increase the selectivity of the method we have proposed a variant of the TSDC method, namely the final thermally stimulated discharge current (FTSDC) technique. The experimental conditions can be selected so that the FTSDC is mainly determined by SC de-trapping. The aim of this paper is to analyze if the elementary peaks obtained by using the two methods can be assumed as elementary Debye peaks and to determine the best experimental conditions to obtain a narrow experimental peak which means to increase the selectivity of the method.

P
Madeira, R. M. D., T. Vieira, J. C. Silva, I. R. Oliveira, J. P. Borges, M. M. R. A. Lima, and C. M. Lança, "Piezoelectric Calcium Modified Barium Titanate for Bone Regeneration", Materials Proceedings 2022, Vol. 8, Page 121, vol. 8, no. 1, Basel Switzerland, Multidisciplinary Digital Publishing Institute, pp. 121, jul, 2022. Abstract

Solid state reaction was used to produced barium titanate modified with calcium (BCT) showing the presence of the piezoelectric tetragonal phase after sintering at 1350 °C. Bioglass 45S5 (BG) was synthetized by sol-gel route. From these two materials and commercial hydroxyapatite (HAp) were obtained composites. The BG produced showed some cytotoxic character that was weakened by passivation. All other materials were non-cytotoxic. Contact polarization at constant temperature was chosen composites polarization. Electric/dielectric properties were evaluated by thermally stimulated depolarization currents (TSDC). The material showed bioactivity with the composite with BCT/BG/HAp 90/5/5 (wt%) showing increased bioactivity. In vitro test showed high proliferation rates for the composites.

P, J., L. MC, M. - M. S. J, and R. J, "Pore dimension of water trees in PE: NMR studies", POLYMER, vol. 41: Univ Paris 11, Univ Nova Lisboa, Univ Paris 11, Univ Paris 11, pp. 8151-8154, Jan, 2000. Abstract
n/a
Judeinstein, P., M. C. Lanca, J. Marat-Mendes, and J. Rault, "Pore dimension of water trees in PE: NMR studies", Polymer, vol. 41, no. 22, pp. 8151-8154, 2000. AbstractWebsite

In PE films aged under electric field the crystallisation of water (and melting of ice) has been studied by quadrupolar NMR, this technique allows one to determine the concentration of water as low as 10(-4). It is shown that the pore dimensions of the tracks forming the water trees of the order of 2.5 nm, are independent of the ageing time. The mobility of water in these water trees and in porous glass, of similar pore dimensions, are compared. (C) 2000 Elsevier Science Ltd. All rights reserved.

Judeinstein, P., M. C. Lanca, J. Marat-Mendes, and J. Rault, "Pore dimension of water trees in PE: NMR studies", Polymer, vol. 41, no. 22, pp. 8151-8154, 2000. AbstractWebsite

In PE films aged under electric field the crystallisation of water (and melting of ice) has been studied by quadrupolar NMR, this technique allows one to determine the concentration of water as low as 10(-4). It is shown that the pore dimensions of the tracks forming the water trees of the order of 2.5 nm, are independent of the ageing time. The mobility of water in these water trees and in porous glass, of similar pore dimensions, are compared. (C) 2000 Elsevier Science Ltd. All rights reserved.

S
Lanca, M. C., I. Franco, J. M. Mendes, and Ieee, SIMULATION OF THE FERROELECTRIC SWITCHING OF PVDF AND ITS COPOLYMERS, , pp. 62-66, 1992. AbstractWebsite
n/a
Lanca, M. C., I. Franco, J. M. Mendes, and Ieee, SIMULATION OF THE FERROELECTRIC SWITCHING OF PVDF AND ITS COPOLYMERS, , pp. 62-66, 1992. AbstractWebsite
n/a
Lanca, M. C., M. Fu, E. Neagu, L. A. Dissado, J. Marat-Mendes, A. Tzimas, and S. Zadeh, "Space charge analysis of electrotherinally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, no. 47-51, pp. 4462-4466, 2007. AbstractWebsite

Cross-linked polyethylene (XLPE) is currently widely used as an insulating material for power cables due to its good physical properties, however when in use it undergoes an electrical ageing process. Its ability to trap electric charge can give rise to space charge accumulation in the bulk of the polymer and produce localised electric stresses that can lead to cable failure, since the electric field will be increased above the design stress in some regions favouring the initiation of degradation there. In this work the PEA (pulsed electro-acoustic) method was used to compare the charge dynamics in three samples (XLPE cable peelings) aged in different ways (electrothermally in the laboratory, field aged in service and thermally aged in the laboratory). Very different transient behavior was found depending upon the ageing history. This is related to differences in the migration of chemical species in the insulation layer, which are known to act as charge traps. All materials showed heterocharge peaks when the space charge reached stability, the magnitude of which seems to be related to the severity of the ageing. (c) 2007 Elsevier B.V. All rights reserved.

MC, L., F. M, N. E, D. LA, M. - M. S. J, T. A, and Z. S, "Space charge analysis of electrothermally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, pp. 4462-4466, Jan, 2007. AbstractWebsite
n/a
MC, L., F. M, N. E, D. LA, M. - M. S. J, T. A, and Z. S, "Space charge analysis of electrothermally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007. AbstractWebsite

Cross-linked polyethylene (XLPE) is currently widely used as an insulating material for power cables due to its good physical properties, however when in use it undergoes an electrical ageing process. Its ability to trap electric charge can give rise to space charge accumulation in the bulk of the polymer and produce localised electric stresses that can lead to cable failure, since the electric field will be increased above the design stress in some regions favouring the initiation of degradation there. In this work the PEA (pulsed electro-acoustic) method was used to compare the charge dynamics in three samples (XLPE cable peelings) aged in different ways (electrothermally in the laboratory, field aged in service and thermally aged in the laboratory). Very different transient behavior was found depending upon the ageing history. This is related to differences in the migration of chemical species in the insulation layer, which are known to act as charge traps. All materials showed heterocharge peaks when the space charge reached stability, the magnitude of which seems to be related to the severity of the ageing.

Neagu, E. R., M. C. Lanca, C. J. Dias, and J. N. Marat-Mendes, "Space Charge and Dipolar Charge Contribution at Polar Polymers Polarization", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 3, pp. 1419-1426, 2015. AbstractWebsite
n/a
MC, L., N. ER, N. RM, D. CJ, M. - M. JN, and D. - G. DK, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 11: Univ Wales, Univ Nova Lisboa, pp. 25-34, Jan, 2004. Abstract
n/a
Lanca, M. C., E. R. Neagu, R. M. Neagu, C. J. Dias, J. N. Marat-Mendes, and D. K. Das-Gupta, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 1, pp. 25-34, 2004. AbstractWebsite

Using a recently developed procedure combining isothermal and non-isothermal current measurements space charge trapping and transport in LDPE was successfully studied. Unaged, thermally and electrically aged samples were investigated. The samples were conditioned before each measurement in order to obtain reproducible results. In the non-isothermal measurements appeared a broad peak (40degreesC to 50degreesC) that was possible to decompose into two or three peaks (35, 45 and 65degreesC). At even higher temperature another peak was sometimes present (85degreesC) depending on the prior sample conditioning. The space charge is trapped near the surface in deep traps (maximum depth of approximate to 15 mum). Relaxation times, mobilities and activation energies have been calculated for different charging/discharging conditions. For unaged samples the reproducibility of the results was poor while for the aged polyethylene it was quite good, meaning that aging helps conditioning. In the electrically aged LDPE there is a decrease of conductivity and the broad peak of the non-isothermal spectra shows a slight shift towards higher temperatures when compared with the data found in the thermally aged polymer.

Lanca, M. C., E. R. Neagu, R. M. Neagu, C. J. Dias, J. N. Marat-Mendes, and D. K. Das-Gupta, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 1, pp. 25-34, 2004. AbstractWebsite

Using a recently developed procedure combining isothermal and non-isothermal current measurements space charge trapping and transport in LDPE was successfully studied. Unaged, thermally and electrically aged samples were investigated. The samples were conditioned before each measurement in order to obtain reproducible results. In the non-isothermal measurements appeared a broad peak (40degreesC to 50degreesC) that was possible to decompose into two or three peaks (35, 45 and 65degreesC). At even higher temperature another peak was sometimes present (85degreesC) depending on the prior sample conditioning. The space charge is trapped near the surface in deep traps (maximum depth of approximate to 15 mum). Relaxation times, mobilities and activation energies have been calculated for different charging/discharging conditions. For unaged samples the reproducibility of the results was poor while for the aged polyethylene it was quite good, meaning that aging helps conditioning. In the electrically aged LDPE there is a decrease of conductivity and the broad peak of the non-isothermal spectra shows a slight shift towards higher temperatures when compared with the data found in the thermally aged polymer.

MC, L., N. ER, D. LA, and M. - M. S. J, "Space charge studies in XLPE from power cables using combined isothermal and thermostimulated current measurements", Advanced Materials Forum Iii, Pts 1 and 2, vol. 514-516, no. 514-516, pp. 935-939, Jan, 2006. Abstract
n/a