Publications

Export 46 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, and J. N. Marat-Mendes, "Charge Carriers Injection/Extraction at the Metal-Polymer Interface and Its Influence in the Capacitive Microelectromechanical Systems-Switches Actuation Voltage", Journal of Nanoscience and Nanotechnology, vol. 10, no. 4, pp. 2503-2511, 2010. AbstractWebsite

Opposite results concerning the sign of the parasitic charge accumulated at the metal dielectric contact in RF microelectromechanical systems (MEMS) capacitive switches are found in the literature. The mechanism concerning charge injection/extraction at the metal-dielectric contact and its influence on the pull-in voltage needs to be further clarified. A model-switch, for which only one dimension is in the microns range, is used to study the behaviour of a capacitive RF MEMS switch. The aim is to analyze how the electric charge is injected/extracted into or from the dielectric material under the applied field and to obtain realistic data to understand how this parasitic charge influences the pull-in voltage V-pi and the pull-off voltage V-po. A triangle voltage is employed to measure V-pi and V-po by measuring the isothermal charging/discharging currents. Our results demonstrate that V-pi is strongly dependent on the injected/extracted charge on the free surface of the dielectric. The charge injected/extracted at the bottom side of the dielectric has no influence on the actuation voltage. The charge injected/extracted on the free surface of the dielectric determines an increase of the modulus of V-pi and, eventually, the switch can fail to actuate. An estimation of the charge stored into the material was obtained (i) by measuring the charging current and the discharging current and (ii) from the value of the V-pi. The parasitic charge necessary to keep the bridge stick to the insulator is 5.3 x 10(-4) cm(-2) for our experimental conditions. The modification of the V-pi determined by the stored charge in the dielectric is analyzed. An increase of the relative dielectric permittivity by a factor of 2 produces a decrease of the actuation voltage of 10%. A variation of 30% in the elastic constant determines a variation of about 20% in the V-pi. A voltage threshold for charge injection/extraction was not observed.

Freitas, M. C., M. C. Lanca, A. M. Carvalho, and F. Decorte, "CODES TO COMPUTE RELEVANT GAMMA-GAMMA AND GAMMA-X TRUE-COINCIDENCE LINES IN ABSOLUTE COUNTING OF GAMMA-RAYS WITH A LEPD", Biological Trace Element Research, vol. 26-7, pp. 33-41, 1990. AbstractWebsite
n/a
Freitas, M. C., M. C. Lanca, A. M. Carvalho, and F. Decorte, "CODES TO COMPUTE RELEVANT GAMMA-GAMMA AND GAMMA-X TRUE-COINCIDENCE LINES IN ABSOLUTE COUNTING OF GAMMA-RAYS WITH A LEPD", Biological Trace Element Research, vol. 26-7, pp. 33-41, 1990. AbstractWebsite
n/a
Neagu, E. R., R. M. Neagu, C. J. Dias, M. C. Lanca, and J. N. Marat-Mendes, "The determination of the metal-dielectric interface barrier height from the open-circuit isothermal charging current", Journal of Applied Physics, vol. 104, no. 3, 2008. AbstractWebsite

There is a sustained interest both from theoretical and from practical points of view to understand the isothermal charging and the isothermal discharging currents in dielectrics. The measured currents are analyzed either in terms of polarization mechanisms or in terms of charge injection/extraction at the metal-dielectric interface and the conduction current through the dielectric material. As long as we do not know the nature of the origin of the current, it is not clear what information we can get by analyzing the experimental data. We propose to measure the open-circuit isothermal charging and discharging currents just to overpass the difficulties related to the analysis of the conduction mechanisms in dielectric materials. We demonstrate that besides a polarization current, there is a current related with charge injection or extraction at the metal-dielectric contact and a reverse current related to the charge trapped into the superficial trap states of the dielectric and that can jump at the interface in a reverse way. An analytical expression for the current is proposed. By fitting the experimental data to this analytical equation, two important parameters can be determined: (i) the highest value of the relaxation time for the polarization mechanisms still involved into the transient current and (ii) the height of the potential barrier W-0 at the metal-dielectric interface at the initial time when the step voltage is applied. The value obtained for Al-polyethylene terephthalate interface is (0.43 +/- 0.02) eV. For a charging voltage of 220 V there are 6x10(14) trapped electrons/m(2). (c) 2008 American Institute of Physics.

Neagu, E. R., R. M. Neagu, C. J. Dias, C. M. Lanca, and J. N. Marat-Mendes, "The determination of the metal-dielectric interface barrier height from the open-circuit isothermal charging current", Journal of Applied Physics, vol. 104, no. 3, 2008. Abstract
n/a
Neagu, E. R., R. M. Neagu, C. J. Dias, C. M. Lança, and J. N. Marat-Mendes, The determination of the pull-in voltage from the condition of bridge stability, , vol. 5, pp. 139-151, Jan, 2010. Abstract
n/a
Lanca, M. C., M. Brandt, E. R. Neagu, C. J. Dias, and J. N. Marat-Mendes, "Dielectric spectra of natural cork and derivatives", Journal of Non-Crystalline Solids, vol. 356, no. 11-17, pp. 763-767, 2010. AbstractWebsite

Cork is a cellular biomaterial that has unique characteristics that make it suitable for many types of applications. Since it is also an electrical insulator, the study of its electrical and dielectric properties can lead to new interesting applications. The moisture present in cork and derivatives has a very important role on the dielectric properties. In this work a composite made of both recycled cork and TetraPak (R) used containers was studied and compared with other cork products. The dielectric relaxation spectra of natural cork (as received), commercial cork agglomerate and of a composite cork/Tetrapak (R) was investigated in the temperature range of -50 to 120 degrees C and in the frequency range of 10(-1) Hz-2 MHz. For some samples of the composite a small amount of paraffin was added. The highest values for the imaginary part of the dielectric permittivity were found for the commercial material and the composite without paraffin. The lowest was found for the cork/TetraPak (R)/paraffin composite. The influence of humidity content was investigated for the composite with wax. Natural cork shows a peak around 80 degrees C (not seen in the derivative materials). The commercial agglomerate and the cork/TetraPak (R)/paraffin composite show a peak around 40-50 degrees C. In the composite this peak becomes smaller as humidity is removed. (C) 2009 Elsevier B.V. All rights reserved.

M.C., L. A. N. Ç. A., N. E. A. G. U. E.R., D. I. A. S. C.J., G. I. L. L., and M. A. R. A. T. - M. E. N. D. E. S. J.N., Electrical properties of cork and derivatives, , vol. 23, issue 3/4, 2011. Abstract
n/a
Lanca, M. C., J. N. Marat-Mendes, and L. A. Dissado, "The fractal analysis of water trees - An estimate of the fractal dimension", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 8, no. 5, pp. 838-844, 2001. AbstractWebsite

Water trees result from ac electrical aging of the polymeric insulation of medium and HV power cables in a humid or wet environment. As suggested by their name, they arise from penetration of water in the polymer. Visual observation with the help of an optical microscope shows tree (bush) type structures. This suggests that water trees might be fractal objects. Calculation of the fractal dimension from experimental samples may confirm the fractal characteristics and also give information on the damage caused to the polymer. In this work images of water trees taken under the optical microscope, dyed by methylene blue and etched for scanning electron microscopy (SEM), were studied in order to estimate the fractal dimension using a box-counting algorithm. The photographs, made using an optical microscope (scale of 100 mum), of the dyed samples were obtained from laboratory-aged low-density polyethylene (LDPE) specimens using accelerated techniques. Different field amplitude and frequency and also time of aging were used and the dimension values were compared. SEM images resulting from aged cross-linked polyethylene (XLPE) cables revealed a structure at a different scale (similar to 3 mum). Each photograph was analyzed to compare regions with and without water trees.

Lanca, M. C., J. N. Marat-Mendes, and L. A. Dissado, "The fractal analysis of water trees - An estimate of the fractal dimension", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 8, no. 5, pp. 838-844, 2001. AbstractWebsite

Water trees result from ac electrical aging of the polymeric insulation of medium and HV power cables in a humid or wet environment. As suggested by their name, they arise from penetration of water in the polymer. Visual observation with the help of an optical microscope shows tree (bush) type structures. This suggests that water trees might be fractal objects. Calculation of the fractal dimension from experimental samples may confirm the fractal characteristics and also give information on the damage caused to the polymer. In this work images of water trees taken under the optical microscope, dyed by methylene blue and etched for scanning electron microscopy (SEM), were studied in order to estimate the fractal dimension using a box-counting algorithm. The photographs, made using an optical microscope (scale of 100 mum), of the dyed samples were obtained from laboratory-aged low-density polyethylene (LDPE) specimens using accelerated techniques. Different field amplitude and frequency and also time of aging were used and the dimension values were compared. SEM images resulting from aged cross-linked polyethylene (XLPE) cables revealed a structure at a different scale (similar to 3 mum). Each photograph was analyzed to compare regions with and without water trees.

Dias, I. J. G., S. A. Pádua, E. A. Pires, J. P. M. R. Borges, J. C. Silva, and C. M. Lança, "Hydroxyapatite-Barium Titanate Biocoatings Using Room Temperature Coblasting", Crystals 2023, Vol. 13, Page 579, vol. 13, no. 4: Multidisciplinary Digital Publishing Institute, pp. 579, mar, 2023. AbstractWebsite

The use of orthopaedic and dental implants is expanding as a consequence of an ageing population and also due to illness or trauma in younger age groups. The implant must be biocompatible, bioactive and interact favourably with the recipient's bone, as rapid osseointegration is key to success. In this work, Ti-6Al-4V plates were coated using the CoBlastTM technique, with hydroxyapatite (HAp) and HAp/BaTiO3 (barium titanate, BT) non-piezoelectric cubic nanopowders (HAp/cBT) and piezoelectric tetragonal micropowders (HAp/tBT). The addition of BT, a piezoelectric ceramic, is a strategy to accelerate osseointegration by using surface electric charges as cues for cells. For comparison with commercial coatings, plates were coated with HAp using the plasma spray technique. Using XRD and FTIR, both plasma spray and CoBlastTM coatings showed crystalline HAp and no presence of by-products. However, the XRD of the plasma-sprayed coatings revealed the presence of amorphous HAp. The average surface roughness was close to the coatings' thickness (≈5 $μ$m for CoBlastTM and ≈13 $μ$m for plasma spray). Cytotoxicity assays proved that the coatings are biocompatible. Therefore, it can be concluded that for HAp-based coatings, CoBlastTM is a viable alternative to plasma spray, with the advantage of facilitating room temperature addition of other ceramics, like piezoelectric BaTiO3.

Pedrosa, A., M. C. Lanca, J. P. Borges, E. R. Neagu, C. J. Dias, J. N. Marat-Mendes, and Ieee, "Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite", 2011 14th International Symposium on Electrets (Ise), pp. 55-56, 2011. Abstract
n/a
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee, "On the Width of the Thermally Stimulated Discharge Current Peak", Proceedings of the 2010 Ieee International Conference on Solid Dielectrics (Icsd 2010), 2010. Abstract
n/a
Lanca, M. C., M. Fu, E. Neagu, L. A. Dissado, J. Marat-Mendes, A. Tzimas, and S. Zadeh, "Space charge analysis of electrotherinally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, no. 47-51, pp. 4462-4466, 2007. AbstractWebsite

Cross-linked polyethylene (XLPE) is currently widely used as an insulating material for power cables due to its good physical properties, however when in use it undergoes an electrical ageing process. Its ability to trap electric charge can give rise to space charge accumulation in the bulk of the polymer and produce localised electric stresses that can lead to cable failure, since the electric field will be increased above the design stress in some regions favouring the initiation of degradation there. In this work the PEA (pulsed electro-acoustic) method was used to compare the charge dynamics in three samples (XLPE cable peelings) aged in different ways (electrothermally in the laboratory, field aged in service and thermally aged in the laboratory). Very different transient behavior was found depending upon the ageing history. This is related to differences in the migration of chemical species in the insulation layer, which are known to act as charge traps. All materials showed heterocharge peaks when the space charge reached stability, the magnitude of which seems to be related to the severity of the ageing. (c) 2007 Elsevier B.V. All rights reserved.

Neagu, E. R., M. C. Lanca, C. J. Dias, and J. N. Marat-Mendes, "Space Charge and Dipolar Charge Contribution at Polar Polymers Polarization", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 3, pp. 1419-1426, 2015. AbstractWebsite
n/a
MC, L., N. ER, N. RM, D. CJ, M. - M. JN, and D. - G. DK, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 11: Univ Wales, Univ Nova Lisboa, pp. 25-34, Jan, 2004. Abstract
n/a
Lanca, M. C., E. R. Neagu, R. M. Neagu, C. J. Dias, J. N. Marat-Mendes, and D. K. Das-Gupta, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 1, pp. 25-34, 2004. AbstractWebsite

Using a recently developed procedure combining isothermal and non-isothermal current measurements space charge trapping and transport in LDPE was successfully studied. Unaged, thermally and electrically aged samples were investigated. The samples were conditioned before each measurement in order to obtain reproducible results. In the non-isothermal measurements appeared a broad peak (40degreesC to 50degreesC) that was possible to decompose into two or three peaks (35, 45 and 65degreesC). At even higher temperature another peak was sometimes present (85degreesC) depending on the prior sample conditioning. The space charge is trapped near the surface in deep traps (maximum depth of approximate to 15 mum). Relaxation times, mobilities and activation energies have been calculated for different charging/discharging conditions. For unaged samples the reproducibility of the results was poor while for the aged polyethylene it was quite good, meaning that aging helps conditioning. In the electrically aged LDPE there is a decrease of conductivity and the broad peak of the non-isothermal spectra shows a slight shift towards higher temperatures when compared with the data found in the thermally aged polymer.

Lanca, M. C., E. R. Neagu, R. M. Neagu, C. J. Dias, J. N. Marat-Mendes, and D. K. Das-Gupta, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 1, pp. 25-34, 2004. AbstractWebsite

Using a recently developed procedure combining isothermal and non-isothermal current measurements space charge trapping and transport in LDPE was successfully studied. Unaged, thermally and electrically aged samples were investigated. The samples were conditioned before each measurement in order to obtain reproducible results. In the non-isothermal measurements appeared a broad peak (40degreesC to 50degreesC) that was possible to decompose into two or three peaks (35, 45 and 65degreesC). At even higher temperature another peak was sometimes present (85degreesC) depending on the prior sample conditioning. The space charge is trapped near the surface in deep traps (maximum depth of approximate to 15 mum). Relaxation times, mobilities and activation energies have been calculated for different charging/discharging conditions. For unaged samples the reproducibility of the results was poor while for the aged polyethylene it was quite good, meaning that aging helps conditioning. In the electrically aged LDPE there is a decrease of conductivity and the broad peak of the non-isothermal spectra shows a slight shift towards higher temperatures when compared with the data found in the thermally aged polymer.

Neagu, E. R., C. J. Dias, M. C. Lança, and J. N. Marat-Mendes, The study of molecular movements in dielectrics using isothermal and non- isotehermal current measurements, , vol. 183, pp. –-, Jan, 2009. Abstract
n/a
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee, "The Study of the Molecular Movements in the Range of Glass Transition by the Final Thermally Stimulated Discharge Current Technique", Proceedings of the 2010 Ieee International Conference on Solid Dielectrics (Icsd 2010), 2010. Abstract
n/a
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, and J. N. Marat-Mendes, "The use of the final thermally stimulated discharge current technique to study the molecular movements around glass transition", Journal of Non-Crystalline Solids, vol. 357, no. 2, pp. 385-390, 2011. AbstractWebsite

During electric polarization charge is injected into the material. The structure is decorated with space charge and during the subsequent heating an apparent peak and the genuine peaks that are related to dipole randomization and charge detrapping are observed. The method is used here to analyze the molecular movements in polyimide in the temperature range from 293 to 623 K. Two weak relaxations have been observed around 337 K and around 402 K. The electrical conductivity changes with temperature in agreement with the Arrhenius law only below (W= (0.84 +/- 0.03) eV) and above ( W (0.82 +/- 0.03) eV) the temperature range where the beta relaxation is observed. The variation of the electrical conductivity with temperature, in the range of the beta relaxation, is controlled by the variation of the charge currier mobility with temperature and it shows a non-Arrhenius behavior. We suggest that the beta(1) sub-glass relaxation is related to the rotation or oscillation of phenyl groups and the beta(2) sub-glass relaxation is related to the rotation or oscillation of the imidic ring. At higher temperatures an apparent peak was observed. The relaxation time of the trapped charge, at 573 K, is high than 8895 s. (C) 2010 Elsevier B.V. All rights reserved.