[ Publications ]

Export 37 results:
Sort by: Author Title Type [ Year  (Asc)]
1997
Tavares, P., AS Pereira, S. G. Lloyd, D. Danger, DE Edmondson, E. C. Theil, and BH HUYNH. "Mossbauer spectroscopic and kinetic characterization of ferric clusters formed in h-chain ferritin mineralization." Abstracts of Papers of the American Chemical Society. 213 (1997): 503-INOR. AbstractWebsite
n/a
Pereira, AS, P. Tavares, S. G. Lloyd, D. Danger, DE Edmondson, E. C. Theil, and BH HUYNH. "Rapid and parallel formation of Fe3+ multimers, including a trimer, during H-type subunit ferritin mineralization." Biochemistry. 36 (1997): 7917-7927. AbstractWebsite

Conversion of Fe ions in solution to the solid phase in ferritin concentrates iron required for cell function. The rate of the Fe phase transition in ferritin is tissue specific and reflects the differential expression of two classes of ferritin subunits (H and L). Early stages of mineralization were probed by rapid freeze-quench Mossbauer, at strong fields (up to 8 T), and EPR spectroscopy in an H-type subunit, recombinant frog ferritin; small numbers of Fe (36 moles/mol of protein) were used to increase Fe3+ in mineral precursor forms, At 25 ms, four Fe3+-oxy species (three Fe dimers and one Fe trimer) were identified, These Fe3+-oxy species were found to form at similar rates and decay subsequently to a distinctive superparamagentic species designated the ''young core.'' The rate of oxidation of Fe2+ (1026 s(-1)) corresponded well to the formation constant for the Fe3+- tyrosinate complex (920 s(-1)) observed previously [Waldo, G. S., & Theil, E. C. (1993) Biochemistry 32, 13261] and, coupled with EPR data, indicates that several or possibly all of the Fe3+-oxy species involve tyrosine. The results, combined with previous Mossbauer studies of Y30F human H-type ferritin which showed decreases in several Fe3+ intermediates and stabilization of Fe2+ [Bauminger, E. R., et al. (1993) Biochem, J. 296, 709], emphasize the involvement of tyrosyl residues in the mineralization of H-type ferritins. The subsequent decay of these multiple Fe3+-oxy species to the superparamagnetic mineral suggests that Fe3+ species in different environments may be translocated as intact units from the protein shell into the ferritin cavity where the conversion to a solid mineral occurs.

1998
Pereira, AS, W. Small, C. Krebs, P. Tavares, DE Edmondson, E. C. Theil, and BH HUYNH. "Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization." Biochemistry. 37 (1998): 9871-9876. AbstractWebsite

Rapid freeze-quench (RFQ) Mossbauer and stopped-flow absorption spectroscopy were used to monitor the ferritin ferroxidase reaction using recombinant (apo) frog M ferritin; the initial transient ferric species could be trapped by the RFQ method using low iron loading (36 Fe2+/ferritin molecule). Biphasic kinetics of ferroxidation were observed and measured directly by the Mossbauer method; a majority (85%) of the ferrous ions was oxidized at a fast rate of similar to 80 s(-1) and the remainder at a much slower rate of similar to 1.7 s(-1). In parallel with the fast phase oxidation of the Fe2+ ions, a single transient iron species is formed which exhibits magnetic properties (diamagnetic ground state) and Mossbauer parameters (Delta E-Q = 1.08 +/- 0.03 mm/s and delta = 0.62 +/- 0.02 mm/s) indicative of an antiferromagnetically coupled peroxodiferric complex. The formation and decay rates of this transient diiron species measured by the RFQ Mossbauer method match those of a transient blue species (lambda(max) = 650 nm) determined by the stopped-flow absorbance measurement. Thus, the transient colored species is assigned to the same peroxodiferric intermediate. Similar transient colored species have been detected by other investigators in several other fast ferritins (H and M subunit types), such as the human H ferritin and the Escherichia coli ferritin, suggesting a similar mechanism for the ferritin ferroxidase step in all fast ferritins. Peroxodiferric complexes are also formed as early intermediates in the reaction of O-2 With the catalytic diiron centers in the hydroxylase component of soluble methane monooxygenase (MMOH) and in the D84E mutant of the R2 subunit of E. coli ribonucleotide reductase. The proposal that a single protein site, with a structure homologous to the diiron centers in MMOH and R2, is involved in the ferritin ferroxidation step is confirmed by the observed kinetics, spectroscopic properties, and purity of the initial peroxodiferric species formed in the frog M ferritin.

Valentine, AM, P. Tavares, AS Pereira, R. Davydov, C. Krebs, BM Koffman, DE Edmondson, BH HUYNH, and SJ Lippard. "Generation of a mixed-valent Fe(III)Fe(IV) form of intermediate Q in the reaction cycle of soluble methane monooxygenase, an analog of intermediate X in ribonucleotide reductase R2 assembly." Journal of the American Chemical Society. 120 (1998): 2190-2191. AbstractWebsite
n/a
Tavares, P., AS Pereira, C. Krebs, N. Ravi, JJG Moura, I. Moura, and BH HUYNH. "Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans." Biochemistry. 37 (1998): 2830-2842. AbstractWebsite

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2 Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.

1999
Pereira, AS, P. Tavares, C. Krebs, BH HUYNH, F. Rusnak, I. Moura, and JJG Moura. "Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli." Biochemical and Biophysical Research Communications. 260 (1999): 209-215. AbstractWebsite

Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfide-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mossbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data. (C) 1999 Academic Press.

Pamplona, A., AS Pereira, P. Tavares, I. Moura, F. Rusnak, and JJG Moura. "Cloning and overexpression of E.Coli fuscoredoxin." Journal of Inorganic Biochemistry. 74 (1999): 260. AbstractWebsite
n/a
Prudencio, M., AS Pereira, P. Tavares, S. Besson, and I. Moura. "Copper-containing nitrous oxide reductase from Pseudomonas nautica: spectroscopic and redox properties." Journal of Inorganic Biochemistry. 74 (1999): 267. AbstractWebsite
n/a
Almendra, MJ, CD Brondino, O. Gavel, AS Pereira, P. Tavares, S. Bursakov, R. Duarte, J. CALDEIRA, JJG Moura, and I. Moura. "Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas." Biochemistry. 38 (1999): 16366-16372. AbstractWebsite

An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein, Selenium was not detected. The UV/visible absorption spectrum of D, gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mossbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with Fe-57 and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.

Coufal, DE, P. Tavares, AS Pereira, BH Hyunh, and SJ Lippard. "Reactions of nitric oxide with the reduced non-heme diiron center of the soluble methane monooxygenase hydroxylase." Biochemistry. 38 (1999): 4504-4513. AbstractWebsite

The soluble methane monooxygenase system from Methylococcus capsulatus (Bath) catalyzes the oxidation of methane to methanol and water utilizing dioxygen at a non-heme, carboxylate-bridged diiron center housed in the hydroxylase (H) component. To probe the nature of the reductive activation of dioxygen in this system, reactions of an analogous molecule, nitric oxide, with the diiron(II) form of the enzyme (H-red) Were investigated by both continuous and discontinuous kinetics methodologies using optical, EPR, and Mossbauer spectroscopy. Reaction of NO with H-red affords a dinitrosyl species, designated H-dinitrosyl, with optical spectra (lambda(max) = 450 and 620 nm) and Mossbauer parameters (delta = 0.72 mm/s, Delta E-Q = 1.55 mm/s) similar to those of synthetic dinitrosyl analogues and of the dinitrosyl adduct of the reduced ribonucleotide reductase R2 (RNR-R2) protein. The H-dinitrosyl species models features of the H-peroxo intermediate formed in the analogous dioxygen reaction. In the presence of protein B, H-dinitrosyl builds up with approximately the same rate constant as H-peroxo (similar to 26 s(-1)) at 4 degrees C. In the absence of protein B, the kinetics of H-dinitrosyl formation were best fit with a biphasic A –> B –> C model, indicating the presence of an intermediate species between H-red and H-dinitrosyl. This result contrasts with the reaction of H-red with dioxygen, in which the H-peroxo intermediate forms in measurable quantities only in the presence of protein B. These findings suggest that protein B may alter the positioning but not the availability of coordination sites on iron for exogenous ligand binding and reactivity.

Wengenack, N., H. Lopes, M. Kennedy, P. Tavares, AS Pereira, I. Moura, JJG Moura, and F. Rusnak. "Redox potential of the heme protein KatG from Mycobacterium tuberculosis." Journal of Inorganic Biochemistry. 74 (1999): 336. AbstractWebsite
n/a
Moura, I., AS Pereira, P. Tavares, and JJG Moura. "Simple and complex iron-sulfur proteins in sulfate reducing bacteria." Advances in Inorganic Chemistry, Vol 47. 47 (1999): 361-419. AbstractWebsite
n/a
2000
Brown, K., M. Tegoni, M. Prudencio, AS Pereira, S. Besson, J. J. Moura, I. Moura, and C. Cambillau. "A novel type of catalytic copper cluster in nitrous oxide reductase." Nature Structural Biology. 7 (2000): 191-195. AbstractWebsite

Nitrous oxide (N(2)O) is a greenhouse gas, the third most significant contributor to global warming. As a key process for N(2)O elimination from the biosphere, N(2)O reductases catalyze the two-electron reduction of N(2)O to N(2). These 2 x 65 kDa copper enzymes are thought to contain a CuA electron entry site, similar to that of cytochrome c oxidase, and a CuZ catalytic center. The copper anomalous signal was used to solve the crystal structure of N(2)O reductase from Pseudomonas nautica by multiwavelength anomalous dispersion, to a resolution of 2.4 Angstrom. The structure reveals that the CuZ center belongs to a new type of metal cluster, in which four copper ions are liganded by seven histidine residues. N(2)O binds to this center via a single copper ion. The remaining copper ions might act as an electron reservoir, assuring a fast electron transfer and avoiding the formation of dead-end products.

Prudencio, M., AS Pereira, P. Tavares, S. Besson, I. Cabrito, K. Brown, B. Samyn, B. Devreese, J. VanBeeumen, F. Rusnak, G. Fauque, JJG Moura, M. Tegoni, C. Cambillau, and I. Moura. "Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617." Biochemistry. 39 (2000): 3899-3907. AbstractWebsite

The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named CUA and Cut. Cut could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)= 2.015, A(x) = 1.5 mT, g(y) = 2.071, A(y) = 2 mT, g(z) = 2.138, A(z) = 7 mT) and a strong absorption at similar to 640 nm. Cu-A can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x) g(y) = 2.021, A(x) = A(y) = 0 T, g(z) =0.178, A(z) = 4 mT) and absorption bands at 480, 540, and similar to 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the CuA center. In form A, CUA is predominantly oxidized (S = 1/2, Cu1.5+-Cu1.5+), while in form B it is mostly in the one-electron reduced state (S = 0, Cu1+-Cu1+). In both forms, Cu-Z remains reduced (S = 1/2). Complete crystallographic data at 2.4 Angstrom indicate that Cu-A is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu-Z is a novel tetracopper cluster [Brown, K., et ai. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.

Wengenack, NL, H. Lopes, MJ Kennedy, P. Tavares, AS Pereira, I. Moura, JJG Moura, and F. Rusnak. "Redox potential measurements of the Mycobacterium tuberculosis heme protein KatG and the isoniazid-resistant enzyme KatG(S315T): Insights into isoniazid activation." Biochemistry. 39 (2000): 11508-11513. AbstractWebsite

Mycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe3+/Fe2+ couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and IT or oxyferrous KatG.

2001
Pereira, AS, P. Tavares, I. Moura, JJG Moura, and BH HUYNH. "Mossbauer characterization of the iron-sulfur clusters in Desulfovibrio vulgaris hydrogenase." Journal of the American Chemical Society. 123 (2001): 2771-2782. AbstractWebsite

The periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenbourough) is an all Fe-containing hydrogenase. It contains two ferredoxin type [4Fe-4S] clusters, termed the F clusters, and a catalytic H cluster. Recent X-ray crystallographic studies on two Fe hydrogenases revealed that the H cluster is composed of two sub-clusters, a [4Fe-4S] cluster ([4Fe-4S]H) and-a binuclear Fe cluster ([2Fe]H), bridged by a cysteine sulfur. The aerobically purified D. vulgaris hydrogenase is stable in air. It is inactive and requires reductive activation. Upon reduction, the enzyme becomes sensitive to O(2) indicating that the reductive activation process is irreversible. Previous EPR investigations showed that upon reoxidation (under argon) the H cluster exhibits a rhombic EPR signal that is not seen in the as-purified enzyme, suggesting a conformational change in association with the reductive activation. For the purpose of gaining more information on the electronic properties of this unique H cluster and to understand further the reductive activation process, variable-temperature and variable-field Mossbauer spectroscopy has been used to characterize the Fe-S clusters in D. vulgaris hydrogenase poised at different redox states generated during a reductive titration, and in the GO-reacted enzyme. The data were successfully decomposed into spectral components corresponding to the F and H clusters,and characteristic parameters describing the electronic and magnetic properties of the F and H clusters were obtained. Consistent with the X-ray crystallographic results, the spectra of the H cluster can be understood as originating from an exchange coupled [4Fe-4S] - [2Fe] system. In particular, detailed analysis of the data reveals that the reductive activation begins with reduction of the [4Fe-4S]H cluster from the 2+ to the If state, followed by transfer of the reducing equivalent from the [4Fe-4S]H subcluster to the binuclear [2Fe]H subcluster. The results also reveal that binding of exogenous CO to the H cluster affects significantly the exchange coupling between the [4Fe-4S]H and the [2Fe]H subclusters. Implication of such a CO binding effect is discussed.

Cabrito, I., AS Pereira, P. Tavares, S. Besson, C. Brondino, B. Hoffman, K. Brown, M. Tegoni, C. Cambillau, JJG Moura, and I. Moura. "Nitrous oxide reductase (N2OR) from Pseudomonas nautica 617." Journal of Inorganic Biochemistry. 86 (2001): 165. AbstractWebsite
n/a
Franco, R., AS Pereira, P. Tavares, A. Mangravita, MJ Barber, I. Moura, and GC Ferreira. "Substitution of murine ferrochelatase glutamate-287 with glutamine or alanine leads to porphyrin substrate-bound variants." Biochemical Journal. 356 (2001): 217-222. AbstractWebsite

Ferrochelatase (EC 4.99.1.1) is the terminal enzyme of the haem biosynthetic pathway and catalyses iron chelation into the protoporphyrin IX ring. Glutamate-287 (E287) of murine mature ferrochelatase is a conserved residue in all known sequences of ferrochelatase, is present at the active site of the enzyme, as inferred from the Bacillus subtilis ferrochelatase three-dimensional structure, and is critical for enzyme activity. Substitution of E287 with either glutamine (Q) or alanine (A) yielded variants with lower enzymic activity than that of the wild-type ferrochelatase and with different absorption spectra from the wild-type enzyme. In contrast to the wild-type enzyme, the absorption spectra of the variants indicate that these enzymes, as purified, contain protoporphyrin IX. Identification and quantification of the porphyrin bound to the E287-directed variants indicate that approx. 80% of the total porphyrin corresponds to protoporphyrin IX. Significantly, rapid stopped-flow experiments of the E287A and E287Q Variants demonstrate that reaction with Zn2+ results in the formation of bound Zn-protoporphyrin IX, indicating that the endogenously bound protoporphyrin IX can be used as a substrate. Taken together, these findings suggest that the structural strain imposed by ferrochelatase on the porphyrin substrate as a critical step in the enzyme catalytic mechanism is also accomplished by the E287A and E287Q variants, but without the release of the product. Thus E287 in murine ferrochelatase appears to be critical For the catalytic process by controlling the release of the product.

2002
Jameson, G. N. L., W. Jin, C. Krebs, A. S. Perreira, P. Tavares, X. F. Liu, E. C. Theil, and BH HUYNH. "Stoichiometric production of hydrogen peroxide and parallel formation of ferric multimers through decay of the diferric-peroxo complex, the first detectable intermediate in ferritin mineralization." Biochemistry. 41 (2002): 13435-13443. AbstractWebsite

The catalytic step that initiates formation of the ferric oxy-hydroxide mineral core in the central cavity of H-type ferritin involves rapid oxidation of ferrous ion by molecular oxygen (ferroxidase reaction) at a binuclear site (ferroxidase site) found in each of the 24 subunits. Previous investigators have shown that the first detectable reaction intermediate of the ferroxidase reaction is a diferric-peroxo intermediate, F-peroxo, formed within 25 ms, which then leads to the release of H2O2 and formation of ferric mineral precursors. The stoichiometric relationship between F-peroxo, H2O2, and ferric mineral precursors, crucial to defining the reaction pathway and mechanism, has now been determined. To this end, a horseradish peroxidase-catalyzed spectrophotometric method was used as an assay for H2O2. By rapidly mixing apo M ferritin from frog, Fe2+, and O-2 and allowing the reaction to proceed for 70 ms when F-peroxo has reached its maximum accumulation, followed by spraying the reaction mixture into the H2O2 assay solution, we were able to quantitatively determine the amount of H2O2 produced during the decay of F-peroxo. The correlation between the amount of H2O2 released with the amount of F-peroxo accumulated at 70 ms determined by Mossbauer spectroscopy showed that F-peroxo decays into H2O2 with a stoichiometry of 1 F-peroxo:H2O2. When the decay of F-peroxo was monitored by rapid freeze-quench Mossbauer spectroscopy, multiple diferric mu-oxo/mu-hydroxo complexes and small polynuclear ferric clusters were found to form at rate constants identical to the decay rate of F-peroxo. This observed parallel formation of multiple products (H2O2, diferric complexes, and small polynuclear clusters) from the decay of a single precursor (F-peroxo) provides useful mechanistic insights into ferritin mineralization and demonstrates a flexible ferroxidase site.

2004
Dias, JM, T. Alves, C. Bonifacio, AS Pereira, J. Trincao, D. Bourgeois, I. Moura, and MJ Romao. "Structural basis for the mechanism of Ca2+ activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617." Structure. 12 (2004): 961-973. AbstractWebsite

Cytochrome c peroxidase (CCP) catalyses the reduction of H2O2 to H2O, an important step in the cellular detoxification process. The crystal structure of the di-heme CCP from Pseudomonas nautica 617 was obtained in two different conformations in a redox state with the electron transfer heme reduced. Form IN, obtained at pH 4.0, does not contain Ca2+ and was refined at 2.2 Angstrom resolution. This inactive form presents a closed conformation where the peroxidatic heme adopts a six-ligand coordination, hindering the peroxidatic reaction from taking place. Form OUT is Ca2+ dependent and was crystallized at pH 5.3 and refined at 2.4 Angstrom resolution. This active form shows an open conformation, with release of the distal histidine (His71) ligand, providing peroxide access to the active site. This is the first time that the active and inactive states are reported for a di-heme peroxidase.

2006
Tavares, P., AS Pereira, JJG Moura, and I. Moura. "Metalloenzymes of the denitrification pathway." Journal of Inorganic Biochemistry. 100 (2006): 2087-2100. AbstractWebsite

Denitrification, or dissimilative nitrate reduction, is an anaerobic process used by some bacteria for energy generation. This process is important in many aspects, but its environmental implications have been given particular relevance. Nitrate accumulation and release of nitrous oxide in the atmosphere due to excess use of fertilizers in agriculture are examples of two environmental problems where denitrification plays a central role. The reduction of nitrate to nitrogen gas is accomplished by four different types of metalloenzymes in four simple steps: nitrate is reduced to nitrite, then to nitric oxide, followed by the reduction to nitrous oxide and by a final reduction to dinitrogen. In this manuscript we present a concise updated review of the bioinorganic aspects of denitrification. (c) 2006 Elsevier Inc. All rights reserved.

Cordas, C. M., AS Pereira, C. E. Martins, C. G. Timoteo, I. Moura, JJG Moura, and P. Tavares. "Nitric oxide reductase: Direct electrochemistry and electrocatalytic activity." Chembiochem. 7 (2006): 1878-1881. AbstractWebsite
n/a
2007
Fisher, K., D. J. Lowe, P. Tavares, AS Pereira, BH HUYNH, D. Edmondson, and W. E. Newton. "Conformations generated during turnover of the Azotobacter vinelandii nitrogenase MoFe protein and their relationship to physiological function." Journal of Inorganic Biochemistry. 101 (2007): 1649-1656. AbstractWebsite

Various S = 3/2 EPR signals elicited from wild-type and variant Azotobacter vinelandii nitrogenase MoFe proteins appear to reflect different conformations assumed by the FeMo-cofactor with different protonation states. To determine whether these presumed changes in protonation and conformation reflect catalytic capacity, the responses (particularly to changes in electron flux) of the alpha H195Q, alpha H195N, and alpha Q191 K variant MoFe proteins (where His at position 195 in the alpha subunit is replaced by Gln/Asn or Gln at position alpha-191 by Lys), which have strikingly different substrate-reduction properties, were studied by stopped-flow or rapid-freeze techniques. Rapid-freeze EPR at low electron flux (at 3-fold molar excess of wild-type Fe protein) elicited two transient FeMo-cofactor-based EPR signals within 1 s of initiating turnover under N-2 with the alpha H195Q and alpha H195N variants, but not with the alpha Q191K variant. No EPR signals attributable to P cluster oxidation were observed for any of the variants under these conditions. Furthermore, during turnover at low electron flux with the wild-type, alpha H195Q or alpha H195N MoFe protein, the longer-time 430-nm absorbance increase, which likely reflects P cluster oxidation, was also not observed (by stopped-flow spectrophotometry); it did, however, occur for all three MoFe proteins under higher electron flux. No 430-nm absorbance increase occurred with the alpha Q191K variant, not even at higher electron flux. This putative lack of involvement of the P cluster in electron transfer at low electron flux was confirmed by rapid-freeze Fe-57 Mossbauer spectroscopy, which clearly showed FeMo-factor reduction without P cluster oxidation. Because the wild-type, alpha H195Q and alpha H195N MoFe proteins can bind N-2, but alpha Q195K cannot, these results suggest that P cluster oxidation occurs only under high electron flux as required for N-2 reduction. (C) 2007 Elsevier Inc. All rights reserved.

Ferreira, I. M. P. L. V., R. Eca, O. Pinho, P. Tavares, A. Pereira, and A. C. Roque. "Development and validation of an HPLC/UV method for quantification of bioactive peptides in fermented milks." Journal of Liquid Chromatography & Related Technologies. 30 (2007): 2139-2147. AbstractWebsite

The simultaneous separation and quantification of two casein peptides (IPP, VPP) presenting potent inhibitory activity of angiotensin-converting-enzyme (ACE) and casein in fermented milks was developed. Gradient elution was carried out at a flow-rate of 1 mL/min, using a mixture of two solvents. Solvent A was 0.1% TFA in water and solvent B was acetonitrile-water-trifluoracetic acid 95:5:0.1. The effluent was monitored by UV detector at 214 nm. Calibration curves were constructed in the interval of 0.01-1.0 mg/mL for VPP, 0.005-1.0 mg/mL for IPP, and 0.05-3.0 mg/mL for casein. R 2 invariably exceeded 0.999. The detection limits were 0.004 for VPP, 0.002 mg/mL for IPP, and 0.02 mg/mL for casein. Repeatability of the method was evaluated by six consecutive injections of two standard solutions containing VPP, IPP, and casein. The RSD values for concentration were all below 5.08%. Recovery studies were carried out to determine the accuracy of the method. Recoveries ranged between 88 and 98.2%. The methodology was applied, not only, for the monitorization of VPP, IPP, and casein in commercial fermented milks labeled as presenting anti hypertensive properties, but also, in milk with different degrees of fermentation by L Helveticus, and in other commercial functional fermented milks, such as, those presenting cholesterol lowering properties.

Pauleta, S. R., A. G. Duarte, M. S. Carepo, AS Pereira, P. Tavares, I. Moura, and JJG Moura. "NMR assignment of the apo-form of a Desulfovibrio gigas protein containing a novel Mo-Cu cluster." Biomolecular Nmr Assignments. 1 (2007): 81-83. AbstractWebsite

We report the 98% assignment of the apo-form of an orange protein, containing a novel Mo-Cu cluster isolated from Desulfovibrio gigas. This protein presents a region where backbone amide protons exchange fast with bulk solvent becoming undetectable. These residues were assigned using C-13-detection experiments.